## PROTECTED RIGHTS NOTICE

This document was produced under agreement no. DE-EE-0002833 with the U.S. Department of Energy and may not be published, disseminated, or disclosed to others outside the Government until five (5) years (December 19, 2017) from the date the data were generated, (December 19, 2012) unless express written authorization is obtained from the recipient. Upon expiration of the period of protection set forth in this Notice, the Government shall have unlimited rights in this data. This Notice shall be marked on any reproduction of this data, in whole or in part.

# GRAVITY SURVEY 

ON THE

## NEWBERRY PROJECT <br> DESCHUTES COUNTY, OREGON

FOR
DAVENPORT RESOURCES LLC.
DATA ACQUISITION REPORT
ISSUE DATE: January 6, 2010
ZONGE JOB \# 10016


ZONGE GEOSCIENCES INC.

924 Greg Street
Sparks, Nevada 89431
Phone: (775) 355-7707, Fax: (775) 355-9144

## TABLE OF CONTENTS

INTRODUCTION .....  1
INSTRUMENTATION. ..... 2
DATA ACQUISITION ..... 3
GPS DATA ..... 3
GRAVITY DATA .....  3
DATA QUALITY ..... 4
DATA PROCESSING ..... 5
GPS PROCESSING ..... 5
GRAVITY PROCESSING ..... 6
DATA PRESENTATION ..... 9
SAFETY AND ENVIRONMENTAL ISSUES ..... 10
REFERENCES ..... 11
APPENDIX A. PLATES AS FIGURES ..... 12
APPENDIX B. Gravity METER SPECIFICATIONS ..... 21
APPENDIX C. GPS/GLONASS RECEIVER SPECIFICATIONS ..... 24
APPENDIX D. GPS BASE DESCRIPTIONS ..... 26
APPENDIX D: GPS BASE DESCRIPTIONS (CONTINUED) ..... 29
APPENDIX E. GRavity Base DESCRIPTION ..... 30
APPENDIX F. Loop Closures ..... 32
Appendix G. Gravity AND GPS Repeats ..... 33
APPENDIX H. DATA DISK CONTENTS ..... 37

## LIST OF PLATES

Located in back pocket of report
Plate 1: Station Location Map.
Plate 2: Complete Bouguer Anomaly Gravity @ $2.30 \mathrm{gm} / \mathrm{cc}$.
Plate 3: Complete Bouguer Anomaly Gravity @ 2.40 gm/cc.
Plate 4: Complete Bouguer Anomaly Gravity @ $2.50 \mathrm{gm} / \mathrm{cc}$.
Plate 5: Complete Bouguer Anomaly Gravity @ $2.60 \mathrm{gm} / \mathrm{cc}$.
Plate 6: Horizontal Gradient of the CBA Gravity @ $2.30 \mathrm{gm} / \mathrm{cc}$.
Plate 7: Horizontal Gradient of the CBA Gravity @ $2.40 \mathrm{gm} / \mathrm{cc}$.
Plate 8: Horizontal Gradient of the CBA Gravity @ $2.50 \mathrm{gm} / \mathrm{cc}$.
Plate 9: Horizontal Gradient of the CBA Gravity @ $2.60 \mathrm{gm} / \mathrm{cc}$.

## GRAVITY SURVEY

## ON THE

## NEWBERRY PROJECT

## INTRODUCTION

Zonge Geosciences, Inc. performed a Gravity survey on the Newberry Project, located in Deschutes County, Oregon for Davenport Resources LLC. The survey was conducted during the period of 13 October 2010 to 30 October 2010.

The survey area is located in R11-14E; T20-22S, and lies within the Paulina Peak, Lava Cast Forest, Finley Butte, Anns Butte, Fuzztail Butte, East Lake, Evans Well, and China Hat, Oregon 1:24000 topographic sheets. Gravity data were acquired for a total of 343 original stations at various intervals along roads, and along one cross-country traverse by foot. Station locations are shown in Figure 1.

This survey was conducted by Grady Pearce, Geophysicist for Zonge Geosciences, under Zonge job number 10016. Zonge job number 10016 was performed in addition to Zonge job number 2006.103, which was conducted during the period of 16 October 2006 to 8 November 2006, where 438 original stations were acquired.

In addition, Zonge acquired 126 gravity stations for Ormat Nevada, Inc. under Zonge job number 10194. These stations have been incorporated into the data-set resulting in a total of 907 gravity stations.

This report covers data acquisition, instrumentation and processing for job number 10016.

## INSTRUMENTATION

Gravity data were acquired using LaCoste \& Romberg (L\&R) Model-G gravimeters, serial numbers 233 and 735. These L\&R gravity meters have a reading resolution of .01 milligals and a typical repeatability of .01 milligals. Specifications for this instrument are included in Appendix B.

Positioning was obtained with Leica Geosystems model VIVA GS15 GPS/GLONASS receivers. These are survey-grade receivers capable of centimeter-level accuracy. GPS/GLONASS receiver specifications are included in Appendix C.


Figure 1: Station location map.

## DATA ACQUISITION

## GPS DATA

Carrier-phase GPS data were acquired for four to six minute sessions at each station during simultaneous acquisition at a fixed GPS base station. Real Time Kinematic (RTK) mode was used to acquire GPS data for this survey. Operation in RTK mode allowed for onsite evaluation of positioning solution quality and stake out. At locations where radio reception was lost, GPS observations were made for five to eight minute occupations. A discussion of positioning quality is given under the section titled Data Quality, GPS.

Four GPS base stations were used over the course of this survey (Carey, 1000, 2000, 3000). The National Geodetic Survey Control classifies "CAREY", PID PB0670, as a firstorder horizontal and vertical control point. GPS base station 1000 was established by a 20 minute static observation. This static observation was post processed with respect to the Carey reference station. GPS base 3000 was established by a 25 minute static observation. This static observation was post processed with respect to reference station 2000.

The position of base station 2000 was determined by submitting a 7 hour occupation of this point to the National Geodetic Survey (NGS) On-line Positioning User Service (OPUS). OPUS processed this observation file with respect to 3 Continuously Operating Reference Stations (CORS).

Control point specifications are listed in Appendix D.

## GRAVITY DATA

Gravity measurements were made in a series of looped-traverses that were closed within a maximum of ten hours. At least two measurements were made at each occupation.

Four gravity base stations were used for this survey. The gravity value for base station "Carey" was determined from two loop-traverses to the US Department of Defense absolute gravity base at the City Hall building in Oakridge, Oregon (DoD 4612-1). Three local base station (1000, 2000, and 3000) gravity values were determined by a minimum of two loop-traverses to "Carey".

A list of the gravity values and positions for these bases are shown in Appendix E.

## DATA QUALITY

The average loop closure for the local survey was 0.016 milligals for the LaCoste \& Romberg Model-G meter. Individual loop closures are tabulated in Appendix F.

