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Abstract

Graph theory is useful for estimating time-dependent model parameters via weighted

least-squares using interferometric synthetic aperture radar (InSAR) data. Plotting ac-

quisition dates (epochs) as vertices and pair-wise interferometric combinations as edges

defines an incidence graph. The edge-vertex incidence matrix and the normalized edge

Laplacian matrix are factors in the covariance matrix for the pair-wise data. Using em-

pirical measures of residual scatter in the pair-wise observations, we estimate the variance

at each epoch by inverting the covariance of the pair-wise data. We evaluate the rank

deficiency of the corresponding least-squares problem via the edge-vertex incidence ma-

trix. We implement our method in a MATLAB software package called GraphTreeTA

available on GitHub (https://github.com/feigl/gipht). We apply temporal adjustment

to the data set described in Lu et al. (2005) at Okmok volcano, Alaska, which erupted

most recently in 1997 and 2008. The data set contains 44 differential volumetric changes

and uncertainties estimated from interferograms between 1997 and 2004. Estimates show

that approximately half of the magma volume lost during the 1997 eruption was recov-

ered by the summer of 2003. Between June 2002 and September 2003, the estimated rate

of volumetric increase is (6.2± 0.6)× 106 m3/yr. Our preferred model provides a reason-

able fit that is compatible with viscoelastic relaxation in the five years following the 1997

eruption. Although we demonstrate the approach using volumetric rates of change, our

formulation in terms of incidence graphs applies to any quantity derived from pair-wise

differences, such as wrapped phase or wrapped residuals.

https://github.com/feigl/gipht
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excellent role models and my husband Alex Reinisch, for his continued support.

This material is based upon work supported by the National Science Foundation

Graduate Research Fellowship under Grant No. DGE-1256259, the National Aeronau-

tics and Space Administration under grant NNX12AO37G, and by the National Science

Foundation under grants EAR-0943965 and EAR-1347190.

This manuscript (except Section 6) has been submitted to the Journal of Geodesy

with the title “Graph theory for analyzing pair-wise data: Application to geophysical

model parameters estimated from interferometric synthetic aperture radar data at Okmok

Volcano, Alaska” by Elena C. Reinisch, Michael Cardiff, and Kurt L. Feigl on 2 May 2016.



vi



vii

Contents

1 Introduction 1

1.1 Background of InSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Review of Graph Theory 7

2.1 Relationship Between Components and Undetermined Parameters . . . . 7

3 Methods 11

3.1 Example Case: Building the Design Matrix G . . . . . . . . . . . . . . . 11

3.2 Alternative Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Design Matrix G for Other Functions of Time . . . . . . . . . . . . . . . 19

3.4 Defining the Data Covariance Matrix . . . . . . . . . . . . . . . . . . . . 20

3.5 Example Case: Data Covariance Matrix . . . . . . . . . . . . . . . . . . 22

3.6 Epoch-wise Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Least-Squares Solution Using the Pseudoinverse and Normal Equations . 28

3.8 Applying the Forward Model . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implementation 31

4.1 Description of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Application to Okmok Volcano 33

5.1 Background of Okmok Volcano . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Setting up the Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Estimation of Epoch-wise Variance . . . . . . . . . . . . . . . . . . . . . 40

5.4 Single-segment Secular Rate Parameterization . . . . . . . . . . . . . . . 42

5.5 Five-segment Piecewise-linear Parameterization . . . . . . . . . . . . . . 44

5.6 Berardino Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 46



viii

5.7 Exponential Decay Parameterization . . . . . . . . . . . . . . . . . . . . 49

5.8 Modified Exponential Parameterization . . . . . . . . . . . . . . . . . . . 50

6 Discussion 55

6.1 Estimating the Characteristic Time Scale at at Okmok Volcano . . . . . 55

6.2 Viscoelastic Relaxation of the Surrounding Country Rock . . . . . . . . . 58

6.3 Viscous Magma Flow Upwards Through a Conduit . . . . . . . . . . . . 60

6.4 Secondary Pulses? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusions 69

Appendix A Mathematical Notation 71

Appendix B Revised Data Table from Lu et al. (2005) 75

Bibliography 79



1

1 Introduction

1.1 Background of InSAR

Interferometric synthetic aperture radar (InSAR) measures the deformation of an area on

the ground by calculating the difference in phase between two synthetic aperture radar

(SAR) images covering the same location taken at two different points in time (“epochs”)

(e.g., Massonnet and Feigl, 1998). Like many geodetic techniques, including spirit level-

ing, triangulation by theodolite, trilateration by electronic distance measurement (EDM),

and very long baseline interferometry (VLBI), InSAR makes relative measurements as

pair-wise differences (e.g., Feigl et al., 2002). Each pixel in an unwrapped interferogram

is the difference between the satellite-to-ground range measured at one epoch and the

range measured at a second epoch (e.g., Massonnet and Feigl, 1998).

Using the notation conventionally employed in geophysics, we write a linear model

as Gm = d, where d is a vector containing n pair-wise measurements, m is a vector

containing m parameters in the geophysical model, and G is an n-by-m design matrix

(e.g., Aster et al., 2013). In the case of pair-wise data, the design matrix G is an

incidence matrix consisting of elements from the set {−1, 0, 1} (Strang and Borre, 1997).

Alternatively, Schmidt (1996) expresses differences in range in terms of bivectors, or

vectors whose elements depend on two different sets of data, to estimate relative position

coordinates. To estimate the optimal set of parameters, one conventionally solves the

(weighted) least-squares problem. If the geophysical model is a function of time, we call

the estimation procedure “temporal adjustment” (Beauducel et al., 2000; Feigl et al.,

2002; Berardino et al., 2002; Schmidt and Bürgmann, 2003).

In the case of InSAR, the input data can consist of: (1) a set of differential changes in

range along the line of sight at a single pixel, or (2) a set of model parameters estimated

from individual interferometric pairs spanning different intervals of time. In the example

application that we consider below, the model parameters measure the volumetric change
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in a magma chamber below the volcanic edifice. With such data, the number of epochs

q is necessarily greater than the minimum number of pair-wise combinations c = q − 1

required to span the epochs (Feigl and Thurber, 2009). Consequently, if the number

of model parameters m equals the number of epochs q, then the corresponding least-

squares problem is necessarily underdetermined. In this case, the design matrix G is

rank-deficient.

For example, suppose we have InSAR data acquired by a radar sensor measuring

an inflating volcano. In this case, one pair-wise observation will measure the change in

range (distance along the line of “sight” from the sensor to the ground) between the first

and second epochs. A decrease in range equals the sensor-ward displacement along the

line of sight of the sensor (i.e. the temporal change in a single component of relative

position). Without additional constraining information, such as the initial position with

respect to a known reference point, we cannot estimate absolute parameters. To solve the

least-squares problem, we must reduce the number of parameters and/or add regularizing

constraints.

In this paper, we apply graph theory to: (1) visualize model parameters estimated

from an InSAR data set, (2) construct the covariance matrix for pair-wise data, (3) es-

timate the error variance of the measurements at each epoch, (4) evaluate the rank

deficiency of the least-squares inverse problem, (5) select appropriate parameterizations

of the time-dependent model, and (6) select regularizing constraints.

We have included a table describing our mathematical notation in Appendix A.

1.2 Previous Work

To distinguish between geophysical signals on the ground, perturbations in the atmo-

sphere, and artifacts in the processing, one can compare different interferometric pairs

that span different time intervals, as sketched in panels a through c of Figure 1.1 (e.g.,
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Massonnet and Feigl, 1995). In terms of graph theory, Figure 1.1 (a) and Figure 1.1 (c)

are examples of a tree graph, where the edges of the graph connect the vertices without

any cycles. Figure 1.1 (b) is an example of a collection of trees, also known as a forest

(Harris et al., 2008).

Biggs et al. (2007) introduce the notion of “chains,” as sketched in Figure 1.1 (d).

Constructing a chain of pairs where the second epoch of one pair is the first epoch of

the next pair cancels all of the atmospheric contributions except those of the first and

last epochs in the chain. In terms of graph theory, a “chain” is a path graph, or a tree

with no branches connecting all vertices, such that it has internal nodes of degree two

referring to two edge connections and terminal nodes of degree one referring to one edge

connection (see Figure 1.1 (d) (e.g., Harris et al., 2008, pg. 6)).

Alternatively, the single-master approach refers all the pairs to a single epoch in a

graph that resembles a star (Figure 1.1 (e))(e.g., Hooper et al., 2004; Hooper, 2008).

Perissin and Wang (2012) draw the graph of a minimum spanning tree (Figure 1.1 (f))

in two dimensions: time and orbital separation. A minimum spanning tree is a tree that

contains all vertices of a graph and has the lowest cost as calculated according to the

weight of each edge (e.g., Harris et al., 2008, pg. 39).

Alternatively, one can choose a set of pairs such that the time intervals between

successive epochs and the orbital separations (“baselines”) between pairs are as short as

possible in an approach known as Small Baseline Subset (SBAS) (Berardino et al., 2002;

Lanari et al., 2007; Casu et al., 2008; Lee et al., 2012).

