

The DOE-funded EGS Collab project is a multi-institution collaborative in which R&D at SURF is being used to increase our understanding of intermediate scale (10 m) rock mass response to hydraulic stimulation and flow, thus increasing our understanding of the thermal-hydrologicalmechanical-chemical response of the rock to engineered activities.

- Hydraulic fracture results show that above the rhyolite zone, fracture signatures appear relatively typical for this type of rock/burial depth, and a set of the set of and show relatively consistent fracture pressures (except for zones that appear to have reopened pre-existing fractures).
- Zones in close proximity to the rhyolite dyke show anomalous behavior.

the Sanford Underground Research Facility

- The zone above the rhyolite shows lower pressures likely due to the more compliant rhyolite creating a stress inhomogeneity.
- The zone below the rhyolite shows higher pressures likely because the lower interval is carrying the residual load from the rhyolite stress inhomogeneity
- Fractures which appear to have reactivated a preexisting natural fracture show a flatter breakdown curve where the fracture initiation and breakdown are similar, and often correspond well with the ISIP.

The EGS Collab Team consists of: J. Ajo-Franklin, T. Baumgartner, K. Beckers, D. Blankenship, A. Bonneville, L Boyd, S. Brown, S.T. Brown, J.A. Burghardt, T. Chen, Y. Chen, K. Condon, P.J. Cook, D. Crandall, P.F. Dobson, T. Doe, C.A. Doughty, D. Elsworth, J. Feldman, A. Foris, L.P. Frash, Z. Frone, P. Fu, K. Gao, A. Ghassemi, H. Gudmundsdottir, Y. Guglielmi, G. Guthrie, B. Haimson, A. Hawkins, J. Heise, M. Horn, R.N. Horne, J. Horner, M. Hu, H. Huang, L. Huang, K.J. Im, M. Ingraham, R.S. Jayne, T.C. Johnson, B. Johnston, S. Karra, K. Kim, D.K. King, T. Kneafsey, H. Knox, J. Knox, D. Kumar, K. Kutun, M. Lee, K. Li, Z. Li, R. Lopez, M. Maceira, P. Mackey, N. Makedonska, C.J. Marone, E. Mattson, M.W. McClure, J. McLennan, T. McLing, C. Medler, R.J. Mellors, E. Metcalfe, J. Miskimins, J. Moore, C.E. Morency, J.P. Morris, S. Nakagawa, G. Neupane, G. Newman, A. Nieto, C.M. Oldenburg, W. Pan, T. Paronish, R. Pawar, P. Petrov, B. Pietzyk, R. Podgorney, Y. Polsky, S. Porse, B.Q. Roberts M. Robertson, W. Roggenthen, J. Rutqvist, D. Rynders, H. Santos-Villalobos, M. Schoenball, P. Schwering, V. Sesetty, C.S. Sherman, A. Singh, M.M. Smith, H. Sone, F.A. Soom, C.E. Strickland, J. Su, D. Templeton, J.N. Thomle, C. Ulrich, N. Uzunlar, A. Vachaparampil, C.A. Valladao, W. Vandermeer, G. Vandine, D. Vardiman, V.R. Vermeul, J.L. Wagoner, H.F. Wang, J. Weers, J. White, M.D. White, P. Winterfeld, T. Wood, S. Workman, H. Wu, Y.S. Wu, Y. Wu, E.C. Yildirim, Y. Zhang, Y.Q. Zhang, Q. Zhou, M.D. Zoback

Frac #	Interval Center (m) Interval length is 1.1m	Fracture Initiation (MPa)	Breakdown (MPa)	ISIP (MPa)	Fracture Orientation from True North	Fracture Dip	Notes
1	10.2	25.3	29.3	23.2	Unclear		Amphibolite - Normal Sig
2	12.1	24.3	25.0	21.9	221	56	Amphibolite - Normal Sig
3	15.6	22.0	25.8	23.3	207	59	Amphibolite - Somewhat natural fracture
4	20.1	23.2	23.7	22.4	207	68	Amphibolite - Somewhat natural fracture
5	25.7	22.3	24.8	20.8	200	59	Amphibolite - Normal sig and ISIP may be due to rhyolite/fracture reopening
6	27.9	18.5	23.4	21.8	201	63	Amphibolite - Flat signat pressure likely due to pr rhyolite/fracture reopeni
7	36.9	15.8	16.9	15.0	201	84	Rhyolite – Likely opened
8	40.4	17.3	17.9	19.0	193	79	Rhyolite – Likely opened
9	44.6	27.2	30.2	27.5	181	66	Amphibolite - Normal signation likely due to interval carr proximity to rhyolite
10	47.3	34.1	35.0	29.6	178	60	Amphibolite - Normal signal likely due to interval carr proximity to rhyolite

This material was based upon work supported by the U.S. Department of Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Office, under Award Number DE-NA0003525 with SNL. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The research supporting this work took place in whole or in part at the Sanford Underground Research Facility in Lead, South Dakota. The assistance of the Sanford Underground Research Facility and its personnel in providing physical access and general logistical and technical support is acknowledged

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2019-14551 C.

gnature, high pressure rying more load due to