Gravity measurement precision is evaluated by making repeat readings at selected gravity stations. For this survey, 34 gravity measurements were repeated. The average difference between repeat measurements is 0.022 milligals, and the maximum difference is 0.078 milligals. Three repeat gravity measurements were made between the 2006 and the 2010 surveys, and two repeat measurements were made between job numbers 10016 and 10194. Repeated gravity measurements are tabulated in Appendix G.


Figure 2: Histogram of Gravity Repeats

An important factor that determines the accuracy of the reduced measurement is the accuracy in determining a station's location, particularly the elevation. The vertical gradient of the earth's field is approximately -.308596 milligals per meter of increase in elevation. The Bouguer correction is .1119 milligals per meter of elevation increase, for a density of $2.67 \mathrm{gm} / \mathrm{cc}$. This results in a total error in the Bouguer Anomaly of .1967 milligals per meter of elevation error, for a reduction density of $2.67 \mathrm{gm} / \mathrm{cc}$.

GPS positioning precision is evaluated by making repeated GPS measurements at randomly selected stations. Comparison of 34 duplicate GPS measurements that were made over a range of field conditions and baseline lengths, show a maximum elevation difference of 1.16 meters. The Forest Canopy over the survey area caused high positioning errors for this survey. A tabulation of repeated GPS measurements is presented in Appendix G.


Figure 3: Histogram of GPS Repeats

## DATA PROCESSING

## GPS PROCESSING

Locations of the gravity stations were determined as baselines from the GPS base in WGS-84 coordinates and ellipsoidal heights. The Real Time Kinematic (RTK) solutions were used where available. Where RTK solutions were not available, the GPS observations were processed after data acquisition (post-processing) using Leica Geo-Office ${ }^{\mathrm{TM}}$ software. Stations that required post-processing are noted in the data files with a "PP" designation for the class.

The WGS84 ellipsoidal heights were converted to geoidal (orthometric) heights in the NAVD88 datum using the NGS program, GEOID 2009, and converted to the NGVD29
datum using the NGS program, VertCon version 2.0. Station coordinates were converted to the NAD27 horizontal datum to use with UTM Zone 10 metric coordinates as shown on 7.5, USGS maps.

## GRAVITY PROCESSING

The basic processing of gravimeter readings to calculate the observed gravity was made using software from Geosoft LTD. of Toronto, Canada. The assigned gravity values for the local gravity base "CAREY" was established by two loop-traverses to DoD gravity base number, 4612-1, located at the City Hall building in Oakridge, Oregon .

The observed gravity is the gravitational acceleration, in milligals, that is determined by relative measurements made in a loop from a gravity base, after the meter readings have been corrected for instrument height, instrument scale factor, instrument drift and earth tides.

The long-term instrument drift is the rate at which each particular instrument accumulates error due to instrument factors such as vibration, battery voltage changes, and elastic relaxation, among others. It is minimized by proper technique, and warm up of the instrument.

Earth tides cause variations in observed gravity for land-based surveys of up to approximately .03 milligals per hour (Siegel, 1995). Corrections are computed by use of preprogrammed theoretical tide tables that are a part of the Geosoft ${ }^{\mathrm{TM}}$ gravity reduction software. The effect of earth tides can be further minimized by frequently tying loops to local gravity bases (Butler, 1991).

The observed gravity is a function of position (geographic latitude and elevation) and variations in the density of the subsurface material. A series of reductions are made to remove the gravity variation caused by position so that the gravity variations caused by subsurface density distribution remain.

A latitude correction must be made to the observed gravity measurements because the earth is not spherical, but has a slightly larger radius at the equator. It includes terms for both the Newtonian attraction of the earth as a flattened spheroid and the centrifugal force caused by the earth's rotation (Siegel, 1994). The latitude correction is calculated for the

International Ellipsoid of 1967 (International Association of Geodesy, 1971).

$$
g_{\phi}=g_{a}\left(1+f_{2} \sin ^{2} \phi+f_{4} \sin ^{4} \phi\right)
$$

where:

$$
\begin{aligned}
& g_{\phi}=\text { Latitude correction (gravity reference field on the ellipsoid). } \\
& \phi=\text { Latitude of the gravity observation. } \\
& f_{2}=-f+\frac{5}{2} m+\frac{1}{2} f^{2}-\frac{26}{7} f m+\frac{15}{4} m^{2} \\
& f_{4}=-\frac{1}{2} f^{2}+\frac{5}{2} f m \\
& m=\omega^{2} a^{2} b /(k M)=3.44980143430 \times 10^{-3} \\
& f=(a-b) / a=1 / 298.24716742 \\
& a=\text { Semi-major axis of the ellipsoid }=6378160 \text { meter } \\
& b=\text { Semi-minor axis of the ellipsoid }=6356775 \text { meters } \\
& \omega=\text { Angular velocity of the Earth } \\
& M=\text { Mass of the Earth } \\
& k=\text { Newton's gravitational constant }
\end{aligned}
$$

The elevation correction has two parts: the free air correction and the Bouguer correction. The free air correction compensates for the variation of the earth's gravitational field with distance away from the center of the earth. The approximate and often-used correction is -0.308596 milligals per meter above the ellipsoid. In practice this is usually referenced to the Geoid due the fact that until recent advent of GPS technology, elevations were derived by leveling, which are by their nature, referenced to the Geoid. For this survey all elevations are referenced to the Geoid by use of the Geoid09 model.

The free air correction is calculated using the following formula:

$$
\begin{array}{ll} 
& \Delta g_{f a}=g_{a}-g_{1} h_{s}+g_{2} h_{s}^{2}-g_{l} \\
\text { where, } \quad & g_{1}=.308768-0.00043986 \sin ^{2} \phi \\
& g_{2}=7.212 \times 10^{-8}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{g}_{f a}=\text { free air anomaly in milligals } \\
& \mathrm{g}_{a}=\text { observed gravity } \\
& \mathrm{g}_{l}=\text { latitude correction } \\
& h_{s}=\text { station elevation in meters }
\end{aligned}
$$

The Bouguer correction compensates for the mass of material located between the station elevation and the Geoid (mean sea level). The Bouguer correction is calculated on the basis of the gravitational attraction of a horizontal slab of infinite extent whose thickness is equal to the elevation difference between the stations of interest and mean sea level:

$$
\mathrm{g}_{b a}=\mathrm{g}_{f a}-0.0419088 *\left[\rho h_{s}\right]
$$

where,

$$
\begin{aligned}
& \mathrm{g}_{b a}=\text { Simple Bouguer anomaly in milligals } \\
& \mathrm{g}_{f a}=\text { free air anomaly } \\
& \rho=\text { density of rock }
\end{aligned}
$$

The Complete Bouguer Anomaly includes those corrections found in the Simple Bouguer Anomaly, as well as, corrections for the effect of the surrounding topography and the curvature of the earth (Bullard B correction).

$$
g_{c b a}=g_{b a}+g_{B B}+g_{t c}
$$

The Bullard B correction is used to correct for the fact that the mass of rock between the Geoid and the station elevation is a spherical shell as opposed to an infinite horizontal slab. The correction used by Zonge Geosciences is based on the formula given by LaFehr (1991):

$$
g_{B B}=2 \pi k \rho\left(\mu h_{s}-\lambda R\right),
$$

where

$$
g_{B B}=\text { Bullard B Correction }
$$

$$
R=\text { Earth radius to the station }\left(R_{0}+h, \text { where } R_{0} \text { is the earth's radius }\right)
$$

$2 \pi k \rho$ is the simple Bouguer slab formula; $\mu$ and $\lambda$ are dimensionless coefficients whose definitions are given in the appendix of LaFehr's 1991 paper.

