
OSU g-function Library Guide 30 June 2021 1

G-Function Library Guide (V 1.0)
Timothy West, Jack C. Cook, Jeffrey D. Spitler

Oklahoma State University

June 30, 2021

Thermal response functions, known as g-functions, are commonly used to simulate ground heat
exchangers used with ground-source heat pump systems. G-functions were originally developed by
Prof. Johan Claesson and his graduate students at the University of Lund in Sweden. (Claesson and
Eskilson 1988, Eskilson 1987, Hellström 1991) G-functions are used by ground heat exchanger design
tools (BLOCON 2017, Spitler 2000) and whole building energy simulation tools (Liu and Hellström 2006,
Mitchell and Spitler 2020). G-functions are unique to a specific borehole configuration (geometry, e.g. 5
rows of 10 boreholes spaced 5m apart) and depth.

Calculation of g-functions can be quite computationally time-consuming, particularly as the number of
boreholes gets large. However, once the g-function is computed, the actual simulation time can be
quite short, particularly if a hybrid time-step (Cullin and Spitler 2011) approach is used. Because of this,
pre-computed g-function libraries are commonly used in design tools and building simulation tools. In
practice, the g-functions are pre-calculated for specific configurations; for each configuration multiple
depths are pre-computed for interpolation purposes. Then, a design tool, can iteratively adjust the
depth to find the correct-sized ground heat exchanger. Furthermore, the g-functions scale with several
non-dimensional parameters that allow wider application than the specific horizontal spacing and
depths used in the pre-calculation.

Currently available libraries, implemented in eQuest (Liu and Hellström 2006), GLHEPRO (Spitler 2000),
and EED (BLOCON 2015) have less than a 1000 possible configurations and are proprietary. This
document gives a brief description of a new, publicly available library containing g-functions for 34,321
configurations at 5 depths. Some of the configurations are available in existing libraries; others are new.
The new configurations are C-shapes, lopsided-U-shapes and zoned rectangles (Cook and Spitler 2021).
In anticipation of possible future expansions to the library, this version is referred to as V1.0; this is
included in the JSON file names.

Library Overview
This library contains g-functions for standard, regularly spaced vertical borehole ground heat
exchangers. In total, it contains 34, 321 configurations. To permit interpolation, each configuration has
g-functions for heights of 24, 48, 96, 192, and 384 m. All the g-functions were calculated with burial
depths of 2m, and borehole diameters of 15 to 17.5 cm, depending on height. Deeper boreholes
commonly have larger diameters, which is why these values were chosen. The g-function can be
corrected to any reasonable diameter, though. In configurations with uniform spacing, the spacing
between the boreholes is set to 5m, though it can be scaled to other horizontal spacings.

OSU g-function Library Guide 30 June 2021 2

This library comes in the form of seven JSON1 files each containing a specific kind of borehole
configuration. The seven configurations are rectangles, zoned rectangles, open rectangles, C-shapes, U-
shapes, lopsided U-shapes, and L-shapes. Table 1 contains a summary of the number of configurations
in each library as well as a brief description of each type of configuration. Appendices 1-7 contain more
detailed explanations of each library.

Table 1 Library Contents Overview

1 JSON “JavaScript Object Notation” files are a standard file format commonly used with Python, and other
languages, including Java, C#, C++, and PHP.

Configuration
Name

Number of
Cases

Notes

Rectangle 1,651 Standard NxM cases (i.e. N rows, M columns) with uniform spacing.
Only one key is required to access a specific configuration.

Zoned
Rectangle

12,615 Similar to the Rectangle configurations, this configuration type has had
rows/columns removed from the interior in order to represent
configurations where the interior spacing of the bore field is greater
than that of the exterior (or perimeter) spacing. This library defines a
specific configuration using the N and M values for the exterior as well
as Ni and Mi values for the interior section. Two keys are required to
access a specific configuration

Open
Rectangle

2,332 These configurations represent N by M rectangular cases where there
boreholes only around the perimeter, but the perimeter can have
more than one row of boreholes. The number of rows around the
perimeter is specified with the key “t.” Two keys are required to access
a specific configuration.

C 4,525 This type of configuration may be thought of as an open rectangle
configuration that has had some number of boreholes removed from
the top side. The current C configurations in the library all have one
row of boreholes around the perimeter. The number of holes removed
is represented by the key “r.” Two keys are required to access a
specific configuration.

L 495 These configurations consist of a line N boreholes long and M
boreholes wide. The L cases have a single row of boreholes. Only one
key is required to access a specific configuration.

U 3, 248 This type of configuration is U-shaped, with the opening at the top.
The U may have up to 3 perimeter rows of boreholes around all sides
of the U. The number of perimeter rows is represented with “t.” Two
keys are required to access a specific configuration.

LopU
(Lopsided U)

9,455 These configurations consist of U cases that have had some number of
bore holes removed from their right side. These configurations all have
a single row of perimeter boreholes. The number of bore holes
removed is represented by “r.” Two keys are required to access a
specific configuration.

OSU g-function Library Guide 30 June 2021 3

Each library requires two JSON keys to access a specific bore hole configuration. The first required key is
consistent across the seven libraries. It is “M_N” where M represents the number of bore holes along
the x-axis and N represents the number of boreholes along the y-axis. It should be noted that N>=M. The
second key is different depending on the library.