In a different approach, Hetland et al. (2012) generalize the temporal parameterization

to include a library of temporal functions in their Multiscale InSAR Time Series (MInTS)

procedure. More recently, Agram and Simons (2015) have developed a model for spatial

and temporal covariance for interferometric phase noise for use in time-series analysis.
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Figure 1.1: Examples of common graphs in InSAR analysis. In each graph, the dots
correspond to epochs (vertices) and segments correspond to pairs (edges). (a) Range
changes depend on whether or not the measured interval of time spans an event such as
the Fawnskin earthquake (Feigl et al., 1995; Feigl and Thurber, 2009). (b) Atmospheric
perturbation. The atmospheric perturbation at epoch 3 creates a significant disturbance
in pairs (2,3) and (3,4) but not (1,5). (c) An error in the digital elevation model (DEM)
can create an artifact in the interferogram such that the range change is proportional to
the orbital separation (Massonnet and Feigl, 1995), also known as the “baseline distance
B” (Zebker and Goldstein, 1986). (d) A graph of a “chain,” where the chronologically
first epoch of one pair is the chronologically second epoch of the previous pair (Biggs
et al., 2007). The orbital errors associated with the interior epochs in the chain cancel
each other. (e) The graph of a data set that forms a “star” such that each of the second
epochs per pair forms a pair with the single master epoch located at the center (Perissin
and Wang, 2012). (f) Example of the minimum spanning tree (MST) of the same data
set as in Figure 1.1 (e). (g) Incidence graph of example data set containing 5 epochs,
3 pairs, and 2 distinct trees. (h) Three epochs form only two independent pairs (solid
line segments). Adding a third pair (dashed line segment) forms a cycle in the graph but
adds no additional information to the inverse problem. The information gained from the
combination of pairs (1,2) and (2,3) is the same as the information given from pair (1,3).
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2 Review of Graph Theory

A graph represents the relationships between a set containing vertices and a set of edges

(Harris et al., 2008). When applied to InSAR, the m vertices signify points in time, or

epochs, and the edges signify the n pair-wise combinations of images, or interferograms

that span intervals of time. Following the notation of Merris (1994), we draw a directed

graph by assigning a direction to each edge, with one end of the pair assigned as the

“positive” vertex and the other as the “negative” vertex. For example, given a vertex

vj at an epoch tj and another vertex vk at a second, chronologically later, epoch tk, we

denote the ith pair as edge ei = {vj, vk}. We define an edge-vertex incidence matrix

Q having n rows and m columns first. The ith row at Q represents the ith pair such

that Qi,j = −1, Qi,k = 1, and Qi,v /∈{j,k} = 0 for all other vertices other than vj and vk.

Note that our edge-vertex incidence matrix Q is the transpose of the m-by-n vertex-edge

incidence matrix used by Merris (1994). We use the edge-vertex form of the incidence

matrix Q to lighten the notation.

2.1 Relationship Between Components and Undetermined Pa-

rameters

We consider a situation in which InSAR data corresponding to range changes ∆ρ from

a set of n interferometric pairs are derived from SAR images acquired at m epochs. The

corresponding system of linear equations is Qm = dobs, where dobs = ∆ρ is the vector of

pair-wise observations and m = ρ is the vector of m unknown parameters, each of which

represents the absolute range from sensor to target at an epoch in time. The solution

is underdetermined because the number of unknown parameters m is greater than the

number of independent equations rank(Q). The rank deficiency is

µ = m− rank(Q) (2.1)
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as demonstrated by Strang and Borre (1997, p. 114, 118).

In some cases, the graph is disconnected, or composed of more than one distinct

component (also referred to as a connected component (e.g., Harris et al., 2008, p. 8)).

Feigl and Thurber (2009) called each component a “species.” A distinct component in

an InSAR data set is a set of individual images that combine pair-wise to form a set of

interferograms. The epoch of each image corresponds to a vertex in the graph. Each

vertex in a component is connected to at least one other vertex in the component by

an edge. One distinct component is not connected to another distinct component. For

example, SAR images acquired by one radar sensor are not interferometrically compatible

with those from another sensor. The vertices in the corresponding graph thus form two

distinct, disconnected components, as sketched in Figure 1.1 (g).

Graph theory tells us that the rank of the incidence matrix for a disconnected graph

is

rank(Q) = m− k (2.2)

where m, the number of nodes (or vertices), represents the number of epochs and k is

the number of components (Deo, 2004, p. 140). If the components do not contain any

cycles, then k also represents the number of distinct trees.

Thus, we can prove that the number of components in a disconnected graph is equal

to the rank deficiency of the corresponding incidence matrix.

Theorem 1.

k = m− rank(Q) = µ (2.3)

Proof. We begin by rewriting equation (2.2) in terms of k:

k = m− rank(Q) (2.4)
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We can now see that equation (2.4) is equivalent to our previous definition of rank

deficiency as stated in equation (2.1): µ = m− rank(Q). Thus,

k = m− rank(Q) = µ (2.5)

This theorem was noted, but not proven, by Feigl and Thurber (2009).
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3 Methods

3.1 Example Case: Building the Design Matrix G

Let us assume a simple, specific case, as graphed in Figure 1.1 (g), with five epochs

{v1, v2, v3, v4, v5} and three pairs {e1,2, e3,4, e4,5}. The corresponding graph is disconnected

(Figure 1.1 (g)). It includes two distinct components. The first component includes 1

pair and 2 epochs. The second component includes 2 pairs and 3 epochs. Since there

are no cycles, each of these two components is a tree. Since the epochs are arranged in

chronological order, the graph is directed. Thus, it is a directed acyclic graph (DAG).

The corresponding edge-vertex incidence matrix Q is:

Q =


−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1

 (3.1)

The system of equations is thus


−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1





m1

m2

m3

m4

m5


=


d1,2

d3,4

d4,5



=


ρ2 − ρ1

ρ4 − ρ3

ρ5 − ρ4



(3.2)

where ρi = ρ(ti) is the range at epoch ti. Using Figure 1.1 (g), Theorem 1, and equa-

tion (2.3), we see that since µ = k = 2, two parameters remain indistinguishable. Thus,
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we need to add two constraints to the system in order to regularize the problem. We

append two constraining rows to Q to formulate the design matrix G for the constrained

system Gm = d. From Figure 1.1 (g), we see that the two initial vertices of interest are

v1 and v3, corresponding to epochs t1 and t3.

For simplicity, let us (arbitrarily) constrain the system such that the absolute range

at the first epoch in each distinct component is fixed at zero.

ρ(t1) = m1 = 0

ρ(t3) = m3 = 0

(3.3)

From these equations, we define a 2-row constraint matrix C:

C =

1 0 0 0 0

0 0 1 0 0

 (3.4)

and a 2-row data constraint vector: dcon = [0, 0]ᵀ.

Here, the number of rows in each of C and dcon is equal to the number of constraints

k = 2. We construct the design matrix G from the incidence matrix Q and the constraint

matrix C:

G =

Q

C

 (3.5)

For this case,

G =



−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1

1 0 0 0 0

0 0 1 0 0


(3.6)

We expand the data vector by including the constraining elements of equation (3.3)
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in the data vector d.

d =

dobs

dcon

 (3.7)

Now the system takes the form

Q

C

[m] =

dobs

dcon

 (3.8)

Let us further define a simple data set of range changes dobs = [1, 2, 1]ᵀ(mm) and a

set of epochs at 1-year intervals, t = [1, 2, 3, 4, 5]ᵀ(yr). Figure 3.1 (a) shows the data set

as rates. Figure 3.1 (b) shows how adding constraints leads to a solution.
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Figure 3.1: Plots illustrating the simple, fictitious example of vertical displacement in an
inflating volcano as measured by an InSAR data set with 5 epochs and 3 independent
pairs that graph as two distinct trees. (a) Plot of displacement rates for individual
pairs with corresponding time intervals (horizontal red bars), and standard deviations of
measurement errors (vertical red bars). The blue symbol indicates weighted mean with
scaled 68 percent confidence interval (vertical blue bar) and time span for the entire data
set (horizontal blue bar). (b) Plot of displacement as a function of time as calculated
by temporal adjustment using a piecewise linear parameterization and two constraints.
The constraining equations plot as relative displacement within each tree, setting the
initial displacement at the first epoch in each distinct component at zero. (c) Plot of
displacement as a function of time estimated with a piecewise linear parameterization
in terms of velocity using the method outlined in Berardino et al. (2002). (d) Plot
of displacement as a function of time estimated using the parameterization in (c) with
first-order Tikhonov regularization (penalizing towards a constant-rate solution). The
regularization parameter β = 0.0090.
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3.2 Alternative Parameterization

An alternative parameterization is the method of rates developed by Berardino et al.

(2002). This method chooses a vector m = v of rate parameters such that each element

vi represents the rate of change in displacement (i.e. velocity) between each pair of con-

secutive epochs (i.e. during the ith interval of time). Given a set of n pairs and a vector t

of m epochs, we solve for a vector v of m− 1 rate parameters using the Berardino design

matrix G[B] via the following procedure.

Step 1: Define an edge-vertex matrix ∆ with m − 1 rows and m columns repre-

senting the edge-vertex incidence matrix corresponding to a path graph chronologically

connecting all epochs in the data set. In our 2-component example, the path connects

the two distinct components.

Step 2: Find the pair-rate matrix B, where the i, jth element Bi,j = 1 if the ith

pair corresponds to the jth rate and Bi,j = 0 otherwise. This matrix can be calculated

from the product of the incidence matrix Q and the pseudoinverse ∆† of the edge-vertex

matrix:

B = Q∆† (3.9)

Here, we note that B is itself an incidence matrix as it denotes the relationship

between pairs and rates. We take the pseudoinverse of ∆ because its rank deficient

nature indicates it is not directly invertible.

Step 3: Define a diagonal (m− 1)-by-(m− 1) matrix T with the time intervals be-

tween consecutive epochs as the diagonal elements and zeros as the off-diagonal elements:

Ti,j = δi,j(ti+1 − ti) (3.10)
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where δi,j is the Kronecker delta

δi,j =


0 if i 6= j

1 if i = j

(3.11)

Step 4: Find the Berardino design matrix G
[B]
n×(m−1) from the product of the pair-rate

incidence matrix B and the diagonal matrix of time intervals T:

G
[B]
n×(m−1) = BT (3.12)

Step 5: Estimate the vector of rate parameters v by solving G[B]v = d using singular

value decomposition (SVD).

We note that this method fails when the data set includes more than one distinct tree

because the system of equations is rank deficient. Thus, the minimum-norm solution

given by the pseudoinverse in singular value decomposition will tend to oscillate. For

example, we consider again the case graphed in Figure 1.1 (g) with n = 3 distinct pairs

of displacements d = {d1,2, d3,4, d4,5}. We represent the epochs in chronological order as

a vector t = {t1, t2, t3, t4, t5}. The data provide no information regarding the velocity

v2,3 during the interval between t2 and t3. We begin by defining the edge-vertex matrix

∆ for the path connecting all epochs:

∆ =



−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1


(3.13)

We next solve for the pair-rate incidence matrix B by equation (3.9) using the pseu-
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doinverse ∆† and the incidence matrix Q from equation (3.1)

B =


−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1





−4
5

−3
5

−2
5

−1
5

1
5
−3
5

−2
5

−1
5

1
5

2
5
−2
5

−1
5

1
5

2
5

3
5
−1
5

1
5

2
5

3
5

4
5



=


1 0 0 0

0 0 1 0

0 0 0 1



(3.14)

We write the diagonal time-interval matrix T according to equation (3.10) as

T =



(t2 − t1) 0 0 0

0 (t3 − t2) 0 0

0 0 (t4 − t3) 0

0 0 0 (t5 − t4)


(3.15)

Finally, we solve for G[B] using equation (3.12):

G[B] = BT

=


(t2 − t1) 0 0 0

0 0 (t4 − t3) 0

0 0 0 (t5 − t4)


(3.16)



18

The system of equations now takes the form G[B]v = dobs.


