Determination of accelerometers' 3-C orientations at the first EGS Collab Testbed

Jiaxuan Li^{1}, Lianjie Huang ${ }^{1}$, Benxin Chi 1,3, Martin Schoenball ${ }^{2}$, Jonathan Ajo-Franklin ${ }^{2,3}$, Chet Hopp 2; Timothy J. Kneafsey ${ }^{2}$, and EGS Collab Team ${ }^{4}$
${ }^{1}$ Los Alamos National Laboratory, Los Alamos, NM 87545, USA
${ }^{2}$ Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
${ }^{3}$ Rice University, Houston, TX 77005, USA
${ }^{4}$ The EGS Collab Team

We determine the accelerometers' three-component (3-C) orientations at the first EGS Collab testbed using CASSM data and hodogram analysis.

- Use the principal component analysis (PCA) analysis of the CASSM data recorded in May 2018 to determine the x-components' positive direction orientation. Those directions are almost parallel to the borehole, which matches the record of instrumental set-up.
- 15 accelerometers have x-components' positive directions (green arrows in Figure 1) in pointing away from the drift, but those of accelerometers PSB-8, OB-13, and OT-16 point to the drift. This implies that the y and z components' cable for these three accelerometers were switched in the Geode recording system.
- Apply the hodogram analysis (Figure 2) to each accelerometer to determine the rotation of y and z components.

[^0]

Figure 1. 3-D view of the well geometry, accelerometer positions (red triangles), and accelerometers' x-component positive directions (green arrows). The accelerometers' xcomponent positive directions obtained from the PCA analysis are almost parallel to the well direction. 15 of them points away from the drift, while PSB-8, OB-13, and OT-16 have x positive direction pointing to the drift.

Figure 2. Illustration of the hodogram analysis. For each accelerometer, we bandpass filter the data and select a window around the first arrival to check its hodogram. The frequency band for all accelerometers are $5 \sim 8 \mathrm{kHz}$, except for the accelerometer PDB-6 (frequency band is $3 \sim 5 \mathrm{kHz}$).

Base vectors of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components are defined in the ENU (East-North-Up) system
base_x $=[\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3]$
base $_\mathrm{y}=[\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3]$
base_z $=[\mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3]$
To rotate the waveforms from the local system to the ENU system, we can use: [dat_E, dat_N, dat_U] = [dat_x, dat_y, dat_z]*[base_x; base_y; base_z]; for each accelerometer.

For example: for the 1st accelerometer PDT-1
We can rotate it as:

$$
\begin{array}{r}
{\left[\text { dat_E, dat_N, dat_U] }=[\text { dat_x, dat_y, dat_z] }]^{*}[-0.987188,-0.132298,-0.089199\right.} \\
\\
0.125816,-0.301610,-0.945094 \\
\\
0.098131,-0.944208,0.314391] ;
\end{array}
$$

The values of $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3$ for 18 accelerometers are given in the following:

```
name,x1,x2,x3,y1,y2,y3,z1,z2,z3
PDT-1,-0.987188,-0.132298,-0.089199,0.125816,-0.30161,-0.945094,0.098131,-
0.944208,0.314391
PDT-2,-0.988336,-0.123504,-0.089103,0.134329,-0.431307,-0.892149,0.071753,-
0.893712,0.442867
PDB-3,-0.893842,-0.012001,-0.448221,0.227677,-0.873329,-0.430651,-0.386276,-
0.486983,0.78335
PDB-4,-0.898223,-0.171004,-0.40491,0.438255,-0.27805,-0.854764,0.033583,-
0.945223,0.324694
```