Additional keys are required to access the data for a specific configuration. Each configuration has three
keys: “bore_locations,” “g,” and “logtime.” The “bore_locations” key accesses a 2d array containing the
x and y locations for each bore hole in the configuration. The “g” key returns a dictionary containing the
g-functions that were calculated for the configuration. The “logtime” key returns a 1d array containing
ln (𝑡𝑡

𝑡𝑡𝑠𝑠
) values for which the configurations g-functions were evaluated.

The “g” dictionary requires one more key to access a 1d array containing the values of the g-function for
a specific configuration under a specific set of conditions. The key uses the format “B._H._rb”. “B”
represents the spacing of the configuration (5m for all cases currently in the libraries). “H” represents
the height of the bore holes, and rb represents the radius of each bore hole. Currently, each height has a
specific bore hole radius pairing. The possible keys are the following: “5._24._0.075”, “5._48._0.075”,
“5._96._0.075”,“5._192._0.08”, and ”5._384._0.0875”.

The python file “LibraryAccessExample.py” contains examples regarding how to use python to access g-
functions from the library. The first example demonstrates how to access a configuration from the
“Rectangle” library. It also demonstrates how the information from the configuration can be
accessed/used (such as outputting it to a csv file). The second example also illustrates how to use the
information for a configuration, but it shows how to access a configuration in the “LopU” library. The
main difference between accessing a configuration in the two libraries is that the “Rectangle” library
requires one key to access a configuration, but the “LopU” library require two. The remaining examples
are similar to the second one, but access one of the other five libraries (the 2nd key varies from library to
library). Appendix 8 also contains the code for the example.

Calculation Methodology
This section briefly describes the procedure used to calculate the g-functions. The g-functions are
calculated with a tool that we call “cpgfunction” (Cook and Spitler 2021). It is based on the finite line
source methodology developed by Cimmino (2018a, 2018b) for an open-source tool written in Python,
called pygfunction. Cpgfunction is written in C++. Cpgfunction was developed with an eye towards
reducing memory consumption, which can be quite high for large numbers of boreholes, exceeding 96
GB in many cases. For calculating large numbers of g-functions, as was done here, the memory
requirements can become critical when running on a cluster. Keeping the memory requirements below
96 GB allowed us to fully use the most common compute nodes on the Oklahoma State University High
Performance Computing Cluster (OSUHPCC 2020). The time requirement is also improved for most
cases, but large numbers of regularly spaced boreholes the computation times are similar. For further
information on cpgfunction, see Cook and Spitler (2021).

The g-functions are calculated with the “Uniform borehole wall temperature” (UBHWT) boundary
condition. That is, the heat input at each segment is adjusted to give uniform (but changing with time)
temperatures at the borehole walls. This is the method commonly used to develop other g-function
libraries and has been used to size ground heat exchangers for commercial systems for the last 30 years.

OSU g-function Library Guide 30 June 2021 4

Arguably, the “Uniform inlet fluid temperature” (UIFT) conditions are more physically realistic, since the
boreholes in ground heat exchangers are generally plumbed in parallel, and all receive approximately
the same inlet fluid temperature at any time. However, the g-functions calculated with UIFT conditions
will be slightly different than the UBHWT, and they have a dependence on the local borehole thermal
resistance and the mass flow rate of the fluid. The g-functions also depend on the number of segments
used – like most numerical analyses, increasing the number of cells or volumes increases the accuracy,
with diminishing returns. We did a grid-independency analysis using typical values of borehole thermal
resistance and mass flow rate using the UIFT boundary conditions. We then compared results for the
UBHWT boundary conditions and found that we could use a smaller number of segments with the
UBHWT boundary conditions and still closely approximate the g-functions calculated with UIFT boundary
conditions, and typical borehole thermal resistances and mass flow rates. This investigation yielded the
number of segments summarized in Table 2. We utilized these values in calculating the g-functions and
refer to this method as the “adaptive discretization scheme.”

Table 2 Adaptive discretization scheme

Depth
(m) Range (NBH) Segment

Length (m)

Number of
Segments /

BH
24 All 8 3
48 All 12 4
96 All 12 8

192 NBH < 120
BH 16 12

192 NBH >= 120
BH 12 16

384 NBH < 220
BH 16 24

384 NBH >= 220
BH 12 32

The library presented here represents weeks of computation time on the OSU High Performance
Computing Cluster, and it would not have been feasible to develop such a library without access to this
or a similar resource.

Interpolation Methodology
Whether for design or energy simulation purposes, borehole configurations often will have different
spacings, different depths, and different borehole radii than the values used to calculate the library g-
functions. This section discusses a recommended procedure for interpolating between library g-
functions. There are four parameters that can be used to non-dimensionally scale the results:

• B – the borehole spacing
• H – the “active” borehole depth – the length of the borehole over which heat transfer to the

ground takes place. For a grouted borehole, this would be the length from the connection to
the header to the bottom of the U-tube. In Scandinavia, groundwater-filled boreholes are

OSU g-function Library Guide 30 June 2021 5

common, and, in that case the active portion of the borehole starts at the water table. Above
the water table, the U-tube is suspended in air, with relatively little heat transfer.