(t2 − t1) 0 0 0

0 0 (t4 − t3) 0

0 0 0 (t5 − t4)





v1,2

v2,3

v3,4

v4,5


=


d1,2

d3,4

d4,5

 (3.17)

where v is the parameter vector of velocities and dobs is the vector of observed pair-

wise, relative displacements.The design matrix G[B] has a rank deficiency of 1. Its null

column indicates a lack of information during the time interval between epochs t2 and

t3. Consequently, the relative velocity v2,3 between the two distinct trees (disconnected

components) of the incidence graph (Figure 3.1 (c)) is unconstrained. In other words, the

path graph described by ∆ includes an edge e2,3 that is not in the 2-component graph

described by Q.

Singular value decomposition gives a minimum-norm solution, assuming no movement

where there is a lack of information. In general, the minimum-norm solution by SVD

becomes more prone to local oscillations as the number of unconstrained parameters

increases (Aster et al., 2013, pp. 75, 93). To alleviate the locally oscillatory nature of

the minimum-length solution found through SVD of Berardino et al. (2002)’s method,

we consider other regularizations. We recognize that the minimum-length least-squares

solution of this method found from SVD is equivalent to the zeroth-order Tikhonov

solution of Berardino et al. (2002) in the limit as the regularization parameter approaches

zero.

Instead, we choose to impose first-order Tikhonov regularization using an (m−1)-by-

m matrix W that quantifies the flatness of the solution and a regularization parameter

β (e.g., Aster et al., 2013). The purpose of the first-order roughening matrix W is to

favor constant-rate solutions. The regularization parameter β allows us to choose how
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much we favor the minimum misfit over our desire for a constant-rate solution (and vice

versa). To resolve this trade-off, we use an L-curve to compare the L2 norms of the

model vectors with those of the residual vectors. Figure 3.1 (d) shows an application

of first-order Tikhonov regularization to the Berardino et al. (2002) parameterization of

our example case with the regularization parameter set to β = 0.0090. The regularized

solution tends towards constant rates. We describe a practical example in Section 5.6

below.

3.3 Design Matrix G for Other Functions of Time

Hetland et al. (2012) develop a “library” of functions to describe the time dependence of

InSAR data. Following their approach, we formulate the design matrix G to represent

temporal functions that are more complicated than the piecewise-linear polynomials just

presented. In these cases, we formulate our system of equations to represent the product

of a vector of model parameters m and a temporal function f(t). This parameterization

assumes that the time-dependent and spatial-dependent functions are separable. Thus,

we consider only the time-dependent function in our analysis. We write an element of

the design matrix G corresponding to the jth element of the model parameter mj

Gi,j = fj(t2,i)− fj(t1,i) (3.18)

where t1 and t2 refer to the first and second epochs of the ith pair, respectively. Now

we have a system of equations Gm = d where m is the vector of unknown parameters

and d is the vector of pair-wise data. If we choose the temporal function f(t) wisely to

reduce the number of parameters such that G has full column rank, then constraints are

not necessary to solve the least-squares problem. The parameter vector m contains m

elements indexed mi. For example, we use a temporal function with a single parameter
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m1

mfexp(ti) = m1

(
1− exp

[
−ti − tq

τm

])
(3.19)

to model our data set, where ti is the jth epoch, tq is a predefined reference epoch and τm

is a predefined characteristic time constant. The corresponding matrix equation Gm = d

becomes 
(

1− exp
[
− t2−tq

τm

])
−
(

1− exp
[
− t1−tq

τm

])
(

1− exp
[
− t4−tq

τm

])
−
(

1− exp
[
− t3−tq

τm

])
(

1− exp
[
− t5−tq

τm

])
−
(

1− exp
[
− t4−tq

τm

])

[
m1

]
=


d1,2

d3,4

d4,5

 (3.20)

In practice, the values of parameters such as tq and τm may not be known. In this case,

we use nonlinear optimization in conjunction with the linear inversion problem to choose

the best-fitting values of the parameters based on the residual misfit to the data, as

described below in Section 5.7.

3.4 Defining the Data Covariance Matrix

To account for the measurement uncertainty in the temporal dimension of the observed

data d, we construct the data covariance matrix Σd. In the case of pair-wise InSAR data

(unwrapped interferograms), the observed values of range change are given for the edges.

We can employ what Merris (1994) calls the n-by-n edge-version of the Laplacian matrix

K = QQᵀ (3.21)

where Q again represents our edge-vertex incidence matrix.

Spielman (2010) defines the normalized edge Laplacian as

L = D−1/2 K D−1/2 (3.22)
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where the edge-degree matrix D is an n-by-n square matrix with the degrees of the edges

on the diagonal and zeros elsewhere (Harris et al., 2008). (Note that our D is not the

same as the incidence matrix denoted by the same symbol in Feigl and Thurber (2009).)

Each of the diagonal elements in the normalized edge Laplacian L is unity. The off-

diagonal elements are ±1
2

for pairs sharing a common epoch and zero elsewhere. Thus,

the matrix L is the data correlation matrix (Merris, 1994). It is similar to the corre-

lation matrix for a triangulation network composed of angles (differences of directions)

measured by theodolite (e.g., Prescott, 1976). The off-diagonal elements of this data

correlation matrix account for the temporal correlation between interferometric pairs

sharing a common epoch. Two pairs of data have a correlation coefficient of +1
2

if they

share a common first or second epoch, −1
2

if they share a common epoch but the epoch

is first in one pair and second in the other, and zero otherwise. The correlation matrix

L leads to the corresponding n-by-n covariance matrix for pair-wise data:

Σd = S L S (3.23)

where S is a diagonal matrix containing the standard deviation s of each measured pair.

This result derived from graph theory validates formulae presented by Hanssen (2001)

in his equation (3.1.4). It also reformulates the results derived by Emardson et al. (2003)

in their equation (31), Biggs et al. (2007) in their equation (5), and Agram and Simons

(2015) in their equation (10). This graphical formulation of the data covariance matrix

is necessary to derive the covariance matrix of relative epoch-wise errors, which is new

to InSAR and described in further detail in Section 3.6.
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3.5 Example Case: Data Covariance Matrix

Let us resume the example depicted in Figure 1.1 (g), containing five epochs {t1, t2, t3, t4, t5}

corresponding to five vertices and n = 3 pairs {e1,2, e3,4, e4,5} in k = 2 distinct trees. Given

the incidence matrix Q (in equation (3.1)), we first calculate the 3-by-3 edge Laplacian

using equation (3.21).

K = QQᵀ

=


−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1





−1 0 0

1 0 0

0 −1 0

0 1 −1

0 0 1



=


2 0 0

0 2 −1

0 −1 2



(3.24)

To write the normalized edge Laplacian L, we also need the edge-degree matrix D.

We sum the absolute values of the elements in each row of the edge-vertex incidence

matrix Q and diagonalize the result into a 3-by-3 matrix:

D =


2 0 0

0 2 0

0 0 2

 (3.25)
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From equation (3.22), the correlation matrix is:

L = D−
1
2 K D−

1
2

=


1√
2

0 0

0 1√
2

0

0 0 1√
2




2 0 0

0 2 −1

0 −1 2




1√
2

0 0

0 1√
2

0

0 0 1√
2



=


1 0 0

0 1 −1
2

0 −1
2

1



(3.26)

Finally, we use equation (3.23) to find the data covariance matrix Σd. Writing the

pair-wise measurement errors as a diagonal matrix S = diag(s1,2, s3,4, s4,5), we find the

covariance of the pair-wise data

Σd =


s1,2 0 0

0 s3,4 0

0 0 s4,5




1 0 0

0 1 −1
2

0 −1
2

1



s1,2 0 0

0 s3,4 0

0 0 s4,5



=


s21,2 0 0

0 s23,4 − s3,4s4,5
2

0 − s3,4s4,5
2

s24,5


(3.27)

The data covariance matrix Σd can be inverted because a Laplacian matrix is necessarily

positive semi-definite (Merris, 1994).

3.6 Epoch-wise Covariance

In the previous section, we introduced a formulation for the covariance matrix of (pair-

wise) data. Now we use that formulation to estimate the relative covariance matrix
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for epoch-wise measurements. Given the edge-vertex incidence matrix Q and assuming

a covariance matrix Σρ for the epoch-wise measurements, we can use the principle of

covariance propagation (e.g., equation (2.22) of Aster et al., 2013) to write the covariance

matrix Σd of the pair-wise data:

Σd = QΣρQ
ᵀ (3.28)

Setting the two expressions (3.23) and (3.28) for the pairwise covariance Σd equal to each

other, we find

QΣρQ
ᵀ = SLS (3.29)

Since neither Q nor Qᵀ is a square matrix, we cannot invert them. However, we can

manipulate these matrices using Qᵀ and Q, respectively, to rewrite equation (3.29) in

terms of square matrices:

QᵀQΣρQ
ᵀQ = QᵀΣdQ (3.30)

We can now multiply by the inverse of (QᵀQ)

(QᵀQ)−1(QᵀQ)Σρ(Q
ᵀQ)(QᵀQ)−1 =

(QᵀQ)−1QᵀΣdQ(QᵀQ)−1
(3.31)

to arrive at an equation representing the covariance of the epoch-wise measurements

Σρ = (QᵀQ)−1QᵀΣdQ(QᵀQ)−1 (3.32)

Equation (3.32) is equivalent to the general covariance matrix of model parameters

for a least-squares solution (e.g., Aster et al., 2013, p. 31). However, for the n-by-m edge-

vertex incidence matrix Q, its inverse (QᵀQ)−1 strictly does not exist. If we regularize

the incidence matrix by adding a constraint of zero mean for each component, then we
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can examine the relative uncertainty of the epoch-wise measurements. This is equivalent

to setting the epoch-wise errors in each component to have a mean of zero. To do so, we

include k more equations to the system of equations corresponding to the k components

of the data set. The modified system of equations is

Q′m =

Q

C

m =

d

0

 = d′ (3.33)