Corrections for topography out to a radius of 16.6 meters from the station were calculated from field estimates of the average elevations for hammer zone B , which were made by the operator. The hammer zone corrections were made using software written by Geosoft Ltd of Toronto, Canada.

Corrections for the gravity effect of variable Terrain $g_{t c}$ are made from digital elevation data. Terrain corrections for topography from 16.6 meters to 17 kilometer radius were made from National Elevation Dataset (NED) 1/3 Arc Second (9m) data using software (RASTERTC ${ }^{\text {TM }}$ ) described by Cogbill (1990). This algorithm performs a surface fit from a user specified inner radius ( 16.6 m ) out to a selected intermediate radius ( 17 km ). Terrain corrections are computed for this interval using a numerical integration of the surface along radial lines at 6 -degree increments. From the intermediate radius ( 17 km ) out to an outer radius ( 167 km ), terrain corrections are made using the approximation that each elevation represents the elevation of a rectangular compartment equal to the area of the elevation sample (cell size). The effect of each compartment is calculated using a line element formula.

Corrections from 17 km to 167 km were made using Shuttle Radar Topography Mission (SRTM) 2 Arc Second ( $\sim 65 \mathrm{~m}$ ) digital terrain data. A curvature correction to the terrain model was computed at distances beyond 14 km .

Simple and Complete Bouguer gravity anomalies were computed for densities ranging from $2.00 \mathrm{gm} / \mathrm{cm}^{3}$ to $2.67 \mathrm{gm} / \mathrm{cm}^{3}$. If the density of the near-surface rocks differs from the reduction density, then an elevation dependent error will result. This error is approximately 1.25 microgals per foot for each $0.1 \mathrm{gm} / \mathrm{cm}^{3}$ difference in density (Hinze, 1990). The density which minimizes the correlation between elevation and the reduced gravity is generally chosen as the reduction density for further processing and plotting. A principle fact file providing densities ranging from $2.00 \mathrm{gm} / \mathrm{cm}^{3}$ to $2.67 \mathrm{gm} / \mathrm{cm}^{3}$ is included on a DVD-ROM.

## DATA PRESENTATION

Plan maps are provided as plates in the back pockets of this report. All plates are plotted at a scale of 1:48000 and registered in UTM Zone 10N, NAD27 datum. Plate 1
shows the locations of gravity stations on a topographic base. Plate 2 shows the Complete Bouguer Anomaly at a reduction density of $2.30 \mathrm{gm} / \mathrm{cc}$. Plate 3 shows the Complete Bouguer Anomaly at a reduction density of $2.40 \mathrm{gm} / \mathrm{cc}$. Plate 4 shows the Complete Bouguer Anomaly at a reduction density of $2.50 \mathrm{gm} / \mathrm{cc}$. Plate 5 shows the Complete Bouguer Anomaly at a reduction density of $2.60 \mathrm{gm} / \mathrm{cc}$. Plate 6 shows the horizontal gradient of the Complete Bouguer Anomaly at a reduction density of $2.30 \mathrm{gm} / \mathrm{cc}$ upward continued to 300 meters. Plate 7 shows the horizontal gradient of the Complete Bouguer Anomaly at a reduction density of $2.40 \mathrm{gm} / \mathrm{cc}$ upward continued to 300 meters. Plate 8 shows the horizontal gradient of the Complete Bouguer Anomaly at a reduction density of $2.50 \mathrm{gm} / \mathrm{cc}$ upward continued to 300 meters. Plate 9 shows the horizontal gradient of the Complete Bouguer Anomaly at a reduction density of $2.60 \mathrm{gm} / \mathrm{cc}$ upward continued to 300 meters. These plates are also included as page-size plots in Appendix A and as Arcview ${ }^{\text {TM }}$ tiff files on the Data DVD-ROM.

Digital data files are included on a DVD-ROM. A description of the DVD contents can be found in Appendix I.

## SAFETY AND ENVIRONMENTAL ISSUES

No health, safety incidents or accidents occurred during the course of this survey. No environmental damage was sustained as a result of the survey progress. Vehicle travel was limited to existing roads during this survey.

Respectfully submitted,


Grady Pearce
Geophysicist
Zonge Geosciences, Inc.

## REFERENCES

Cogbill, A.H., 1990, Gravity terrain corrections calculated using digital elevation models: Geophysics, 55, 102-106.

Hinze, W.J., 1990, The role of gravity and magnetic methods in engineering and environmental studies. In, Ward, S. H., ed. Geotechnical and Environmental Geophysics, Society of Exploration Geophysicists, Investigations in Geophysics, 5, 75-126

LaFehr, T.R., 1991a, An exact solution for the gravity curvature (Bullard B) correction: Geophysics, 56. 1179-1184.

Plouff, D., 1966, Digital terrain corrections based upon geographic coordinates (abstract): Geophysics, 31, 1208.

## APPENDIX A. PLATES AS FIGURES











## APPENDIX B. GRAVITY METER SPECIFICATIONS

| Range | 7000 milligal |
| :--- | :--- |
| Accuracy | 0.04 milligals |
| Drift | 1 milligal per month or less |
| Repeatability | 0.01 milligal |
| Length | $7-3 / 4$ inches $(19.7 \mathrm{~cm})$ |
| Width | 7 inches $(17.8 \mathrm{~cm})$ |
| Height | $9-7 / 8$ inches $(25.1 \mathrm{~cm})$ |
| Weight | 7 pounds $(3.2 \mathrm{~kg})$ |
| Weight of suitable battery | 5 pounds $(2.3 \mathrm{~kg})$ |
| Weight of meter, battery, and case | 22 pounds $(10.0 \mathrm{~kg})$ |
|  |  |