• D – the depth from the ground surface to the top of the active portion of the borehole.
• rb – the borehole radius

As discussed by Cimmino and Bernier (2014), the dimensionless g-function values depend on four
dimensionless parameters:

• 𝑡𝑡
𝑡𝑡𝑠𝑠

 , the dimensionless time

• 𝑟𝑟𝑏𝑏
𝐻𝐻

, the ratio of the borehole radius to the length of the borehole

• 𝐵𝐵
𝐻𝐻

, the ratio of the spacing between boreholes to the borehole length

• 𝐷𝐷
𝐻𝐻

, the ratio of the depth of the top of the borehole to the borehole length

Claesson and Eskilson (1987) – See Eskilson (1987) concluded that 𝐷𝐷
𝐻𝐻

 was relatively unimportant on the
basis of varying the depth between 2 and 8 m and only finding a 0.1°C difference in extraction
temperature. Presumably, for this reason, Eskilson (1987) does not specify the 𝐷𝐷

𝐻𝐻
 value for g-functions

published in his thesis, but it appears that the g-functions correspond to 𝐷𝐷
𝐻𝐻

 values of about 0.06; that is
for a 100m deep borehole, the presumed burial depth is 6m. This value makes sense for Scandinavian
groundwater-filled boreholes, but in ground heat exchangers installed in grouted boreholes, the typical
depth is considerably less; we used a value of 2m.2 We used a value of 5m for the spacing (B). A range
of H values were used and borehole radius was varied to match typical designs, as shown in Table 3.
Table 4 summarizes the dimensional and dimensionless values.

Table 3 Borehole depths and diameters

Depth
(m)

BH Diameter
(mm)

24 150

48 150

96 150

192 160

384 175

2 G-functions show greater response as the burial depth increases. We chose 2m as a conservative value.

OSU g-function Library Guide 30 June 2021 6

Table 4 Summary of dimensional and non-dimensional parameters

B (m) D (m) H (m) rb (mm) B/H D/H rb/H
5 2 24 75 0.20833 0.08333 0.003125
5 2 48 75 0.10417 0.04167 0.001563
5 2 96 75 0.05208 0.02083 0.000781
5 2 192 80 0.02604 0.01042 0.000417
5 2 384 87.5 0.01302 0.00521 0.000228

Any borehole configuration has three dimensionless geometric parameters. Calculation of a library with
enough variations in all three parameters to allow for 3-d interpolation is not computationally feasible.
Therefore, we rely on the relative importance of each dimensionless parameter to establish procedures
for calculating library g-functions and interpolating them during the design phase.

First, g-functions are much more sensitive to the value of B/H than to the values of D/H and 𝑟𝑟𝑏𝑏
ℎ

.
Therefore, we compute the library g-functions for the parameters shown in Table 4, and use B/H to
interpolate to get the g-function. This has the consequence that the interpolated g-function has
corresponding values of D/H and rb

h
 that may be estimated with interpolation.

Regarding the value of D/H, as discussed above, Claesson and Eskilson (1987) found that variations in D
in the range of 2-8m have very little impact on the g-function. As we have computed all g-functions for
a burial depth of 2m, the interpolation will result in depths around 2m, but not exactly 2m. Again, this
approximation has only a small effect and is deemed acceptable in order to keep the time required to
compute the library feasible.

Regarding the value of 𝑟𝑟𝑏𝑏
ℎ

, the interpolated g-function values can be corrected using an expression given
by Claesson and Eskilson (1988):

𝑔𝑔 � 𝑡𝑡
𝑡𝑡𝑠𝑠

, 𝐵𝐵
𝐻𝐻

, 𝐷𝐷
𝐻𝐻

, 𝑟𝑟𝑏𝑏
∗

𝐻𝐻
� = 𝑔𝑔 � 𝑡𝑡

𝑡𝑡𝑠𝑠
, 𝐵𝐵
𝐻𝐻

, 𝐷𝐷
𝐻𝐻

, 𝑟𝑟𝑏𝑏
𝐻𝐻
� − 𝑙𝑙𝑙𝑙 �𝑟𝑟𝑏𝑏

∗

𝑟𝑟𝑏𝑏
� (1)

Where 𝑟𝑟𝑏𝑏∗ is the borehole radius for the actual design;

 𝑟𝑟𝑏𝑏 is the borehole radius that was interpolated for the specific B/H value.

The procedure for determining the g-function values that correspond to a specific borehole
configuration, borehole depth, and borehole radius is summarized in Figure 1.

OSU g-function Library Guide 30 June 2021 7

Figure 1 Summary of g-function interpolation procedures

As an example, consider a 5x8 rectangular borehole configuration with B=7m; H=150m; D=2m, and
rb=80mm. The library entries for this configuration are shown in Table 5, in the two columns labeled
“Library” (brown font, yellow background). The interpolation inputs (are shown in the interpolation
column – the B and H rows; the value of B/H is calculated from the inputs. The other values (green font
with green background) are calculated by interpolation, based on B/H. The interpolations for D/H and
rb/H are graphically illustrated in Figure 2. The resulting D value (2.8m) does not match the actual D
value, but the effect is small. The resulting rb value does not match the actual value, but it can be
corrected using Equation 1.