Here, we have appended k zeros to the data vector d and a k-by-m constraint matrix

C to the edge-vertex incidence matrix Q. The constraint matrix C consists of non-zero

elements Ci,j = 1/ηi when j is the index of an epoch belonging to the ith component. The

integer ηi is the number of epochs in the ith component. Similarly, we append k elements

having a weight of unity to the vector of uncertainties s of the pair-wise measurements

to arrive at a new vector s′. Here we arbitrarily choose a weight of unity, although we

could also represent equation (3.33) in a Tikhonov framework and solve for the weight

according to trade-off between the norm of the residual and the norm of the model. We

employ these appended matrices using the methods outlined in section 3.4 to arrive at a

new (n+ k)-by-(n+ k) covariance matrix for the pair-wise data

Σ′d = Q′Σ′ρQ
′ᵀ (3.34)

Next, we solve for the covariance matrix containing the relative uncertainties of the

epoch-wise measurements by substituting Q′ and Σ′d for Q and Σd, respectively, in

equation (3.32):

Σ′ρ = (Q′ᵀQ′)
−1

Q′ᵀΣ′dQ
′(Q′ᵀQ′)

−1
(3.35)

The diagonal elements of this matrix lead to a vector of relative uncertainties of the
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epoch-wise measurements

σρ = diag(Σ′ρ)
1/2

(3.36)

We can also represent the corresponding correlation matrix of the epoch-wise measure-

ments as

Lρ = D−1/2ρ Σ′ρD
−1/2
ρ (3.37)

where Dρ is the (n+k)-by-(n+k) vertex-degree matrix defined similarly to its counterpart,

the edge-degree matrix D, as discussed in Section 3.4.

We continue with our simple example case of five epochs {t1, t2, t3, t4, t5} and n = 3

pairs {e1,2, e3,4, e4,5} in k = 2 distinct components, such that epochs t1 and t2 are vertices

in the first component and epochs t3, t4, and t5 are vertices in the second component (see

Figure 1.1 (g)). We start by defining our constraint matrix C from equation (3.33):

C =

1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

 (3.38)

where C has 2 rows corresponding to the number of trees and the denominators of the

fractional elements correspond to the number of epochs in each component, such that

η1 = 2 and η2 = 3. We now can write the new system of equations Q′m = d′ as



−1 1 0 0 0

0 0 −1 1 0

0 0 0 −1 1

1
2

1
2

0 0 0

0 0 1
3

1
3

1
3





m1

m2

m3

m4

m5


=



d1,2

d3,4

d4,5

0

0


(3.39)

We also define a matrix S′ to include the uncertainty of the pair-wise data and the
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constraints:

S′ =



s1,2 0 0 0 0

0 s3,4 0 0 0

0 0 s4,5 0 0

0 0 0 1 0

0 0 0 0 1


(3.40)

Using equation (3.23), we modify the covariance matrix of pair-wise data Σ′d:

Σ′d =



s21,2 0 0 0 0

0 s23,4 − s3,4s4,5
2

0 0

0 − s3,4s4,5
2

s24,5 0 0

0 0 0 1
2

0

0 0 0 0 1
3


(3.41)

Defining an example set of pair-wise measurement uncertainties such that s1,2 = s3,4 =

s4,5 = 1 (mm), we can use equation (3.32) along with the substitutions in equations

(3.33) and (3.34) to arrive at the covariance matrix of relative epoch-wise measurements:

Σρ =



3
4

1
4

0 0 0

1
4

3
4

0 0 0

0 0 2
3

1
6

1
6

0 0 1
6

2
3

1
6

0 0 1
6

1
6

2
3


(mm) (3.42)
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3.7 Least-Squares Solution Using the Pseudoinverse and Nor-

mal Equations

Having defined the data covariance matrix, the design matrix, and the model parameters,

we can represent the weighted least-squares problem as minimizing the objective function

fobj(d; m) = (Gm− d)Σ−1d (Gm− d) (3.43)

To solve the weighted least-squares problem, we use the pseudoinverse:

m̃ = (GᵀΣ†dG)
†
GᵀΣ†dd (3.44)

Since the two pseudoinverses always exist, the solution expressed in equation (3.44)

determines a unique set of estimates for the model parameters.

To quantify the misfit, we calculate the mean squared error (MSE) of the fit, or

variance of unit weight, from the scatter of the weighted residuals as (Strang and Borre,

1997):

σ2
0 =

rᵀΣ†dr

nG −mG

(3.45)

where the vector r = d−Gm̃ refers to the residuals, and nG and mG refer to the number

of rows and columns of G, respectively, and ν = nG−mG refers to the degrees of freedom

of the system.

The MSE is also called the reduced chi-squared statistic χ2 (e.g., Aster et al., 2013).

The scaled variance of the model parameters is

Σm = σ2
0(GᵀΣ†dG)

†
(3.46)
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The estimated standard deviations of the model parameters are thus

σm =
√

diag(Σm) (3.47)

3.8 Applying the Forward Model

After calculating the solution to the temporal adjustment inverse problem, we apply

the corresponding forward model to calculate the modeled values of displacement dmod.

We then integrate the corresponding temporal function f(t) over time to calculate the

accumulated modeled displacement at each epoch in each tree. These values can then be

plotted as a function of time. The constant of integration is arbitrarily assumed to be

zero, thus setting f(t1) = 0.
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4 Implementation

We have implemented the method described in Section 3 using MATLAB (2014). Our

source code is available free of charge and can be found on GitHub under the General In-

version of Phase Technique (GIPhT) suite (https://github.com/feigl/gipht). It is licensed

under the GNU Lesser General Public License. The accompanying documentation in-

cludes figures showing all of the solutions discussed here

(https://uwmadison.app.box.com/files/0/f/4061526069/GIPhTBox ).

4.1 Description of Functions

incidence to cov.m Given the edge Laplacian matrix L of the data, the function inci-

dence to cov.m calculates the data covariance matrix according to equations (22)

through (24) of Section 3.4.

pinveb.m The function pinveb.m computes the pseudoinverse of a matrix using singular

value decomposition and returns its condition number. An input argument speci-

fies a threshold for truncating the singular values; otherwise a default tolerance is

used. Alternatively, one can specify the number of singular values to include in the

solution. This function also plots the spectrum of singular values.

ls with cov.m The function ls with cov.m computes the solution to the weighted least-

squares problem using the pseudoinverse via equations (44) through (47) in Section

3.7.

findtrees.m The function findtrees.m finds and counts the distinct trees of a data set

using the rank deficiency µ of the system and the rational basis of the null space

of Q found from the reduced row echelon form.

plottrees.m The function plottrees.m plots the graph of the data set as distinct trees

(e.g., Figure 5.6).
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5 Application to Okmok Volcano

Temporal adjustment also applies to parameters in a geophysical model, such as the

increase in volume of a magma chamber beneath a volcano (e.g., Lu and Dzurisin, 2014;

Feigl et al., 2014; Le Mével et al., 2015a). As a practical example, we apply our method

of temporal adjustment to InSAR data collected from Okmok volcano in Alaska.

5.1 Background of Okmok Volcano

Here we quote Ohlendorf (2015) for a summary of geodetic studies at Okmok Volcano.

A number of geodetic studies have attempted to characterize the Okmok
magma chamber, and these have revealed several problems regarding the
consistency and plausibility of the estimates of its properties. Discrepancies
in the chamber depth exist between different types of studies in the fields
of seismology, geodesy, and petrology, as summarized by Masterlark et al.
(2010) and Ohlendorf et al. (2014)...

Work done over the past ten years, using different combinations of campaign
GPS, continuous GPS, and InSAR data and covering various time periods,
has typically found inflation/deflation source depths of 2-4 km below sea level.
These deformation centers are assumed to correspond with magma storage
zones, which inflate with magma influx and deflate when magma erupts or
migrates to a different area. Freymueller and Kaufman (2010) also detected
deflation of an additional pressure source at mid crustal depths after the 2008
eruption, concurrent with inflation of a shallow source at 2 km depth, presum-
ably due to magma recharge from below. The simplest deformation model
assumes a spherical source embedded in an elastic rheology with uniform ma-
terial properties everywhere in a half space (Mogi, 1958; Segall, 2010). Several
of the geodetic studies initially allowed the source to vary in location (e.g.,
Fournier et al., 2009) and/or varied the shape of the source from a sphere to
a spheroid (e.g., Lu et al., 2010), but these additional degrees of freedom did
not result in a significantly better fit to the data.... All of the favored models
produced by the geodetic studies were derived by approximating the shallow
pressure source as a spherical source (Mogi, 1958) in a homogeneous elastic
half-space with uniform values of Poisson’s ratio.... [T]he previous geodetic
models, which assume a homogeneous elastic medium, derive much shallower
depth estimates than that determined using a heterogeneous distribution of
elastic material properties (Masterlark et al., 2010). Several of these studies
also constructed time series showing the estimated source strength or pres-
sure change of the magma source, often converted to source volume change
through a series of assumptions about the source geometry and the compress-
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ibility of the country rock. The time series shown in Fournier et al. (2009)
and Lu et al. (2010) display fluctuations in [the] estimated magma influx
rate over the 1997-2008 inter-eruptive period, including intervals of relatively
rapid inflation from about 1997-2000 and 2002-2004, and a distinct flattening
about 2004.

Figure 5.1 sketches a cross-section of Okmok Volcano. The model attributed to Mogi

(1958) and described by Segall (2010) which formulates geodetic data in terms of a

spherical source in a half-space with uniform values of the elastic properties is shown in

Figure 5.2 (Figure 7.4 from Segall, 2010). Figure 5.3 is an example sketch from Fournier

et al. (2009) (their Figure 12) comparing magma influx rate to cumulative volume change.