LaCoste \& Romberg Model-G Gravity Meter Specifications

TABLE I


Nilligal Values for LaCoste \& Romberg, Inc. Niodel G Gravity Nieter $\because G-233$

| Counter | Value in Milligals | Factor for Interval | Counter Reading | Value in Nilligals | Factor for Interval |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 000 | 1.05537 |  |  |  |
| 100 | 105.54 | 1.05526 | 3600 | 3797.67 | 1.05585 |
| 200 | 211.06 | 1.05516 | 3700 | 3903.26 | 1.05590 |
| 300 | 316.58 | 1.05506 | 3800 | 4008.85 | 1.05595 |
| 400 | 422.09 | 1.05497 | 3900 | 4114.44 | 1.05598 |
| 500 | 527.58 | 1.05487 | 4000 | 4220.04 | 1.05602 |
| 600 | 633.07 | 1.05478 | 4100 | 4325.64 | 1.05604 |
| 700 | 738.55 | 1.05470 | 4200 | 4431.24 | 1.05606 |
| 800 | 844.02 | 1.05463 | 4300 | 4536.85 | 1.05609 |
| 900 | 949.48 | 1.05456 | 4400 | 4642.46 | 1.05612 |
| 1000 | 1054.94 | 1.05451 | 4500 | 4748.07 | 1.05614 |
| 1100 | 1160.39 | 1.05447 | 4600 | 4853.69 | 1.05616 |
| 1200 | 1265.83 | 1.05443 | 4700 | 4959.30 | 1.05618 |
| 1300 | 1371.23 | 1.05442 | 4800 | 5064.92 | 1.05618 |
| 1400 | 1476.72 | 1.05442 | 4900 | 5170.54 | 1.05616 |
| 1500 | 1582.16 | 1.05443 | 5000 | 5276.15 | 1.05612 |
| - 1600 | 1687.60 | 1.05445 | 5100 | 5381.77 | 1.05608 |
| 1700 | 1793.05 | 1.05447 | 5200 | 5487.37 | 1.05602 |
| 1800 | 1898.50 | 1.05452 | 5300 | 5592.98 | 1.05597 |
| 1900 | 2003.95 | 1.05457 | 5400 | 5698.57 | 1.05590 |
| 2000 | 2109.41 | 1.05463 | 5500 | 5804.16 | 1.05583 |
| 2100 | 2214.87 | 1.05468 | 5600 | 5909.75 | 1.05575 |
| 2200 | 2320.34 | 1.05475 | 5700 | 6015.32 | 1.05565 |
| 2300 | 2425.81 | 1.05482 | 5800 | 6120.89 | 1.05554 |
| 2400 | 2531.29 | 1.05488 | 5900 | 6226.44 | 1.05541 |
| 2500 | 2636.78 | 1.05496 | 6000 | 6331.98 | 1.05525 |
| 2600 | 2742.28 | 1.05504 | 6100 | 6437.51 | 1.05506 |
| 2700 | 2847:78 | 1.05512 | 6200 | 6543.01 | 1.05484 |
| 2800 | 2953.29 | 1.05518 | 6300 | 6648.50 | 1.05460 |
| 2900 | 3058.81 | 1.05526 | 6400 | 6753.96 | 1.05435 |
| 3000 | 3164.34 | 1.05534 | 6500 | 6859.39 | 1.05408 |
| 3100 | 3269.87 | 1.05542 | 6600 | 6964. 80 | 1.05380 |
| 3200 | 3375.41 | 1.05550 | 6700 | 7070.18 | 1.05352 |
| 3300 | 3480.56 | 1.05560 | 6800 | 7175.53 | 1.05320 |
| 3400 | 3586.52 | 1.05570 | 6900 | 7230.85 | 1.05290 |
| 3500 | 3692.09 | 1.05577 | 7000 | 7386.14 |  |

Note: Right hand whecl on counter indicates appro:inately 0.1 n illigal.
DTH
3-16-70

Meter reading conversion for LaCoste \& Romberg Model G, SN-233

TABLE 1
5

MILLIGAL VALUES FOR LACOSTE \& ROMBERG, INC. MODEL G GRAVITY METER AG- 735

| COUMTER READING; | VALUE IM | FACIOR FOR | COUNTER . | VALUE IN | FACTOR FOR |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MILLIGALS | INTERVAL | READING* | MILLigals | IMTERVAL |
|  |  |  |  |  |  |
| 000 | 000.90 | 1.01246 | 3600 | 3646.41 | 1.014174 |
| 100 | 101.25 | 1.01226 | + 3700 | 3747.05 | 1.01450 |
| 200 | 202.47 | 1.01213 | 3800 | 3849.30 | 1.014 .56 |
| 300 | 303.60 | 1.01204 | 3900 | 3950.76 | 1.01460 |
| 400 | 404.30 | 1.01199 | 4000 | 4052.22 | 1.01464 |
| 500 | 506.09 | 1.01196 | 4100 | 4153.68 | 1.01468 |
| 600 | 607.28 | 1.01196 | 4200 | 4255.15 | 1.01471 |
| 700 | 773.43 | 1.01193 | 4300 | 4.356 .152 | 1.01474 |
| 800 | $80 ก .63$ | 1.01201 | 4400 | 4458.10 | 1.01475 |
| 900 | 910.38 | 1.01206 | 4500 | 4559.57 | 1.01475 |
| 1000 | 1012.09 | 1.01212 | 4600 | 4661.05 | 1.01475 |
| 1100 | 1113.30 | 1.01213 | 4700 | 4762.52 | 1.01474 |
| 1200 | 1.14 .52 | 1.01224 | 4800 | 4364.00 | 1.01473 |
| 1300 | 1315.74 | 1.01231 | 4900 | 4965.47 | 1.01471 |
| 1400 | 1416.97 | $1 \because 01239$ | 5000 | 5066.94 | 1.01468 |
| 1500 | 1513.21 | 1.01247 | 5100 | 5163.41 | 1.01463 |
| 1600 | 1619.46 | 1.01257 | 5200 | 5269.37 | 1.01459 |
| 1700 | 1720.71 | 1.0 .266 | 5300 | 5371.33 | 1.01451 |
| 1800 | 1321.98 | 1.01274 | 5400 | 5472.78 | 1.01441 |
| 1900 | 1923.25 | 1.01283 | 5500 | 5574.22 | 1.01430 |
| 2000 | 2024.54 | 1.01292 | 5600 | 5675.65 | 1.01417 |
| 2100 | 2125.33 | 1.01302 | 5700 | 5777.07 | 1.01402 |
| 2200 | 2227.13 | . 1.01311 | 5800 | 5873.47 | 1.01386 |
| 2300 | 2329. 14 | 1.01321 | 5900 | 5979.36 | 1.01 .369 |
| 24.00 | 242?.76 | 1.01332 | 6000 | 6081.23 | 1.01351 |
| $250 n$ | 2.531.09 | 1.01343 | 6100 | 6182.58 | 1.01331 |
| 2607 | 26.32.14 | 1.01354 | 6200 | 6283.91 | 1.01311 |
| 27n | 2733.70 | $1.0136 \%$ | 6300 | 6385.22 | 1.01291 |
| 2900 | 2335.16 | 1.01 .375 | 6400 | 6, 86.51 | 1.01269 |
| 2007 | 2976.53 | 1.01334 | 6500 | 6587.78 | 1.0121 .4 |
| 30 nn | 3037.91 | 1.01394 | 6600 | 6689.02 | 1.01219 |
| $310 n$ | 31.3 . 31 | 1.01403 | 6700 | 6790.24 | 1.011 ? |
| 3200 | 3.917. 71 | 1.01412 | 6800 | 6391.43 | 1.01157 |
| 33 n | 334?. 12 | 1.71421 | 6900 | 6992.59 | 1.01118 |
| 3470 | $341.3 .54$ | $1.01120$ | 7000 | 7093.71 |  |
| $350 n$ | 3544.77 | 1.01437 |  |  |  |
| * Slote: Right-hand wheel on counter indicates approxinately 0.1 milligal. |  |  |  |  |  |
| ${ }_{\text {cjl: }}^{2-29-34}$ |  |  |  |  |  |