PDT-5,-0.990235,-0.108204,-0.087903,0.058950,0.246395,-0.967375, $0.126333,-0.963110,-$
0.237610
PDB-6,-0.892329,-0.168106,-0.418914,0.429743,-0.032471,-0.902367,0.138091,-
0.985234,0.101217
PSB-7,-0.906486,-0.165397,-0.388494,0.373648,0.114288,-0.920503,0.196649,-0.979583,-
0.0418
PSB-8,-0.902553,-0.159809,-0.399824,-0.232069,-0.601613,0.764333,-
0.362687,0.782638,0.505901
PSB-9,-0.898046,-0.157808,-0.410621,0.212384,-0.972981,-0.09056,-0.385235,-
0.168537,0.907298
PST-10,-0.993688,-0.096499,-0.057199,0.091889,-0.407721,-0.908471,0.064345,-
0.907993,0.414014
PST-11,-0.993175,-0.096098,-0.066098,0.088872,-0.256506,-0.962448,0.075534,-
0.961753,0.263296
PST-12,-0.993341,-0.089704,-0.072303,-0.09956,0.352471,0.930512,-0.057986, 0.931514,-
0.359055
OB-13,-0.042499,0.883082,-0.46729,0.291912,-0.436329,-0.85112,-0.9555,-0.17258,-0.239239
OB-14,-0.052697,0.883545,-0.465371,-0.564327,-0.410820,-0.716074,-
$0.823867,0.224887,0.520258$

OB-15,-0.060299,0.882785,-0.465892,-0.883599,-0.264331,-0.3865,$0.464346,0.388356,0.795966$
OT-16,0.0231,0.98808,-0.152197,-0.700674,0.124592,0.702519,0.713107,0.090413,0.6952
OT-17,-0.009400, 0.990361, $-0.138194,-0.944477,-0.054186,-0.324078,-0.328443$,
0.127475,0.935882

OT-18,-0.052797,0.992146,-0.113394,-0.831318,-0.106583,-0.545482,$0.553283,0.065467,0.830417$

[^0]: ${ }^{4}$ J. Ajo-Franklin, T. Baumgartner, K. Beckers, D. Blankenship, A. Bonneville, L. Boyd, S. Brown, J.A. Burghardt, C. Chai, T. Chen, Y. Chen, K. Condon, P.J. Cook, D. Crandall, P.F. Dobson, T. Doe, C.A. Doughty, D. Elsworth, J. Feldman, A. Foris, L.P. Frash, Z. Frone, P. Fu, K. Gao, A. Ghassemi, Y. Guglielmi, B. Haimson, A. Hawkins, J. Heise, M. Horn, R.N. Horne, J. Horner, M. Hu, H. Huang, L. Huang, K.J. Im, M. Ingraham, R.S. Jayne, T.C. Johnson, B. Johnston, S. Karra, K. Kim, D.K. King, T. Kneafsey, H. Knox, J. Knox, D. Kumar, K. Kutun, M. Lee, D. Li, J. Li, K. Li, Z. Li, M. Maceira, P. Mackey, N. Makedonska, C.J. Marone, E. Mattson, M.W. McClure, J. McLennan, T. McLing, C. Medler, R.J. Mellors, E. Metcalfe, J. Miskimins, J. Moore, J.P. Morris, S. Nakagawa, G. Neupane, G. Newman, A. Nieto, C.M. Oldenburg, T. Paronish, R. Pawar, P. Petrov, B. Pietzyk, R. Podgorney, Y. Polsky, J. Pope, S. Porse, B.Q. Roberts, M. Robertson, W. Roggenthen, J. Rutqvist, D. Rynders, M. Schoenball, P. Schwering, V. Sesetty, A. Singh, M.M. Smith, H. Sone, F.A. Soom, P. Sprinkle, C.E. Strickland, J. Su, D. Templeton, J.N. Thomle, C. Ulrich, N. Uzunlar, A. Vachaparampil, C.A. Valladao, W. Vandermeer, G. Vandine, D. Vardiman, V.R. Vermeul, H.F. Wang, J. Weers, N. Welch, M.D. White, P. Winterfeld, T. Wood, S. Workman, H. Wu, Y.S. Wu, E.C. Yildirim, Y. Zhang, Y.Q. Zhang, Q. Zhou, M.D. Zoback