Figure 5.1: “Schematic cross section through Okmok that shows the deformation source
located beneath the center of the caldera. The spherical source is drawn with a radius of
∼500 m and is only meant to indicate the location and finite region that the true source
occupies. The true size and dimensions of the magma chamber are unknown. Conical
fractures emanating from the magma storage region provide pathways to the cones in the
caldera. Petrologic work by Finney et al. [2008] suggests that hydrothermal alteration
occurs in crystals that accumulate near the chamber margins.” Figure and caption from
Fournier et al. (2009, their Figure 13)
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Figure 5.2: Sketch of “Mogi” model showing, in cross-section, “Geometry of a spherical
magma chamber. The chamber has radius a, with center at depth d beneath the free
surface, x3 = 0. r denotes the radial distance from the center of the magma chamber,
whereas ρ marks the distance from the center of symmetry along the free surface.” Figure
and caption from Segall (2010, his Figure 7.4 on p. 203)
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Figure 5.3: “Modified from Lu et al. (2005, Figure 9). (top) The rate of volume change
from InSAR (gray) and GPS (black). There is good agreement in the rates for the years
2000 and 2001. The discrepancy in 2003 can be attributed to poor temporal sampling
of InSAR which only shows the yearly averaged rate. The horizontal line distinguishes
inflation (above) from deflation (below). (bottom) The total volume change estimated
from InSAR (gray) since the 1997 eruption with the volume change estimates from GPS
(black) overlying. The total volume recovered is ∼60%–80% of the volume lost during
the 1997 eruption.” Figure and caption from Fournier et al. (2009, their Figure 12)



37

5.2 Setting up the Inverse Problem

The data set analyzed by Lu et al. (2005) includes SAR images acquired between July

1, 1997 and September 9, 2003 by four satellite missions: ERS-1, ERS-2, Radarsat-1,

and JERS-1 (see Figure 5.4 for example interferograms from Lu et al. (2005, their Figure

3)). Although images acquired by ERS-1 form useful interferometric pairs with images

Figure 5.4: “Examples of interferograms showing progressive reinflation of Okmok vol-
cano after its 1997 eruption. Each interferogram spans a time interval of about 1-year.
Each fringe (full color cycle) represents 2.83 cm of range change between the ground and
the satellite. Additional information on SAR images used to produce the interferograms
is given in Table 1. Areas that lack interferometric coherence are uncolored.” Figure and
caption from Lu et al. (2005, their Figure 3)

acquired by ERS-2, other heterogeneous combinations do not form useful pairs. The

data set of 45 epochs yields 44 interferometric pairs (Appendix B). For each of them, Lu

et al. (2005) estimate the parameters in the Mogi model. We use these estimates of the

volumetric rate of change to form our data set for inversion (Figure 5.5). In other words,

their output is our input. We convert their rates to differential volumes by multiplying
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each rate by its corresponding interval of time. This approach assumes that the time-

dependent and position-dependent parts of the displacement field are separable (e.g.,

Feigl and Thurber, 2009).
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Figure 5.5: Rates of change in volume as a function of time for a modeled spherical magma
chamber below Okmok volcano, as estimated from the 44 individual pairs of InSAR data
(Red symbols) and their weighted mean (blue symbols). Horizontal segments indicate
observed time intervals. Vertical bars indicate the (unscaled) interval of 68 percent
confidence calculated from the RMSE values of the pair-wise solutions, as described in
the text. Data from Table 1 of Lu et al. (2005) and reprinted with uncertainties in
Appendix B.

Lu et al. (2005) do not give uncertainties for their estimates. To set the a priori

standard deviation of each datum, we weight each estimate in a relative sense. For each

pair, we normalize the root mean squared error (RMSE) of the residuals (as given by Lu

et al. (2005)) by the mean of the RMSE values averaged over all 44 pairs and multiplied

by an arbitrary, constant scale factor of ∼ 106 m3/yr corresponding to the scale of the

volumetric rates.

The graph of the data set includes k = 10 distinct components. Figure 5.6 shows the
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Component E epochs: 9 14 22 33 41 43

Component F epochs: 16 21 36

Component G epochs: 25 30 32

Component H epochs: 26 31

Component I epochs: 37 44

Component J epochs: 39 45

Figure 5.6: Plot of volume change for each pair as a function of time, showing epochs as
dots and pairs as line segments connecting them. The calendar date for each epoch is
listed in chronological order within each year.
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volume change for each pair as a function of time, as calculated by findtrees.m and

plotted by plottrees.m.

Graphing the data groups them naturally into subsets according to the sensors. For

example, pairs of SAR images acquired by the ERS-2 satellite mission fall into com-

ponents A through F, whereas images acquired by the RADARSAT-1 satellite fall into

components G though J. Images are further separated into components by tracks. In

estimating the model parameters, Lu et al. (2005) account for the different imaging con-

figurations (e.g. incidence angle, radar wavelength) for each pair individually.

5.3 Estimation of Epoch-wise Variance

Using equation (3.35), we calculate the relative covariance matrix of the epoch-wise mea-

surements. By taking the square root of the diagonal elements of this covariance matrix,

we are able to determine the uncertainty of each of the individual, epoch-wise measure-

ments. A plot of these values is shown in Figure 5.7. The largest relative uncertainties

occur at epochs during the winter season, during which snow on the ground, precipita-

tion, and/or moisture in the atmosphere are common in Alaska. These effects tend to

degrade the quality of the interferogram, and thus the overall misfit of the modeled phase

values to the observed values, found by Lu et al. (2005).
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Figure 5.7: Bar graph of relative standard deviations in epoch-wise measurements as
determined from the formulation in Section 3.6. The relative standard deviations are
normalized by the smallest deviation. Each bar is labeled with the corresponding calendar
date of the epoch.
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5.4 Single-segment Secular Rate Parameterization

We consider six different parameterizations for the temporal adjustment. To save space,

we show plots for only four of them in this paper. Plots for all the examples appear

in the documentation for the GraphTreeTA software that is available at GitHub. The

simplest parameterization is a constant-rate (secular) parameterization with a single-

element parameter vector m. Following the method outlined in Section 3.3, we construct

the design matrix G with a temporal function where t0 is the initial epoch. Using the

n = 44 pair-wise data, we find a good fit with misfit σ0 = 1.0226 m3. The results are

shown in Figure 5.8.
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Figure 5.8: Volume increase as a function of time as estimated by temporal adjustment
using a single-parameter model for a constant (secular) rate. Black lines show modeled
value (solid line) with the envelope of 69 percent confidence, after scaling by σ0. The
green tick represents the reference epoch. Red segments indicate the differential change
in volume estimated from individual pairs. For each pair, the volume at the mid-point
of the time interval is plotted to fall on the modeled curve. The estimated volume for
each pair is plotted with its associated uncertainty (vertical blue bars). The length of
each blue bar is set a posteriori to the 68-percent confidence interval for the pair after
scaling by σ0/

√
2, where σ0 = 1.0226 m3.
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5.5 Five-segment Piecewise-linear Parameterization

We expand the linear parameterization by adding 5 segments delimited by a 6-element

vector of break points tb containing a break on January 1st of each year from 1999 to

2002, inclusive. The temporal function becomes piecewise-linear:

mjf
(j)
5seg(ti) = mj


(ti − tbj) if tbj ≤ ti < tbj+1

(tbj+1
− tbj) if ti ≥ tbj+1

0 otherwise

(5.1)

This expression defines a 5-element parameter vector m, where mj describes the rate

for the jth interval, and a design matrix G with 5 columns. The element Gi,j stores the

value of f5seg(ti) evaluated for the ith epoch and the jth segment. This solution includes

5 rates and a misfit of σ0 = 0.4034 m3, as seen in Figure 5.9. This figure essentially

reproduces the result of Lu and Dzurisin (2014) (their Figure 6.98).

We find a better fit using 5 segments than using the constant (secular) rate param-

eterization. To decide if the additional complexity is justified, we perform an F test

(e.g., Wackerly et al., 2007). The null hypothesis states that the two sets of weighted

residuals (the observed minus calculated values of the differential volumes normalized

by their corresponding measurement uncertainties) have equal variance. Comparing the

secular rate and 5-segment models, we find F = 36.07. Since the critical value of the F

statistic for a significance level of α = 0.05 and degrees of freedom ν1 = n− 1 = 43 and

ν2 = n − 5 = 39 (where n is the number of calculated residuals) is Fα,ν1,ν2 = 1.69, the

null hypothesis is rejected with 95% confidence. We conclude that the 5-segment model

provides an appropriate level of complexity.

In addition, we perform a two-tailed student t-test to decide whether or not the rates

estimated during successive intervals of the 5-segment model show significant differences
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Figure 5.9: Volume increase as a function of time as estimated by temporal adjustment
using the 5-segment piecewise-linear parametrization with yearly breaks from January
1, 1999 to January 1, 2002. The green ticks represent epochs separating time intervals.
Misfit σ0 = 0.4034 m3. This figure corresponds with Figure 6.98 of Lu and Dzurisin
(2014). Plotting conventions as in previous figure.
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(e.g., Wackerly et al., 2007). The null hypothesis states that the mean rates during the

successive year-long intervals before and after January 1st of the tested year are equal.

We set the significance level at α = 0.05. We find that the value of the test statistic

lies outside the acceptance interval [−Tα/2,+Tα/2] formed by the corresponding values of

±Tα/2 for each year. Thus, the five estimated rates are distinguishable.

5.6 Berardino Parameterization

We apply the parameterization in terms of rate (Berardino et al., 2002), as outlined in

Section 3.2. With this parameterization, the number of parameters is greater than the

number of data such that mG > nG. Consequently, SVD yields a locally oscillatory

solution (Figure 5.10). For the same reason, the variance of unit weight σ2 cannot be

calculated from equation (3.45). Instead, we interpret the null residuals as a perfect fit

and set the misfit σ0 = 0.

In addition, we apply first-order Tikhonov regularization to favor a constant-rate

solution found using the method of Berardino et al. (2002) (Figure 5.11). We experiment

with several values of smoothing parameters to find the solution to the weighted least-

squares problem shown in Figure 5.11. We choose the regularization parameter β =

0.0010 based on the L-shaped curve of the norm of the residuals plotted as a function

of the norm of the parameter vector to balance the trade-off between fitting the data

and reducing the roughness. Comparing the enlarged sections of Figures 5.10 and 5.11,

we see that the Tikhonov regularization mitigates the artifactual oscillations during the

summers between 1999 and 2001. The sharp increase in rate beginning in summer 2001

remains apparent in Figure 5.11.
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Figure 5.10: Volume increase as a function of time as estimated by temporal adjustment
using the method of rates parameterized in terms of 44 velocity parameters as developed
by Berardino et al. (2002). Enlarged portions show the local oscillatory nature of the
SVD minimum-length solution. Plotting conventions as in previous figure.