Meter reading conversion for LaCoste \& Romberg Model G, SN-735

## APPENDIX C. GPS/GLONASS RECEIVER SPECIFICATIONS

## Leica Geosystems Viva GS15 survey receiver

| GNSS technology | Leica patented SmartTrack+ technology: <br> - Advanced measurement engine <br> - Jamming resistant measurements <br> - High precision pulse aperture multipath correlator for pseudorange measurements <br> - Excellent low elevation tracking <br> - Very low noise GNSS carrier phase measurements with $<0.5 \mathrm{~mm}$ precision <br> - Minimum acquisition time |
| :---: | :---: |
| No. of channels | 120 channels |
| Max. simultaneous tracked satellites | Up to 60 Satellites simultaneously on two frequencies |
| Satellite signals tracking | - GPS: L1, L2, L2C, L5 <br> - GLONASS: L1, L2 <br> - Galileo (Test): GIOVE-A, GIOVE-B <br> - Galileo: E1, E5a, E5b, Alt-BOC <br> - Compass1 <br> - SBAS: WAAS, EGNOS, GAGAN, MSAS |
| GNSS measurements | Fully independent code and phase measurements of all frequencies <br> - GPS: carrier phase full wave length, Code (C/A, P, C Code) <br> - GLONASS: carrier phase full wave length, Code (C/A, P narrow Code) <br> - Galileo: carrier phase full wave length, Code |
| Reacquisition time | $<1 \mathrm{sec}$ |
| Accuracy (rms) Code differential with DGPS / RTCM |  |
| DGPS / RTCM | Typically 25 cm (rms) |
| Accuracy (rms) with Real-Time (RTK) |  |
| Standard of compliance | Compliance with ISO17123-8 |
| Rapid static (phase) <br> Static mode after initialization | Horizontal: $5 \mathrm{~mm}+0.5 \mathrm{ppm}$ ( rms ) <br> Vertical: $10 \mathrm{~mm}+0.5 \mathrm{ppm}$ (rms) |
| Kinematic (phase) <br> Moving mode after initialization | Horizontal: $10 \mathrm{~mm}+1 \mathrm{ppm}$ (rms) <br> Vertical: $20 \mathrm{~mm}+1 \mathrm{ppm}(\mathrm{rms})$ |
| Accuracy (rms) with Post Processing |  |
| Static (phase) with long observations | Horizontal: $3 \mathrm{~mm}+0.5 \mathrm{ppm}$ (rms) <br> Vertical: $6 \mathrm{~mm}+0.5 \mathrm{ppm}(\mathrm{rms})$ |
| Static and rapid static (phase) | Horizontal: $5 \mathrm{~mm}+0.5 \mathrm{ppm}$ (rms) <br> Vertical: $10 \mathrm{~mm}+0.5 \mathrm{ppm}$ (rms) |
| Kinematic (phase) | Horizontal: $10 \mathrm{~mm}+1 \mathrm{ppm}$ (rms) <br> Vertical: $20 \mathrm{~mm}+1 \mathrm{ppm}(\mathrm{rms})$ |


| On the Fly (OTF) Initialization |  |
| :--- | :--- |
| RTK technology | Leica SmartCheck+ technology |
| Reliability of OTF initialization | Better than 99,99\% |
| Time for initalization | Typically 8 sec |
| OTF range | up to 50 km |
| Network RTK |  |
| NetWork technology | Leica SmartRTK technology |
| Supported RTK network solutions | VRS, FKP, iMAX |
| Supported RTK network standards | MAC (Master Auxiliary Concept) approved by RTCM SC 104 |

## APPENDIX D. GPS BASE DESCRIPTIONS



## APPENDIX D: GPS BASE DESCRIPTIONS (CONTINUED)



## APPENDIX D: GPS BASE DESCRIPTIONS (CONTINUED)

```
    PB0670'STATIONS MARKS ARE STANDARD DISKS STAMPED CAREY 1971, THE SURFACE
    PB0670'STATION MARK IS SET IN THE TOP OF A 12-INCH CYLINDRICAL CONCRETE
    PB0670'MONUMENT, THAT PROJECTS 2 INCHES. IT IS 90.0 FEET WEST OF THE
    PB0670'APPROXIMATE CENTER OF GRAVELLED ROAD, 82.9 FEET WEST OF A POWER
    PB0670'LINE POLE, 30.0 FEET NORTH OF A PINE TREE WITH TRIANGLE BLAZE,
    PB0670'11.0 FEET EAST OF A NORTH-SOUTH FENCE LINE AND 10.5 FEET EAST OF
    PB0670'A METAL WITNESS POST WITH SIGN. THE UNDERGROUND STATION MARK
    PB0670'IS SET 42 INCHES BELOW THE GROUND SURFACE.
    PB0670'
    PB0670'REFERENCE MARK 1 IS A STANDARD DISK STAMPED CAREY NO 1 1971, SET
    PBO670'IN THE TOP OF A 12-INCH CYLINDRICAL CONCRETE MONUMENT, THAT
PROJECTS
    PB0670'8 INCHES. IT IS 91.0 FEET EAST OF THE FENCE, 92.0 FEET NORTHEAST
    PB0670'OF THE PINE TREE WITH TRIANGLE BLAZE, 90.5 FEET EAST OF THE
    PB0670'WITNESS POST, 27 FEET WEST OF THE APPROXIMATE CENTER OF THE
    PB0670'GRAVELLED ROAD, 1.7 FEET WEST OF A POWER LINE POLE AND IT IS
    PB0670'ABOUT THE SAME IN ELEVATION AS THE STATION.
    PB0670'
    PB0670'REFERENCE MARK 2 IS A STANDARD DISK STAMPED CAREY NO 2 1971, SET
    PBO670'IN THE TOP OF A 12-INCH CYLINDRICAL CONCRETE MONUMENT, THAT
PROJECTS
    PB0670'4 INCHES. IT IS 178 FEET WEST OF THE APPROXIMATE CENTER OF THE
    PB0670'GRAVELLED ROAD, 52.0 FEET EAST OF THE FENCE, 72.0 FEET SOUTHEAST
    PB0670'OF THE PINE TREE WITH TRIANGLE BLAZE AND IT IS ABOUT THE SAME IN
    PB0670'ELEVATION AS THE STATION.
    PB0670'
    PB0670'B M T 315 USGS IS A BRONZE DISK OF THE U.S. GEOLOGICAL SURVEY
    PB0670'STAMPED 4215.910 T 315 1927, CEMENTED IN A DRILL HOLE IN THE TOP
    PB0670'AND NEAR THE CENTER OF A CONCRETE CULVERT ON THE EAST SIDE OF
    PB0670'RAILROAD TRACKS. IT IS 72 FEET NORTH OF THE APPROXIMATE CENTER
    PB0670'OF A BLADED ROAD, 113.0 FEET WEST OF THE PAINTED CENTERLINE OF
    PB0670'U.S. HIGHWAY 97 AND 15.3 FEET EAST OF THE EAST RAIL OF RAILROAD
    PB0670'TRACKS.
    PB0670'
    PB0670'HEIGHT OF LIGHT ABOVE STATION MARK 36.3 METERS.
    PB0670
        PB0670 STATION RECOVERY (2005)
    PB0670
    PB0670'RECOVERY NOTE BY GEOCACHING 2005 (JLH)
    PB0670'STATION DISK, RM1, RM2 AND B M T (PB0231) ALL FOUND IN GOOD
CONDITION.
    PB0670'BLAZED TREE IN EARLIER DISCRIPTION SEARCHED FOR BUT NOT FOUND.
```