Table 5 Example interpolation

Parameter Library Interpolated Library
D 2 2.8 2
B 5 7 5
H 96 150 192
rb 0.075 0.106 0.08

B/H 0.052083 0.046667 0.026042
D/H 0.020833 0.018667 0.010417
rb/H 0.000781 0.000705 0.000417

Configuration selected with B, H, r
b
*, B/H

Interpolate g-function values based on B/H
Interpolate corresponding values of:

 r
b
*/H (to be used in correction)
 D/H (informational only)

Calculate r
b
(interpolated value)

Correct g-function values for actual
 r

b
*

using Equation 1

OSU g-function Library Guide 30 June 2021 8

Figure 2 Interpolation illustrated

The B/H value for the field with 7m spacing is 20.8% of the way between the B/H for the 96m deep field
and the B/H value for the 192m deep field. In this example, linear interpolation has been done; more
sophisticated interpolations are possible. Figure 3 shows the results; the correction for the actual
borehole radius is very small, so the curve for the interpolated g-function and the corrected g-function
nearly lie on top of each other.

Figure 3 Interpolation to obtain g-function for a 5x8 rectangular borefield with B=7m; H=150m; D=2.8m, and rb=80mm.

0.000

0.005

0.010

0.015

0.020

0.025

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

Di
m

en
sio

nl
es

s
Pa

ra
m

et
er

B/H

D/H 10*rb/H

0

10

20

30

40

50

60

70

-9 -7 -5 -3 -1 1 3

g-
va

lu
es

ln(t/ts)

Library g-function (96m) Library g-function (192m) Interpolated Corrected

OSU g-function Library Guide 30 June 2021 9

Table 6 Example interpolation g-function values

ln(t/ts) Library
g-function

(96m)

Library
g-function

(192m)

Interpolated
g-function

Corrected
g-function

-8.5 2.209 2.835 2.339 2.619
-7.8 2.555 3.191 2.688 2.967
-7.2 2.852 3.560 2.999 3.279
-6.5 3.203 4.250 3.421 3.700
-5.9 3.554 5.267 3.910 4.190
-5.2 4.187 7.263 4.827 5.107
-4.5 5.320 10.513 6.400 6.680

-3.963 6.729 14.076 8.257 8.537
-3.27 9.518 20.060 11.711 11.991

-2.864 11.769 24.198 14.354 14.633
-2.577 13.644 27.314 16.488 16.767
-2.171 16.649 31.816 19.804 20.083
-1.884 18.984 34.992 22.313 22.593
-1.191 24.874 42.089 28.455 28.734
-0.497 30.407 47.997 34.066 34.345
-0.274 31.984 49.596 35.647 35.927
-0.051 33.399 51.010 37.062 37.342
0.196 34.776 52.371 38.436 38.715
0.419 35.832 53.409 39.488 39.768
0.642 36.732 54.292 40.384 40.664
0.873 37.497 55.044 41.146 41.426
1.112 38.129 55.668 41.777 42.056
1.335 38.598 56.132 42.245 42.524
1.679 39.128 56.659 42.774 43.054
2.028 39.490 57.020 43.136 43.416
2.275 39.668 57.197 43.314 43.594
3.003 39.959 57.487 43.605 43.885

Acknowledgements
Development of this library was funded through Department of Energy contract DE‐AC05‐00OR22725,
via a subcontract from Oak Ridge National Laboratory. Computation of the library g-functions was made
possible by the Oklahoma State University High Performance Computing Center. Development of the g-
function calculation tool, cpgfunction, was supported by Oklahoma State University via the OG&E
Energy Technology Chair.

OSU g-function Library Guide 30 June 2021 10

References
BLOCON. 2015. “Earth Energy Designer (EED) Version 3.2 Manual.” https://buildingphysics.com/eed-2/.

BLOCON. 2017. “Earth Energy Designer (EED) Version 4 Update Manual.”
https://buildingphysics.com/eed-2/.

Cimmino, M. and M. Bernier. 2014. A semi-analytical method to generate g-functions for geothermal
bore fields. International Journal of Heat and Mass Transfer 70: 641-650.

Cimmino, M. 2018a. "Fast calculation of the g-functions of geothermal borehole fields using similarities
in the evaluation of the finite line source solution." Journal of Building Performance Simulation
11(6): 655-668.

Cimmino, M. 2018b. pygfunction: an open-source toolbox for the evaluation of thermal. eSim 2018,
Montreál, IBPSA Canada.

Claesson, J. and P. Eskilson 1987. Conductive Heat Extraction by a Deep Borehole. Analytical Studies.
Lund, Sweden, University of Lund.Claesson, J and P. Eskilson. 1988. Conductive heat extraction
to a deep borehole: Thermal analyses and dimensioning rules. Energy (Oxford), 13(6), 509–527.
https://doi.org/10.1016/0360-5442(88)90005-9

Cook, J. C. and J. D. Spitler. 2021. Faster computation of g-functions used for modeling of ground heat
exchangers with reduced memory consumption. Building Simulation 2021. Bruges, Belgium,
IBPSA.