48

1997 1998 1999 2000 2001 2002 2003 2004
−5

0

5

10

15

20

25

30

 

V
o

lu
m

e
  

[m
3
 ×

 1
0

6
]

Year 

Figure 5.11: Volume increase as a function of time as estimated by temporal adjustment
using the method of rates parameterized in terms of 44 velocity parameters as developed
by Berardino et al. (2002) with first-order Tikhonov regularization to flatten the solution.
We choose the regularization parameter β = 0.0010 based on an L-curve plot of the
norm of the residuals against the norm of the parameter vector (e.g., Aster et al., 2013).
Plotting conventions as in previous figure.
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5.7 Exponential Decay Parameterization

We parameterize the time dependence as an exponentially decaying rate via equation (3.19).

This formulation is compatible with viscoelastic relaxation, as suggested by previous stud-

ies of Okmok volcano (e.g., Fournier et al., 2009; Masterlark et al., 2010, 2016). We set

t0 at May 23, 1997, the end of the 1997 eruption. To estimate the best-fitting character-

istic time constant τm
.

= 6 years, we use nonlinear optimization via an “interior point”

algorithm (e.g., Byrd et al., 2000) implemented in MATLAB (2014). This exponential

model produces a slightly better fit (σ0 = 0.9455 m3, Figure 5.12) than the single-segment

(constant-rate) model.
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Figure 5.12: Volume increase as a function of time as estimated by temporal adjustment
using the parametrization in terms of an exponentially decaying rate. The characteristic
time scale is τ = 6.5 years and reference time epoch at May 23, 1997. Misfit σ0 =
0.9455 m3. Plotting conventions as in previous figure.
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5.8 Modified Exponential Parameterization

In the GPS time series, Fournier et al. (2009) observe a rapid pulse of inflation beginning

in the summer of 2002 (specifically stations OKCD and OKCE) (their Figure 6, our

Figure 5.13) which is not consistent with the previous exponential trend. To account for

it, we modify the exponential parameterization by adding a secular rate for the interval

from June 21, 2002 to September 26, 2003, the last epoch in the time series. We define

this interval by letting t = ts1 and t = ts2, corresponding to the beginning and end of

the time span, respectively. The results of nonlinear optimization for an exponentially

decaying rate until June 21, 2002 indicate a new best-fitting characteristic time scale of

τm
.

= 5 years. Extending equation (3.19), we choose a temporal function such that

mfmexp(ti) =


m1

(
1− exp(− ti−t0

τm
)
)

if ti < ts1

m2(ti − ts1) if ts1 ≤ ti ≤ ts2

0 otherwise

(5.2)

where the design matrix G has three columns corresponding to the three elements in the

parameter vector m. This modification improves the fit to σ0 = 0.5685 m3 (Figure 5.14).

To determine if the modification is justified, we perform an F test on the exponential

decay and the modified exponential model (e.g., Wackerly et al., 2007). The null hy-

pothesis states that the two sets of weighted residual values of displacement have equal

variance. We find F = 13.67. Since the critical value of the F statistic for a significance

level of α = 0.05 and degrees of freedom ν1 = n − 1 = 43 and ν2 = n − 3 = 41 is

Fα,ν1,ν2 = 1.67, the null hypothesis is rejected with 95% confidence. We conclude that

the additional complexity of the modified exponential model is justified.

Next, we compare the modified exponential model with the 5-segment piecewise-linear

parameterization. We know that the misfit of the 5-segment piecewise-linear model is less
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Figure 5.13: “Examples of time series from select sites are shown along with the site
locations on the volcano. The two intracaldera CGPS sites, OKCD and OKCE, show
inflation pulses that occurred in 2003 and 2004. Site OK24 recorded the largest verti-
cal displacement, ∼50 cm. The time series are shown in the ITRF and the ∼2 cm/a
southwestward regional velocity (Table 1) is apparent particularly at stations OKSO and
OKFG.” figure and caption from Fournier et al. (2009, their Figure 6)
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Figure 5.14: Volume increase as a function of time as estimated by temporal adjustment
using the parametrization in terms of an exponentially decaying rate until June 21, 2002
and then a constant secular rate through the end of the data set at September 26,
2003. The characteristic time scale is τm = 4.9 years. Misfit σ0 = 0.5685 m3. Plotting
conventions as in Figure 5.12.

.



53

than that of the modified exponential decay, but we must also consider their variances.

We test the null hypothesis that the two sets of weighted residual values of displacement

have equal variance. With a significance level of α = 0.05 and degrees of freedom ν1 = 42

and ν = 39, the critical value of the F statistic is Fα,ν1,ν2 = 1.69. Since the calculated

F value is 4.0211, and the null hypothesis is rejected with 95% confidence. Thus, we

conclude that the 5-segment piecewise-linear parameterization provides a significantly

better fit.
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6 Discussion

Among the various parameterizations for Okmok, the empirical 5-segment piecewise lin-

ear model provides the best fit. The second-best fit is a modified exponential func-

tion. One interpetation suggests viscoelastic relaxation following the 1997 eruption (e.g.,

Jellinek and DePaolo, 2003). Another possibility is that the viscosity of magma flowing

upward through a conduit into a shallow reservoir determines the characteristic time

scale (e.g., Le Mével et al., 2015b). We examine these two mechanisms by applying

temporal adjustment to pair-wise vertical displacements derived from the volume change

estimates.

6.1 Estimating the Characteristic Time Scale at at Okmok Vol-

cano

First, we convert the subset of pair-wise estimates of volume changes from Lu et al.

(2005) to vertical displacement using the following relationship:

uz =
(1− νP )∆V

π

d

(R2 + d2)3/2
(6.1)

where νP represents Poisson’s ratio, d is the depth to the center of the reservoir and R

denotes the radial distance from the center of the reservoir to the point of interest (Segall,

2010). For simplicity, we consider only pairs with both acquisition dates before June 21,

2002. We consider a point located directly above the center of the reservoir. We take

depth d = 3.6 km and νP = 0.25 following Lu et al. (2005). We apply temporal adjust-

ment to these values of vertical displacement uz parameterized in terms of exponentially

decaying rate by equation (3.19). Results are shown in Figure 6.1.

To find the value of the characteristic time scale τ we perform a grid search. We

define the misfit σ0 according to equation 3.45. We constrain the characteristic time
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Figure 6.1: Vertical displacement of the magma chamber at a point directly above the
center as a function of time as estimated by temporal adjustment using the parametriza-
tion in terms of an exponentially decaying rate until June 21, 2002. The characteristic
time scale is τ = 4.1 years. The acceptable range for τ according to our 95% confidence
interval is 2–13 years. Misfit σ0 = 2.5077. Plotting conventions as in previous figure.
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Figure 6.2: Misfit to the vertical displacement values in terms of σ0 for parameter τ
according to the one dimensional grid search applied to equation (3.19). The red star
represents the best-fitting characteristic time scale τ = 4.1 years, corresponding to a
minimum misfit of σ0 = 2.5. Green lines represent the 95% confidence interval.
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scale to fall between 1 to 15 years, with increments of 0.1 year. After defining a value

for τ during the grid search, the best-fitting value for the initial vertical displacement

m1 is found using temporal adjustment, as discussed in Chapter 3. We find that the

lowest misfit, σ0 = 2.5077, is found when τ = 4.1yr and m1 = (4.1± 0.1)× 10−1 m (see

Figure 6.2).

6.2 Viscoelastic Relaxation of the Surrounding Country Rock

First, we interpret the characteristic time scale in terms of viscoelastic relaxation of the

surrounding country rock (e.g., Masterlark et al., 2016). According to this hypothesis,

we represent the characteristic time scale as (e.g., Segall, 2010; Masterlark et al., 2010)

τMaxwell =
2ηc
E

=
ηc

(G(1 + νP ))

(6.2)

where G represents the shear modulus and ηc represents the viscosity of the crust. In the

case of a Poisson solid with νP = 1/4, we have

τMaxwell =
ηc

G(5/4)

=
4ηc
5G

.

(6.3)

To interpret this expression, we select geophysically reasonable values of G ranging

from 1 GPa to 30 GPa (e.g., Feigl, 2002, and references therein). Combining the values

of G with the 95% confidence interval for the characteristic time scale τ in Figure 6.3,

we find corresponding values of ηc between 2× 1017 Pa.s and 3× 1019 Pa.s.
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Figure 6.3: Range of acceptable values for ηc given τMaxwell = 4.1 yr (red line) with a 95%
confidence interval (blue lines). Yellow region indicates values of ηc that are compatible
with geophysically reasonable values for the shear modulus G.
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6.3 Viscous Magma Flow Upwards Through a Conduit

As a second hypothesis, we consider the mechanism proposed by Le Mével et al. (2015b).

In this model, viscous magma flows upwards through a cylindrical conduit into a fluid-

filled, spherical reservoir (see Figure 6.4). Assuming laminar flow in the lower crust,

the volumetric flow rate is governed by the Hagen-Poiseulle law. In the case of Okmok

Volcano, we assume a constant injection pressure ∆Pi is applied to the inlet of the

conduit. Le Mével et al. (2016) solve the differential equation for reservoir pressure at

the conduit outlet ∆Po(t). The initial condition on the reservoir pressure at the conduit

outlet is ∆Po(t = 0) = 0. The expression for the reservoir pressure at the conduit outlet

∆Pi is expressed as (Le Mével et al., 2016, their equation (3.9)):

∆Po(t) = P

(
1− exp

(
− t
τ

))
(6.4)

with

P = ∆Pi + (ρr − ρm)gLc (6.5)

where ρr represents the density of crustal rocks, ρm represents the density of magma,

g represents gravitational acceleration, and Lc denotes the length of the conduit. The

characteristic time scale is represented as

τPoiseuille =
8ηmLca

3

Gac4
(6.6)

where ηm represents the viscosity of the magma, a denotes the radius of the spherical

reservoir, and ac denote the radius of the cylindrical conduit. We set ac = 50 m, Lc =

2000 m, and a = 1000 m following results from previous studies (e.g., Lu et al., 2005;

Fournier et al., 2009; Haney, 2010; Masterlark et al., 2010; Le Mével et al., 2016).