## APPENDIX D: GPS BASE DESCRIPTIONS (CONTINUED)

FILE: 20002890.100000099837
2005 NOTE: The IGS precise and IGS rapid orbits were not available
2005 at processing time. The IGS ultra-rapid orbit was/will be used to
2005
2005

2005
NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values.
For additional information: http://www.ngs.noaa.gov/OPUS/about.html\#accuracy

| USER: zonge.us | DATE: October 16, 2010 |
| ---: | :--- | ---: | :--- |
| RINEX FILE: $2000289 p .100$ | TIME: 23:31:58 UTC |


| X: | -2392364.464 (m) |  | 0.072 (m) | -2392365.254 (m) | 0.072 (m) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Y: | -3952588.735 (m) |  | 0.043 (m) | $-3952587.497(\mathrm{~m})$$4385386.221(\mathrm{~m})$ | 0.043 (m) |
| Z: | 4385386.195 (m) |  | 0.072 (m) |  | 0.072 (m) |
| LAT: | 434154 | 54.41140 | 0.020 (m) | 434154.42656 | 0.020 (m) |
| E LON: | 2384853 | 53.78093 | 0.072 (m) | 2384853.72214 | 0.072 (m) |
| W LON: | 121116 | 6.21907 | 0.072 (m) | 121116.27786 | 0.072 (m) |
| EL HGT: |  | 2109.531 (m) | 0.084 (m) | 2109.079 (m) | 0.084 (m) |
| ORTHO HGT: |  | 2129.679 (m) | 0.143 (m) | [NAVD88 (Computed using | GEOID09) ] |
|  | UTM COORDINATES |  |  | STATE PLANE COORDINATES |  |
|  | UTM (Zone 10) |  |  | SPC (3602 OR S) |  |
| Northing (Y) | [meters] 4839981.498 |  |  | 225925.388 |  |
| Easting (X) | [meters] | 646247.243 |  | 1444780.427 |  |
| Convergence | [degrees] | 1.25409555 |  | -0.46868257 |  |
| Point Scale |  | 0.99986308 |  | 0.99993734 |  |
| Combined Fac | tor | 0.99953244 |  | 0.99960667 |  |

US NATIONAL GRID DESIGNATOR: 10TFP4624739981 (NAD 83)

| BASE STATIONS USED |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PID | DESIGNATION | LATITUDE | LONGITUDE | DISTANCE (m) |
| DE6236 | LPSB LANE CNTY COOP CORS ARP | N440304.406 | W1230524.250 | 158083.8 |
| DG5352 | STAY STAYTON COOP CORS ARP | N444950.530 | W1224915.036 | 181383.3 |
| DG8527 | ORS1 SENECA 1 CORS ARP | N440951.272 | W1190331.461 | 178451.1 |
|  | NEAREST NGS PUBLISHED | ROL POINT |  |  |
| PB0 697 | PAULINA PEAK LOOKOUT HOUSE | N434121.087 | W1211517.470 | 5711.2 |

This position and the above vector components were computed without any knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

## APPENDIX E. GRAVITY BASE DESCRIPTION



Oakridge, Oregon, at City Hall, on the concrete base of the flagpole.
Station is located in Oakridg, Oregon, at the City Hall at the SE corner of the intersection oi list and Ash Streets. (1)


REFERENCE SOURCE
(1) 03682

AC FAR $\operatorname{FOR}_{9} 8342 / 60.11$
PREVIOUS EDITIONS WILL BE USED


PAGE 32

| Base | WGS84 | WGS84 | NAD83_z10 | NAD83_z10 | WGS 84 | NAVD 88 | Absolute |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station | Latitude | Longitude | UTM_East | UTM_North | Ellipsoid <br> Height ( $\mathbf{m}$ ) | Elevation <br> $(\mathbf{m})$ | Gravity <br> (mgal) |
| 1000 | 43.797488 | 121.248691 | 640887.28 | 4850871.21 | 1846.659 | 1866.926 | 980000.932 |
| 2000 | 43.698448 | 121.185069 | 646247.24 | 4839981.5 | 2109.531 | 2129.679 | 979933.712 |
| 3000 | 43.757362 | 121.328768 | 634535.22 | 4846281.33 | 1611.165 | 1631.557 | 980049.432 |

Gravity Base Station Descriptions

## APPENDIX F. LOOP CLOSURES

| Date | Base | Meter | Loop \# | Duration | Closure (mG) | $\begin{gathered} \text { Abs_Closure } \\ (\mathrm{mG}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10/11/2010 | Carey | G233 | 1 | 4:13 | 0.010 | 0.010 |
| 10/13/2010 | Carey | G233 | 1 | 8:53 | -0.033 | 0.033 |
| 10/14/2010 | Carey | G233 | 1 | 9:00 | 0.008 | 0.008 |
| 10/15/2010 | Carey | G233 | 1 | 9:26 | -0.001 | 0.001 |
| 10/16/2010 | Carey | G233 | 1 | 8:40 | 0.017 | 0.017 |
| 10/17/2010 | Carey | G233 | 1 | 8:50 | 0.010 | 0.010 |
| 10/18/2010 | Carey | G233 | 1 | 10:56 | 0.026 | 0.026 |
| 10/19/2010 | 2000 | G233 | 1 | 8:48 | -0.008 | 0.008 |
| 10/20/2010 | Carey | G233 | 1 | 9:23 | -0.006 | 0.006 |
| 10/21/2010 | Carey | G233 | 1 | 9:54 | -0.013 | 0.013 |
| 10/22/2010 | Carey | G233 | 1 | 9:52 | -0.019 | 0.019 |
| 10/23/2010 | 1000 | G233 | 1 | 9:07 | -0.022 | 0.022 |
| 10/30/2010 | Carey | G233 | 1 | 1:05 | -0.032 | 0.032 |
| 11/14/2010 | 1000 | G735 | 1 | 7:38 | -0.021 | 0.021 |
| 11/15/2010 | 1000 | G735 | 1 | 7:44 | -0.009 | 0.009 |
| 11/16/2010 | 1000 | G735 | 1 | 7:54 | -0.001 | 0.001 |
| 11/17/2010 | 1000 | G735 | 1 | 8:46 | 0.042 | 0.042 |
|  |  |  |  | Average Closure |  | 0.016 |