Cullin, J. R. and J. D. Spitler. 201). "A computationally efficient hybrid time step methodology for
simulation of ground heat exchangers." Geothermics 40(2): 144-156.

Eskilson, P. 1987. Thermal Analysis of Heat Extraction Boreholes. Ph.D. thesis. University of Lund.

Hellström, G. 1991. Ground heat storage: thermal analyses of duct storage systems. Ph.D. thesis.
University of Lund.

Liu, X. and G. Hellström (2006). Enhancements of an Integrated Simulation Tool for Ground-Source Heat
Pump System Design and Energy Analysis. Ecostock 2006. Stockton State College, Pomona, NJ.

Mitchell, M. S. and J. D. Spitler (2020). "An Enhanced Vertical Ground Heat Exchanger Model for Whole-
Building Energy Simulation." Energies 13(16): 4058.

OSUHPCC. (2020). "OSU's newest supercomputer "Pete" is available for all OSU researchers." Retrieved
29 January, 2021, from https://hpcc.okstate.edu/pete-supercomputer.html.

Spitler, J.D. 2000. GLHEPRO -- A Design Tool For Commercial Building Ground Loop Heat Exchangers.
Proceedings of the Fourth International Heat Pumps in Cold Climates Conference, Aylmer,
Québec. August 17-18, 2000.

https://buildingphysics.com/eed-2/
https://buildingphysics.com/eed-2/
https://doi.org/10.1016/0360-5442(88)90005-9
https://hpcc.okstate.edu/pete-supercomputer.html

OSU g-function Library Guide 30 June 2021 11

Appendix 1: Rectangle Library

This library contains rectangles of uniformly distributed bore holes, and has no secondary key, so it only
requires the first “M_N” key to access a configuration. Figure 4 gives an example of a rectangular
configuration (with the key “5_8”).

Figure 4 Rectangle Configuration Example

This library contains a variety of “M_N” values which sum up to 1,651 entries. Table 7 details the
available configurations in the library.

OSU g-function Library Guide 30 June 2021 12

Table 7 Configurations Available in Rectangle Library

M N (minimum) N (maximum)
1 1 100
2 2 100
3 3 100
4 4 100
5 5 100
6 6 100
7 7 100
8 8 100
9 9 100
10 10 100
11 11 93
12 12 85
13 13 78
14 14 73
15 15 68
16 16 64
17 17 60
18 18 56
19 19 53
20 20 51
21 21 48
22 22 46
23 23 44
24 24 42
25 25 40
26 26 39
27 27 37
28 28 36
29 29 35
30 30 34
31 31 33
32 32 32

OSU g-function Library Guide 30 June 2021 13

Appendix 2: Zoned Rectangle Library

This library contains Zoned Rectangles. Zoned Rectangles are rectangularly-shaped, but the inner
portions of the rectangle have rows/columns removed and increased spacing. The perimeter boreholes
have uniform spacing. The interior boreholes have “bi-uniform” spacing; that is, spacing that is uniform
in both directions, but which may be different. The interior spacing is determined to have uniform
spacing in each direction. The spacing from the perimeter to the first borehole in a row or column is the
same as the spacing between the boreholes in that row or column. Figure 5 shows one example of a
zoned rectangle with “5_11” as key 1 and “2_6” as key 2.

Figure 5 Zoned Rectangle Configuration Example 1 (key 2 = “2_6”)

The second key for this configuration is “Mi_Ni”. Mi represents the M value of the inner rectangle, and
Ni represents the N value of the inner rectangle. Figure 6 has keys of “10_15” and “1_3”.

OSU g-function Library Guide 30 June 2021 14

Figure 6 Zoned Rectangle Configuration Example 2 (key 2 = “1_3”)

This library has 12,615 configurations. It has M values from 4 to 32 (inclusive). For each M value, N
values from that M value to 32 are contained (inclusive). For instance, for M = 8, there are N values from
8 to 32 (inclusive). For the vast majority of “M_N” keys, the “Mi_Ni” keys essentially go from “1_1” to
one iterative step below what a full interior rectangle would be. The steps add one to either Ni or Mi
while maintaining Mi < Ni. Not every possible Ni, Mi pair is contained in the library. Rather, a stepwise
process was used to eliminate rows or columns. At each step, a row or column was eliminated; the
decision was based on which elimination would result in the x and y spacing being closest to uniform.
The reader may wish to consult the list of available configurations contained in “ZRectsContained.xlsx”.

OSU g-function Library Guide 30 June 2021 15

Appendix 3: Open Rectangle Library

This library contains Open Rectangle configurations. Open Rectangle Configurations in the library have
one, two, or three rows of perimeter boreholes. Figure 7 illustrates one example of an Open Rectangle
Configuration with a key 1 of “5_10” and key 2 of “2”.

Figure 7 Open Rectangle Configuration Example 1 (key 2 = “2”)

The second key for this configuration is “t” where “t” represents the number of rows of perimeter
boreholes. A t value of 1 would represent a rectangle with only 1 row of perimeter boreholes going
around the perimeter of the rectangle. Figure 8 shows a field with keys of “6_17” and “1”.