We can use these equations to derive an expression for the vertical displacement of



61

Figure 6.4: Panel (b) figure and caption from Le Mével et al. (2016, their Figure 6.3),
“the new model of laminar flow into a magma-filled reservoir (analytic solution)”.
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a particle at a point located directly above the top of the magma reservoir (Le Mével

et al., 2016, their equation (3.14))

uz(t) =
(1− νP )a3

Gd2
∆Po(t)

=
(1− νP )a3

Gd2
(∆Pi + (ρr − ρm)gLc)

(
1− exp

(
− t
τ

)) (6.7)

To interpret the estimated value of the characteristic time scale τPoiseuille, we consider

geophysically reasonable values of the shear modulus and compare them to values of ηm.

The results are shown in Figure 6.5. The best-fitting characteristic time scale found in

Section 6.1 corresponds to possible values of ηm between 2× 1010 Pa.s and 5× 1012 Pa.s.

Additionally, we consider our 95% confidence interval for τPoiseuille and geophysically

reasonable values of the shear modulus to find compatible values of ac. The results are

shown in Figure 6.6. We find acceptable values of ac ranging from 20–70 m, which agrees

with our assumption of ac = 50 m.

We also consider our 95% confidence interval for τPoiseuille with geophysically rea-

sonable values of the conduit length Lc to find compatible values of the ratio between

reservoir radius and conduit radius a3

a4c
. The results are shown in Figure 6.7. We see that

for a range of Lc between 1000 m and 2000 m, we find a corresponding range for the

ratio a3

a4c
between 4× 104 m−1 and 106 m−1. Thus, a value of a = 1000 m and ac = 50 m

yields a ratio of a3

a4c
= (1×103 m)3

(5×101 m)4
= 1×109

5×104 m−1 = 2× 104 m−1.

Finally, we consider the 95% confidence interval for τPoiseuille and geophysically rea-

sonable values of the shear modulus to find compatible values of Lc. The results are

shown in Figure 6.8. We see that for a range of G between 1–30 GPa, we have a cor-

responding range of conduit length between 0.5–89 km. This suggests that while our

assumption of Lc = 2 km lies within this range, we may also consider greater conduit

lengths in future studies.
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Figure 6.5: Range of acceptable values for ηm given τPoiseuille = 4.1 yr (red line) with
a 95% confidence interval (blue lines). Yellow region indicates values of ηm that are
compatible with geophysically reasonable values for the shear modulus G.
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Figure 6.6: Range of acceptable values for ac given τPoiseuille = 4.1 yr (red line) with
a 95% confidence interval (blue lines). Yellow region indicates values of ac that are
compatible with geophysically reasonable values for the shear modulus G.
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Figure 6.7: Range of acceptable values for a3

a4c
given τPoiseuille = 4.1 yr (red line) with

a 95% confidence interval (blue lines). Yellow region indicates values of a3

a4c
that are

compatible with geophysically reasonable values for conduit length Lc.
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Figure 6.8: Range of acceptable values for Lc given τPoiseuille = 4.1 yr (red line) with
a 95% confidence interval (blue lines). Yellow region indicates values of Lc that are
compatible with geophysically reasonable values for the shear modulus G.
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6.4 Secondary Pulses?

Between June of 2002 and September 2003, the estimated rate of volumetric increase is

6.2 ± 0.6 × 106 m3/yr. This result is consistent with the suggestion of a “pulse of rapid

inflation” from “summer 2002 to late 2003” (Fournier et al., 2009; Biggs et al., 2010).

If viscoelastic relaxation also occurred in the years following this pulse, then we would

expect slower inflation and/or deflation in later years (e.g., Masterlark et al., 2016). In

this case, the characteristic time scale would be of the same order of magnitude as founder

earlier, i.e. ∼ 4 years (e.g., Hetland and Hager, 2005). Alternatively, Fournier (2008)

suggests degassing to explain the slowing rate of inflation that began in 2004.
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7 Conclusions

We have shown that graph theory is useful for analyzing pair-wise InSAR data in the

temporal domain. In particular, the normalized edge Laplacian matrix calculated from

the edge-vertex incidence matrix of the graph of the data set represents its correlation.

This formulation also leads to the covariance matrix of the epoch-wise measurements

to calculate their relative uncertainties. For example, the Okmok data set shows greater

uncertainty for single-epoch, individual SAR images acquired during the winter season

than for those in the summer. Although mathematically straightforward, this derivation

has not been previously applied to InSAR data.

If the number of distinct trees or components is greater than one, then a piecewise

linear parameterization in terms of rates, as proposed by Berardino et al. (2002), leads

to a locally oscillatory solution. To mitigate this issue, we use first-order Tikhonov

regularization.

Using graph theory, we have derived a result for the pair-wise data covariance ma-

trix that agrees with previous formulae while providing useful insight into the graphical

structure of the data. Moreover, the formulation is concise and independent of the choice

of model.

The formulation in terms of incidence graphs also applies to any quantity derived

from pair-wise differences. For example, plots of orbital separation B⊥ as a function

of time are calculated with respect to a “virtual” reference orbit with a constraint of

zero mean, as shown in Figure 5.6 (e.g., Fialko et al., 2002). Similarly, one could apply

temporal adjustment to individual, co-located pixels in a time series of interferograms or

even their decomposition into wavelets (e.g., Jolivet et al., 2015).

This method has also been applied to analyze pair-wise volume changes in a geother-

mal field at Brady’s Hot Springs, Nevada (Ali et al., 2016). As a co-author, I contributed

to this study by analyzing the time series of volume changes estimated from InSAR data

between 2004 and 2014. An 8-segment piecewise linear parameterization was applied to
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the time series. The results were compared to flow rates in production wells. This com-

parison suggests a correlation between the volume changes estimated from the InSAR

time series and the production in shallow wells.
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Appendix A

Mathematical Notation

Table of mathematical symbols.

Symbol Meaning
A† pseudoinverse of A
Aᵀ transpose of A
A−1 inverse of A
B pair-rate incidence matrix
B⊥ orbital separation, perpendicular baseline
C constraint matrix with k rows
c number of pair-wise combinations as defined in Feigl and Thurber

(2009)
corr correlation coefficient
D n-by-n diagonal matrix of degrees in graph of data set
d depth to center of reservoir in Mogi model (Segall, 2010)
d n-by-1 data vector
dcon k-by-1 vector of data constraints
dmod vector of modeled displacement
dobs n-by-1 vector of observed data
diag operator transforming a vector into a diagonal matrix
ei ith edge
E Young’s modulus
Fα,ν1,ν2 critical value for F test
fobj(d; m) objective function for weighted least-squares
f(t) temporal function
G shear modulus
g gravitational acceleration
G n-by-m design matrix

G
[B]
n×(m−1) Berardino et al. (2002) design matrix

K n-by-n edge-version of the Laplacian
k number of components of a disconnected graph
L normalized edge-version of the Laplacian
Lρ correlation matrix of epoch-wise measurements
m m-by-1 vector of model parameters
m number of elements in parameter vector
m̃ estimated model parameter vector
mG number of columns of G
n number of elements in data vector
nG number of rows of G
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n-by-m matrix having n rows and m columns
∆Po reservoir pressure at conduit outlet (Le Mével et al., 2016)
∆Pi injection pressure at conduit inlet (Le Mével et al., 2016)
Q n-by-q edge-vertex incidence matrix
q number of epochs as defined in Feigl and Thurber (2009)
qi,j element in the ith row and jth column of Q
r vector of residuals
rank(Q) rank of the incidence matrix
R radial distance from center of reservoir to point of interest in Mogi

model (Segall, 2010)
RMSE root-mean-squared error
S n-by-n diagonal matrix of sample standard deviation of pair-wise mea-

surement errors
SVD singular value decomposition
T m-by-m diagonal matrix of time intervals
t vector of unique epochs in chronological order
t0 reference epoch for exponentially decaying rate parameterization
ti the ith epoch, or the ith element of t
tq predefined reference epoch
ts1 lower bound epoch for modified exponentially decaying rate parame-

terization
ts2 upper bound epoch for modified exponentially decaying rate parame-

terization
Tν,α

2
critical value for two-tailed Student t-test

uz vertical displacement derived from Mogi source model (Segall, 2010)
v vector/set of rate parameters having (m− 1) elements
vi ith element of V or vertex
W matrix quantifying the solution roughness in Tikhonov regularization
α significance level
β Tikhonov regularization parameter
∆ edge-vertex matrix of path
δi,j the (i, j)th element of the Kronecker delta
ε strain
η viscosity of material
ηc viscosity of crust
ηi number of epochs in the ith component
ηm viscosity of magma (Le Mével et al., 2016)
µ rank deficiency of an underdetermined system
ν degrees of freedom
ν1 numerator degrees of freedom (F test)
ν2 denominator degrees of freedom (F test)
νP Poisson’s ratio
ρm density of magma
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ρr density of crust
ρ vector of range
ρ(ti) range at epoch ti
σs stress
σs0 initial stress
Σd covariance matrix of pair-wise data
Σm scaled covariance matrix of model parameters
σm estimated standard deviation of model parameters
σρ vector of relative uncertainties of epoch-wise measurements
Σ′ρ covariance matrix of relative epoch-wise measurements
σ2
0 fit, or variance of unit weight, as calculated from weighted residual

scatter
σ2
r mean of the RMSEs of the Okmok data set
τm characteristic time constant for exponential parameterizations
χ2 chi-squared test statistic

List of alphabetically sorted mathematical symbols used throughout the text with

English alphabet letters appearing before Greek alphabet letters.
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Appendix B

Revised Data Table from Lu et al. (2005)

(see next page for long table)
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1

ID   Orbit      Year   Month     Day   Orbit     Year  Month    Day    Track Bn_in_m     dV_m^3 RMSE, mm    dV/dt (m^3)/yr    σ (m^3)/yr