## APPENDIX G. GRAVITY AND GPS REPEATS

| Stn | UTM83210_E | UTM83210_N | Elev_NAVD88 | Time | Date | Obs_Gravity | Meter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 551 | 632481.80 | 4839805.97 | 1516.28 | 10:16:00 AM | 13-Oct | 980068.58 | G233 |
| 90551 | 632481.55 | 4839805.92 | 1516.32 | 11:49:01 AM | 13-Oct | 980068.56 | G233 |
| Diff | 0.25 | 0.05 | -0.04 |  |  | 0.02 |  |
| 580 | 631546.05 | 4834173.41 | 1466.55 | 2:34:31 PM | 13-Oct | 980070.08 | G233 |
| 90580 | 631546.46 | 4834173.53 | 1467.00 | 3:55:13 PM | 14-Oct | 980070.10 | G233 |
| Diff | -0.41 | -0.12 | -0.45 |  |  | -0.03 |  |
| 581 | 630513.15 | 4833886.60 | 1447.92 | 2:54:07 PM | 13-Oct | 980073.68 | G233 |
| 90581 | 630513.11 | 4833886.59 | 1447.90 | 4:19:24 PM | 14-Oct | 980073.69 | G233 |
| Diff | 0.04 | 0.01 | 0.02 |  |  | -0.02 |  |
| 649 | 636660.71 | 4834636.43 | 1640.76 | 3:01:50 PM | 14-Oct | 980031.21 | G233 |
| 90649 | 636660.59 | 4834636.94 | 1640.26 | 4:15:58 PM | 15-Oct | 980031.21 | G233 |
| Diff | 0.12 | -0.51 | 0.50 |  |  | 0.01 |  |
| 696 | 636114.27 | 4833729.27 | 1611.42 | 2:44:40 PM | 14-Oct | 980037.00 | G233 |
| 90696 | 636108.90 | 4833730.10 | 1611.58 | 2:28:46 PM | 15-Oct | 980036.95 | G233 |
| Diff | 5.37 | -0.83 | -0.16 |  |  | 0.05 |  |
| 676 | 641124.69 | 4833953.34 | 1788.45 | 11:49:33 AM | 15-Oct | 980001.95 | G233 |
| 90676 | 641123.46 | 4833953.22 | 1788.44 | 10:48:35 AM | 16-Oct | 980001.94 | G233 |
| Diff | 1.23 | 0.12 | 0.00 |  |  | 0.01 |  |
| 719 | 645783.77 | 4840257.56 | 2137.20 | 8:32:24 AM | 16-Oct | 979932.71 | G233 |
| 90719 | 645783.82 | 4840257.59 | 2137.22 | 8:08:42 AM | 17-Oct | 979932.72 | G233 |
| Diff | -0.05 | -0.03 | -0.02 |  |  | -0.01 |  |
| 744 | 645777.34 | 4836891.42 | 1955.35 | 9:12:36 AM | 16-Oct | 979966.82 | G233 |
| 90744 | 645777.42 | 4836891.42 | 1955.32 | 8:20:24 AM | 17-Oct | 979966.80 | G233 |
| Diff | -0.08 | 0.00 | 0.03 |  |  | 0.02 |  |
| 748 | 643669.64 | 4835277.51 | 1913.52 | 9:55:02 AM | 16-Oct | 979974.27 | G233 |
| 90748 | 643670.11 | 4835277.57 | 1913.09 | 11:58:19 AM | 18-Oct | 979974.26 | G233 |
| Diff | -0.47 | -0.06 | 0.43 |  |  | 0.01 |  |

## APPENDIX G. GRAVITY AND GPS REPEATS (CONTINUED)

| Stn | UTM83210_E | UTM83210_N | Elev_NAVD88 | Time | Date | Obs_Gravity | Meter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 798 | 643304.15 | 4834275.27 | 1903.31 | 2:35:24 PM | 17-Oct | 979971.93 | G233 |
| 90798 | 643304.14 | 4834275.29 | 1903.32 | 11:44:12 AM | 18-Oct | 979971.90 | G233 |
| Diff | 0.01 | -0.02 | -0.01 |  |  | 0.03 |  |
| 752 | 643796.85 | 4834201.66 | 1865.40 | 11:17:32 AM | 18-Oct | 979981.70 | G233 |
| 90752 | 643796.19 | 4834201.80 | 1865.44 | 9:32:30 AM | 19-Oct | 979981.68 | G233 |
| Diff | 0.66 | -0.14 | -0.03 |  |  | 0.02 |  |
| 768 | 649030.93 | 4834222.52 | 1800.11 | 12:45:29 PM | 18-Oct | 979992.46 | G233 |
| 90768 | 649030.91 | 4834222.51 | 1800.11 | 2:21:13 PM | 19-Oct | 979992.45 | G233 |
| Diff | 0.02 | 0.01 | 0.01 |  |  | 0.01 |  |
| 783 | 645192.58 | 4832307.58 | 1837.33 | 4:14:47 PM | 18-Oct | 979984.48 | G233 |
| 90783 | 645192.56 | 4832307.61 | 1837.28 | 12:45:50 PM | 19-Oct | 979984.45 | G233 |
| Diff | 0.02 | -0.03 | 0.05 |  |  | 0.03 |  |
| 785 | 645318.29 | 4831680.25 | 1809.38 | 4:29:51 PM | 18-Oct | 979990.15 | G233 |
| 90785 | 645319.85 | 4831680.33 | 1809.02 | 12:28:36 PM | 19-Oct | 979990.14 | G233 |
| Diff | -1.56 | -0.08 | 0.36 |  |  | 0.01 |  |
| 496 | 635334.32 | 4848069.51 | 1591.45 | 9:08:34 AM | 20-Oct | 980058.66 | G233 |
| 90496 | 635334.34 | 4848069.51 | 1591.41 | 1:21:00 PM | 21-Oct | 980058.58 | G233 |
| Diff | -0.02 | 0.00 | 0.03 |  |  | 0.08 |  |
| 499 | 635265.88 | 4847680.60 | 1586.42 | 8:57:00 AM | 20-Oct | 980059.16 | G233 |
| 90499 | 635265.14 | 4847681.22 | 1585.69 | 10:54:07 AM | 21-Oct | 980059.14 | G233 |
| Diff | 0.74 | -0.62 | 0.73 |  |  | 0.02 |  |
| 503 | 634851.50 | 4846870.90 | 1610.48 | 8:37:29 AM | 20-Oct | 980053.57 | G233 |
| 90503 | 634850.55 | 4846871.19 | 1610.15 | 10:39:34 AM | 21-Oct | 980053.53 | G233 |
| Diff | 0.95 | -0.29 | 0.33 |  |  | 0.04 |  |
| 495 | 634875.41 | 4847733.15 | 1572.84 | 2:53:01 PM | 21-Oct | 980063.06 | G233 |
| 90495 | 634875.42 | 4847733.15 | 1572.85 | 10:13:33 AM | 22-Oct | 980063.05 | G233 |
| Diff | -0.01 | 0.00 | -0.01 |  |  | 0.01 |  |