OSU g-function Library Guide 30 June 2021 16

Figure 8 Open Rectangle Configuration Example 2 (key 2 = “1”)

This library has 2,332 configurations. It has M values from 3 to 32 (inclusive). For each M value, N values
from that M value to 32 are contained (inclusive). For instance, for M = 8, there are N values from 8 to
32 (inclusive). The range of “t” values change based on how large M is. For M<5, only t=1 is available.
For 5<=M<7, t=1 and t=2 is available. For the other M values, t=1, t=2, and t=3 are available.

OSU g-function Library Guide 30 June 2021 17

Appendix 4: C Library

This library contains C configurations. C configurations are configurations where some amount of bore
holes have been removed from the topside of an Open configuration, but not enough bore holes have
been removed to make the configuration a U configuration. Figure 9 and Figure 10 illustrate examples of
this type of configuration. The bore holes are removed in such a way as to nearly maintain vertical
symmetry. When an odd number of boreholes are removed from an edge with an odd number of
boreholes, or an even number are removed from an edge with an even number of boreholes, symmetry
is maintained. However, this is not possible in the other cases, as shown in Figure 9 (key 1 = “8_12” and
key 2 = “3”).

Figure 9 C Configuration Example 1 (key 2 = “3”)

The second key for C configurations is “r” where “r” represents the number of boreholes that have been
removed from the topside of the configuration. The keys for the configuration in Figure 10 are “10_14”
and “7”.

OSU g-function Library Guide 30 June 2021 18

Figure 10 C Configuration Example 2 (key 2 = “7”)

This library has 4,525 configurations. It contains M values from 3 to 32 (inclusive). For each M value, N
values from that M value to 32 are contained (inclusive). For instance, for M = 8, there are N values from
8 to 32. For a specific “M_N”, the r values range from 1 to M-2 or M-3 (inclusive). It is M-2 for cases
where M is odd, and M-3 for cases where M is even.

OSU g-function Library Guide 30 June 2021 19

Appendix 5: L Library

This library contains L Configurations. L configurations are cases where there are lines along the y axis,
and the x-axis that meet at the origin. Figure 11 illustrates an example of an L configuration (key 1 =
“7_13”).

Figure 11 L Configuration Example 1

Currently, there is only one key for the L configurations. The key for the field in Figure 12 is “11_14.”

OSU g-function Library Guide 30 June 2021 20

Figure 12 L Configuration Example 2

The library has 495 configurations. It has M values from 2 to 32 (inclusive). For each M value, N values
from that M value to 32 are contained (inclusive); however, there is not a N=2, M=2 configuration. For
instance, for M = 8, there are N values from 8 to 32 (inclusive).

OSU g-function Library Guide 30 June 2021 21

Appendix 6: U Library

This library contains U configurations. Figure 13 shows an example of a U configuration (where
key 1 = “5_10” and key 2 = “1”).

Figure 13 U Configuration Example 1 (key 2 = “1”)

The second key for this configuration is “t” where “t” represents the number of perimeter borehole
rows. A t value of 1 would represent one row of perimeter boreholes, as shown in Figure 13. A t value
of 3 would represent 3 rows of perimeter boreholes, as shown in Figure 141. The keys for the field in

OSU g-function Library Guide 30 June 2021 22

Figure 11 are “8_11” and “3”.

Figure 14 U Configuration Example 2 (key 2 = “3”)

This library has 3, 248 configurations. It has M values from 3 to 50 (inclusive). For each M value, N values
from that M value to 50 are contained (inclusive). For instance, for M = 8, there are N values from 8 to
50 (inclusive). The “t” values available for the library consist of only “1” for M < 5, “1” and “2” for 5 <=
M < 7, and “1,” “2,” and “3” for M >= 7.

OSU g-function Library Guide 30 June 2021 23

Appendix 7: LopU Library

 This library contains “LopU”(Lopsided U) configurations. LopU configurations consist of U
configurations that have had points removed from the right side. Figure 15 shows an example of a LopU
Configuration (key 1 = “5_10” and key 2 = “6”).

Figure 15 LopU Configuration Example 1 (key 2 = “6”)

The second key for this configuration is “r” where “r” represents the number of holes removed from the
right side of a “U” configuration. The keys for the field illustrated in Figure 13 are “7_20” and “13”.

OSU g-function Library Guide 30 June 2021 24

Figure 16 LopU Configuration Example 2 (key 2 = “13”)

 The library has 9,455 configurations. It has M values from 3 to 32 (inclusive). For each M value,
N values from that M value to 32 are contained (inclusive). For instance, for M = 8, there are N values
from 8 to 32 (inclusive). For a specific “M_N”, the r values go between 1 and N-2 (inclusive).