1 106773 1992 10 31 112284 1993 11 20 115 13 7.65E+06 12.7 7.26E+06 2.42E+06

4 110738 1993 8 4 121603 1995 9 1 72 -154 3.55E+06 9.7 1.71E+06 9.39E+05

5 110738 1993 8 4 207441 1996 9 27 72 -136 2.46E+06 8.2 7.81E+05 5.23E+05

6 110781 1993 8 7 122147 1995 10 9 115 304 3.71E+06 8 1.71E+06 7.40E+05

7 111239 1993 9 8 122104 1995 10 6 72 -230 2.99E+06 9.2 1.44E+06 8.90E+05

8 111282 1993 9 11 122147 1995 10 9 115 -97 2.97E+06 10 1.43E+06 9.68E+05

9 111740 1993 10 13 122104 1995 10 6 72 -24 2.33E+06 8.2 1.18E+06 8.32E+05

10 111740 1993 10 13 207441 1996 9 27 72 -339 2.32E+06 10.1 7.85E+05 6.87E+05

11 111783 1993 10 16 122147 1995 10 9 115 -72 2.08E+06 7.8 1.05E+06 7.92E+05

12 112012 1993 11 1 122376 1995 10 25 344 71 1.95E+06 5.4 9.84E+05 5.48E+05

13 112012 1993 11 1 202703 1995 10 26 344 154 1.65E+06 6 8.32E+05 6.08E+05

14 121603 1995 9 1 207441 1996 9 27 72 18 -1.34E+06 4.5 -1.25E+06 8.44E+05

21 210719 1997 5 8 217733 1998 9 10 344 167 7.11E+06 5.1 5.30E+06 7.64E+05

22 211492 1997 7 1 217504 1998 8 25 115 236 5.62E+06 7.2 4.88E+06 1.26E+06

23 211492 1997 7 1 222013 1999 7 6 115 -119 8.52E+06 7.1 4.23E+06 7.09E+05

24 211492 1997 7 1 227524 2000 7 25 115 -72 1.05E+07 2 3.42E+06 1.31E+05

25 211721 1997 7 17 217733 1998 9 10 344 69 5.70E+06 4.4 4.95E+06 7.69E+05

26 211721 1997 7 17 221741 1999 6 17 344 48 6.77E+06 10.5 3.53E+06 1.10E+06

27 211721 1997 7 17 228254 2000 9 14 344 -41 1.26E+07 11.7 3.98E+06 7.44E+05

28 212494 1997 9 9 218005 1998 9 29 115 190 4.82E+06 8.7 4.57E+06 1.66E+06

29 212494 1997 9 9 228025 2000 8 29 115 -80 1.17E+07 9.4 3.94E+06 6.36E+05

30 212723 1997 9 25 217733 1998 9 10 344 92 3.88E+06 3.7 4.05E+06 7.76E+05

31 212723 1997 9 25 221741 1999 6 17 344 -25 6.92E+06 5.1 4.01E+06 5.94E+05

32 212723 1997 9 25 228254 2000 9 14 344 -18 1.20E+07 9.2 4.04E+06 6.22E+05

33 216731 1998 7 2 222743 1999 8 26 344 -251 3.21E+06 8.5 2.79E+06 1.48E+06

34 217504 1998 8 25 228526 2000 10 3 115 -11 7.98E+06 7.4 3.79E+06 7.06E+05

35 217733 1998 9 10 223244 1999 9 30 344 295 4.10E+06 7.4 3.89E+06 1.41E+06

36 217733 1998 9 10 228254 2000 9 14 344 -110 7.97E+06 8.2 3.96E+06 8.19E+05

37 217733 1998 9 10 238274 2002 8 15 344 216 1.05E+07 15.2 2.67E+06 7.78E+05

38 218005 1998 9 29 221512 1999 6 1 115 77 1.72E+06 6.4 2.56E+06 1.92E+06

39 218005 1998 9 29 228025 2000 8 29 115 -270 6.55E+06 10.4 3.42E+06 1.09E+06

40 218005 1998 9 29 229027 2000 11 7 115 -147 6.70E+06 11.6 3.18E+06 1.11E+06

41 218005 1998 9 29 232534 2001 7 10 115 120 7.90E+06 5.6 2.84E+06 4.05E+05

42 218005 1998 9 29 239047 2002 10 8 115 56 1.25E+07 7.1 3.11E+06 3.55E+05

43 218463 1998 10 31 233493 2001 9 15 72 -11 6.29E+06 14.4 2.19E+06 1.01E+06

44 218506 1998 11 3 232534 2001 7 10 115 -90 6.80E+06 5.3 2.54E+06 3.97E+05

46 221741 1999 6 17 227252 2000 7 6 344 -217 3.96E+06 8.3 3.76E+06 1.58E+06

47 221741 1999 6 17 228254 2000 9 14 344 7 5.16E+06 7.5 4.15E+06 1.21E+06

48 222013 1999 7 6 227524 2000 7 25 115 47 3.31E+06 5.9 3.14E+06 1.13E+06

49 222471 1999 8 7 233493 2001 9 15 72 -283 4.79E+06 8.4 2.27E+06 8.01E+05

50 222850 1999 9 3 227860 2000 8 18 451 108 3.39E+06 7.2 3.54E+06 1.51E+06

51 223015 1999 9 14 227524 2000 7 25 115 274 3.16E+06 4.9 3.67E+06 1.14E+06

52 223244 1999 9 30 238274 2002 8 15 344 -79 8.21E+06 5.6 2.86E+06 3.92E+05

53 223244 1999 9 30 238775 2002 9 19 344 33 8.84E+06 7.6 2.98E+06 5.14E+05

55 227252 2000 7 6 237773 2002 7 11 344 -187 4.54E+06 5.6 2.26E+06 5.59E+05

56 227982 2000 8 26 233493 2001 9 15 72 402 1.94E+06 6.8 1.84E+06 1.30E+06

57 227982 2000 8 26 239004 2002 10 5 72 75 7.20E+06 7 3.41E+06 6.67E+05

58 229027 2000 11 7 239047 2002 10 8 115 203 6.33E+06 10.2 3.30E+06 1.07E+06

59 232534 2001 7 10 237544 2002 6 25 115 -183 3.48E+06 9.8 3.63E+06 2.05E+06

60 232534 2001 7 10 239047 2002 10 8 115 -64 5.00E+06 5.6 4.01E+06 9.03E+05

61 233493 2001 9 15 239505 2002 11 9 72 93 4.90E+06 12.1 4.26E+06 2.11E+06

65 227860 2000 8 18 237880 2002 7 19 451 8 4.01E+06 4.3 2.09E+06 4.51E+05

66 122147 1995 10 9 212494 1997 9 9 115 8 -4.82E+07 9.8 -2.51E+07 1.03E+06

67 122147 1995 10 9 212494 1997 9 9 115 8 -4.73E+07 8.7 -2.47E+07 9.12E+05

68 325570 2000 9 27 330372 2001 8 29 800 -118 2.68E+05 5.8 2.91E+05 1.27E+06

70 325420 2000 9 17 330222 2001 8 19 900 362 5.39E+05 7.7 5.86E+05 1.68E+06

71 325420 2000 9 17 330565 2001 9 12 900 350 9.55E+05 8.9 9.69E+05 1.82E+06

74 403682 1992 10 13 435314 1998 7 26 777 240 -3.39E+07 10.2 -5.86E+06 3.55E+05

77 335367 2002 8 14 340855 2003 9 2 900 104 7.65E+06 9.7 7.27E+06 1.85E+06

78 335710 2002 9 7 341198 2003 9 26 900 -156 7.52E+06 8.7 7.15E+06 1.66E+06

Okmok dataset from Lu et al. (2005) with a priori uncertainties of pair-wise measurements.
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Figure B.1: Table showing the Okmok dataset from citetlu2005 with a priori uncer-
tainties of pair-wise measurements. “Dates are image acquisition times. Orbit numbers
include the satellite ID (1, ERS1; 2, ERS2; 3, RADARSAT1; and 4, JERS1) and orbit
on which the images were acquired. The same track number applies to both images in an
InSAR pair. Bn is the perpendicular component of the baseline with respect to the SAR
look angle. dV is the volume change of the source of the best fitting model in the case
that the model source in three dimensions was fixed. RMSE is the root-mean-square error
between the observed and modeled interferograms. Interferograms 66 and 67 are from
the same, original interferogram. Phase values in the original interferogram, however,
are discontinuous between two major patches which are represented by interferograms 66
and 67, respectively. So, interferograms 66 and 67 are treated as two different images.”
(Lu et al., 2005). In our analysis, we abridge the dataset to include only pairs with ac-
quisitions after the end of the 1997 eruption (May 25, 1997). The volume change rate per
pair in column 14 is found by dividing the volumetric estimate by the corresponding time
interval. The uncertainty of volume change rate in column 15 is estimated by scaling the
individual RMSE values by their mean σr = 4.98 [mm].
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Hetland E., Musé P., Simons M., Lin Y., Agram P., DiCaprio C. (2012) Multiscale InSAR
Time Series (MInTS) analysis of surface deformation. Journal of Geophysical Research:
Solid Earth 117(B2), DOI 10.1029/2011JB008731

Hetland E. A., Hager B. H. (2005) Postseismic and interseismic displacements near a
strike-slip fault: A two-dimensional theory for general linear viscoelastic rheologies. J.
Geophys. Res. (Solid Earth) 110:10,401

Hooper A. (2008) A multi-temporal InSAR method incorporating both persistent scat-
terer and small baseline approaches. Geophysical Research Letters 35(16):L16,302,
DOI 10.1029/2008GL034654, l16302

Hooper A., Zebker H., Segall P., Kampes B. (2004) A new method for measuring de-
formation on volcanoes and other natural terrains using InSAR persistent scatterers.
Geophysical Research Letters 31(23), DOI 10.1029/2004GL021737

Jellinek A., DePaolo D. J. (2003) A model for the origin of large silicic magma chambers:
precursors of caldera-forming eruptions. Bulletin of Volcanology 65(5):363–381, DOI



81

10.1007/s00445-003-0277-y
Jolivet R., Simons M., Agram P. S., Duputel Z., Shen Z.-K. (2015) Aseismic slip and seis-

mogenic coupling along the central San Andreas Fault. Geophysical Research Letters
42(2):297–306, DOI 10.1002/2014GL062222

Lanari R., Casu F., Manzo M., Lundgren P. (2007) Application of the SBAS-DInSAR
technique to fault creep: A case study of the Hayward fault, California. Remote Sensing
of Environment 109(1):20–28, DOI 10.1016/j.rse.2006.12.003
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