OSU g-function Library Guide 30 June 2021 25

Appendix 8: Library Python Example
import json
import csv
import matplotlib.pyplot as plt

def main ():

 #EXAMPLE FROM RECTANGLE LIBRARY

 #load library file using the standard JSON python library
 rectLibrary = None
 with open("rectangle_5m_v1.0.json",'r') as libraryFile:
 rectLibrary = json.load(libraryFile)

 #defining m and n values (remember that n<m)
 n = 15
 m = 8

 #making key
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 #getting specific configuration from the library
 configuration = rectLibrary[key1]

 #Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

 #Graphing Bore Hole Locations

 #Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]
 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 #Setting title for Graphs and csv file
 title = "Rectangular {n:d}X{m:d} Field".format(n=n,m=m)

 #plot the bore hole locations
 plt.scatter(boreHoleX,boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

 #Getting a Specific G-Function for the configuration
 B = 5
 H=96

OSU g-function Library Guide 30 June 2021 26

 rb = .075
 gFunc = gVals["{B:d}._{H:d}._{r:.3f}".format(B=B,H=H,r=rb)]

 #Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")
 plt.ylabel("g")
 plt.plot(lntVals,gFunc)
 plt.show()

 #Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)","g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i],gFunc[i]])

 # Zoned Rectangle EXAMPLE

 # This is example is to help demonstrate how to use the libraries that
require tow keys to access a configuration

 # load library file using the standard JSON python library
 Library = None
 with open("zoned_rectangle_5m_v1.0.json", 'r') as libraryFile:
 Library = json.load(libraryFile)

 # defining m and n values (remember that n<m)
 n = 17
 m = 13
 mi = 6
 ni = 8

 # making keys (there are two for this library)
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 # This second key will very based on the library being accessed (check
the library overview document for more information)
 key2 = "{mi:d}_{ni:d}".format(mi=mi,ni=ni)

 # getting specific configuration from the library
 configuration = Library[key1][key2]

 # Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

OSU g-function Library Guide 30 June 2021 27

 # Graphing Bore Hole Locations

 # Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]
 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 # Setting title for Graphs and csv file
 title = "Zoned Rectangle {n:d}X{m:d} {ni:d}X{mi:d} Field".format(n=n,
m=m, ni=ni,mi=mi)

 # plot the bore hole locations
 plt.scatter(boreHoleX, boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

 # Getting a Specific G-Function for the configuration
 B = 5
 H = 384
 r = .0875
 gFunc = gVals["{B:d}._{H:d}._{r:.4f}".format(B=B, H=H, r=r)]

 # Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")
 plt.ylabel("g")
 plt.plot(lntVals, gFunc)
 plt.show()

 # Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)", "g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i], gFunc[i]])

 # Open Rectangle EXAMPLE

 # This is example is to help demonstrate how to use the libraries that
require tow keys to access a configuration

 # load library file using the standard JSON python library
 Library = None

OSU g-function Library Guide 30 June 2021 28

 with open("Open_configurations_5m_v1.0.json", 'r') as libraryFile:
 Library = json.load(libraryFile)

 # defining m and n values (remember that n<m)
 n = 20
 m = 8
 t = 1

 # making keys (there are two for this library)
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 # This second key will very based on the library being accessed (check
the library overview document for more information)
 key2 = "{t:d}".format(t=t)

 # getting specific configuration from the library
 configuration = Library[key1][key2]

 # Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

 # Graphing Bore Hole Locations

 # Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]
 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 # Setting title for Graphs and csv file
 title = "Open (Rectangle) {n:d}X{m:d} Field that is {t:d}
Thick".format(n=n, m=m, t=t)

 # plot the bore hole locations
 plt.scatter(boreHoleX, boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

 # Getting a Specific G-Function for the configuration
 B = 5
 H = 192
 r = .08
 gFunc = gVals["{B:d}._{H:d}._{r:.2f}".format(B=B, H=H, r=r)]

 # Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")

OSU g-function Library Guide 30 June 2021 29

 plt.ylabel("g")
 plt.plot(lntVals, gFunc)
 plt.show()

 # Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)", "g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i], gFunc[i]])

 # C EXAMPLE

 # This is example is to help demonstrate how to use the libraries that
require tow keys to access a configuration

 # load library file using the standard JSON python library
 Library = None
 with open("C_configurations_5m_v1.0.json", 'r') as libraryFile:
 Library = json.load(libraryFile)

 # defining m and n values (remember that n<m)
 n = 25
 m = 13
 t = 3

 # making keys (there are two for this library)
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 # This second key will very based on the library being accessed (check
the library overview document for more information)
 key2 = "{t:d}".format(t=t)

 # getting specific configuration from the library
 configuration = Library[key1][key2]

 # Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

 # Graphing Bore Hole Locations

 # Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]

OSU g-function Library Guide 30 June 2021 30

 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 # Setting title for Graphs and csv file
 title = "C {n:d}X{m:d} Field with {t:d} Removed".format(n=n, m=m, t=t)

 # plot the bore hole locations
 plt.scatter(boreHoleX, boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

 # Getting a Specific G-Function for the configuration
 B = 5
 H = 48
 r = .075
 gFunc = gVals["{B:d}._{H:d}._{r:.3f}".format(B=B, H=H, r=r)]

 # Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")
 plt.ylabel("g")
 plt.plot(lntVals, gFunc)
 plt.show()

 # Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)", "g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i], gFunc[i]])

 # L EXAMPLE

 # This is example is to help demonstrate how to use the libraries that
require tow keys to access a configuration

 # load library file using the standard JSON python library
 Library = None
 with open("L_configurations_5m_v1.0.json", 'r') as libraryFile:
 Library = json.load(libraryFile)

 # defining m and n values (remember that n<m)
 n = 28
 m = 28

OSU g-function Library Guide 30 June 2021 31

 # making keys (there is only one for this library)
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 # getting specific configuration from the library
 configuration = Library[key1]

 # Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

 # Graphing Bore Hole Locations

 # Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]
 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 # Setting title for Graphs and csv file
 title = "L {n:d}X{m:d} Field".format(n=n, m=m, r=r)

 # plot the bore hole locations
 plt.scatter(boreHoleX, boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

 # Getting a Specific G-Function for the configuration
 B = 5
 H = 24
 r = .075
 gFunc = gVals["{B:d}._{H:d}._{r:.3f}".format(B=B, H=H, r=r)]

 # Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")
 plt.ylabel("g")
 plt.plot(lntVals, gFunc)
 plt.show()

 # Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)", "g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i], gFunc[i]])

OSU g-function Library Guide 30 June 2021 32

 #U EXAMPLE

 # This is example is to help demonstrate how to use the libraries that
require tow keys to access a configuration

 # load library file using the standard JSON python library
 Library = None
 with open("U_configurations_5m_v1.0.json", 'r') as libraryFile:
 Library = json.load(libraryFile)

 # defining m and n values (remember that n<m)
 n = 24
 m = 15
 t = 2

 # making keys (there are two for this library)
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 # This second key will very based on the library being accessed (check
the library overview document for more information)
 key2 = "{t:d}".format(t=t)

 # getting specific configuration from the library
 configuration = Library[key1][key2]

 # Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

 # Graphing Bore Hole Locations

 # Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]
 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 # Setting title for Graphs and csv file
 title = "U {n:d}X{m:d} Field that is {t:d} thick".format(n=n, m=m, t=t)

 # plot the bore hole locations
 plt.scatter(boreHoleX, boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

OSU g-function Library Guide 30 June 2021 33

 # Getting a Specific G-Function for the configuration
 B = 5
 H = 192
 r = .08
 gFunc = gVals["{B:d}._{H:d}._{r:.2f}".format(B=B, H=H, r=r)]

 # Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")
 plt.ylabel("g")
 plt.plot(lntVals, gFunc)
 plt.show()

 # Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)", "g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i], gFunc[i]])

 # LopU EXAMPLE

 # This is example is to help demonstrate how to use the libraries that
require tow keys to access a configuration

 # load library file using the standard JSON python library
 LopULibrary = None
 with open("LopU_configurations_5m_v1.0.json", 'r') as libraryFile:
 LopULibrary = json.load(libraryFile)

 # defining m and n values (remember that n<m)
 n = 24
 m = 15
 r = 5

 # making keys (there are two for this library)
 key1 = "{m:d}_{n:d}".format(m=m,n=n)

 # This second key will very based on the library being accessed (check
the library overview document for more information)
 key2 = "{r:d}".format(r=r)

 # getting specific configuration from the library
 configuration = LopULibrary[key1][key2]

OSU g-function Library Guide 30 June 2021 34

 # Getting values of configuration
 gVals = configuration["g"]
 lntVals = configuration["logtime"]
 boreHoleLocations = configuration["bore_locations"]

 # Graphing Bore Hole Locations

 # Separating the points into x and y coordinates
 boreHoleX = [boreHoleLocation[0] for boreHoleLocation in
boreHoleLocations]
 boreHoleY = [boreHoleLocation[1] for boreHoleLocation in
boreHoleLocations]

 # Setting title for Graphs and csv file
 title = "LopU {n:d}X{m:d} Field with {r:d} Removed".format(n=n, m=m, r=r)

 # plot the bore hole locations
 plt.scatter(boreHoleX, boreHoleY)
 plt.title(title)
 plt.gca().set_aspect('equal', adjustable='box')
 plt.xlabel("Distance (m)")
 plt.ylabel("Distance (m)")
 plt.show()

 # Getting a Specific G-Function for the configuration
 B = 5
 H = 192
 r = .08
 gFunc = gVals["{B:d}._{H:d}._{r:.2f}".format(B=B, H=H, r=r)]

 # Graphing G-Function
 plt.clf()
 plt.title(title + " G-Function for H = {H:d}m".format(H=H))
 plt.xlabel("ln(t/ts)")
 plt.ylabel("g")
 plt.plot(lntVals, gFunc)
 plt.show()

 # Saving the G-Function to file
 with open(title + ".csv","w",newline="") as outputFile:
 cW = csv.writer(outputFile)
 cW.writerow(["ln(t/ts)", "g"])
 for i in range(len(lntVals)):
 cW.writerow([lntVals[i], gFunc[i]])

OSU g-function Library Guide 30 June 2021 35

if __name__ == "__main__":
 main()

	Library Overview
	Calculation Methodology
	Interpolation Methodology
	Acknowledgements
	References
	Appendix 1: Rectangle Library
	Appendix 2: Zoned Rectangle Library
	Appendix 3: Open Rectangle Library
	Appendix 4: C Library
	Appendix 5: L Library
	Appendix 6: U Library
	Appendix 7: LopU Library
	Appendix 8: Library Python Example