PAGE 35

## APPENDIX G. GRAVITY AND GPS REPEATS (CONTINUED)

| Stn | UTM83Z10_E | UTM83210_N | Elev_NAVD88 | Time | Date | Obs_Gravity | Meter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 493 | 634228.42 | 4847381.17 | 1574.20 | 3:03:02 PM | 21-Oct | 980061.04 | G233 |
| 90493 | 634229.87 | 4847380.81 | 1573.74 | 10:24:26 AM | 22-Oct | 980061.03 | G233 |
| Diff | -1.45 | 0.36 | 0.46 |  |  | 0.01 |  |
| 439 | 641130.73 | 4850600.28 | 1871.09 | 1:50:51 PM | 22-Oct | 980000.07 | G233 |
| 90439 | 641130.72 | 4850600.17 | 1871.09 | 8:23:22 AM | 23-Oct | 980000.03 | G233 |
| Diff | 0.01 | 0.11 | 0.00 |  |  | 0.04 |  |
| 538 | 649932.17 | 4842471.54 | 1922.94 | 4:40:07 PM | 19-Oct | 979978.57 | G233 |
| 90538 | 649932.31 | 4842471.44 | 1923.08 | 11:22:10 AM | 23-Oct | 979978.58 | G233 |
| Diff | -0.14 | 0.10 | -0.14 |  |  | -0.01 |  |
| 493 | 634228.42 | 4847381.17 | 1574.20 | 3:03:02 PM | 21-Oct | 980061.04 | G233 |
| 90493 | 634229.87 | 4847380.81 | 1573.74 | 10:24:26 AM | 22-Oct | 980061.03 | G233 |
| Diff | -1.45 | 0.36 | 0.46 |  |  | 0.01 |  |
| 495 | 634875.41 | 4847733.15 | 1572.84 | 2:53:01 PM | 21-Oct | 980063.06 | G233 |
| 90495 | 634875.42 | 4847733.15 | 1572.85 | 10:13:33 AM | 22-Oct | 980063.05 | G233 |
| Diff | -0.01 | 0.00 | -0.01 |  |  | 0.01 |  |
| 970 | 643187.82 | 4854380.65 | 1767.40 | 2:00:19 PM | 14-Nov | 980021.96 | G735 |
| 90970 | 643187.70 | 4854381.21 | 1766.24 | 8:10:41 AM | 15-Nov | 980021.99 | G735 |
| Diff | 0.12 | -0.56 | 1.16 |  |  | -0.03 |  |
| 981 | 646207.04 | 4854196.06 | 1680.72 | 1:17:49 PM | 14-Nov | 980037.99 | G735 |
| 90981 | 646207.09 | 4854196.16 | 1680.75 | 8:29:39 AM | 15-Nov | 980038.01 | G735 |
| Diff | -0.05 | -0.10 | -0.03 |  |  | -0.03 |  |
| 90419 | 640941.05 | 4853828.85 | 1768.06 | 2:29:02 PM | 14-Nov | 980019.63 | G735 |
| 91419 | 640941.09 | 4853828.85 | 1768.08 | 7:59:29 AM | 15-Nov | 980019.63 | G735 |
| Diff | -0.04 | 0.00 | -0.02 |  |  | -0.01 |  |
| 466 | 641427.27 | 4849953.55 | 1898.80 | 2:02:16 PM | 22-Oct | 979994.01 | G233 |
| 90466 | 641427.29 | 4849953.55 | 1898.45 | 12:11:33 PM | 16-Nov | 979993.99 | G735 |
| Diff | -0.02 | 0.00 | 0.36 |  |  | 0.01 |  |
|  |  |  |  |  |  |  |  |

## APPENDIX G. GRAVITY AND GPS REPEATS (CONTINUED)

| Stn | UTM83Z10_E | UTM83Z10_N | Elev_NAVD88 | Time | Date | Obs_Gravity | Meter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1028 | 643989.50 | 4849022.09 | 1965.02 | $1: 53: 32 \mathrm{PM}$ | 16-Nov | 979977.77 | G735 |
| 91028 | 643989.79 | 4849021.76 | 1964.88 | $7: 40: 52 \mathrm{AM}$ | 17-Nov | 979977.74 | G735 |
| Diff | -0.29 | 0.33 | 0.13 |  |  | 0.03 |  |
|  |  |  |  |  |  |  |  |
| 1031 | 644198.33 | 4848006.25 | 2041.65 | $2: 32: 25 \mathrm{PM}$ | 16-Nov | 979962.04 | G735 |
| 91031 | 644198.33 | 4848006.22 | 2041.66 | $8: 02: 06 \mathrm{AM}$ | 17-Nov | 979962.02 | G735 |
| Diff | 0.00 | 0.03 | -0.01 |  |  | 0.02 |  |
|  |  |  |  |  |  |  |  |


| Repeats Between Project Numbers 10016 and 10194 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 441 | 644676.63 | 4852101.73 | 1770.79 | $3: 03: 57$ PM | 22-Oct | 980017.39 | G233 |  |
| 90441 | 644676.57 | 4852101.73 | 1770.83 | $10: 48: 20$ AM | 14-Nov | 980017.45 | G735 |  |
| Diff | 0.06 | 0.00 | -0.04 |  |  | -0.06 |  |  |
|  |  |  |  |  |  |  |  |  |
| 90419 | 640941.05 | 4853828.85 | 1768.06 | $2: 29: 02 \mathrm{PM}$ | $14-\mathrm{Nov}$ | 980019.63 | G735 |  |
| 91419 | 640941.09 | 4853828.85 | 1768.08 | $7: 59: 29 \mathrm{AM}$ | $15-\mathrm{Nov}$ | 980019.63 | G735 |  |
| Diff | -0.04 | 0.00 | -0.02 |  |  | -0.01 |  |  |
|  |  |  |  |  |  |  |  |  |

Repeats Between 2006 and 2010 Surveys

| 31 | 623408.52 | 4844127.33 | 1286.24 | $1: 03: 15 \mathrm{PM}$ | $17-$ Oct | 980107.18 | G 233 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90031 | 623408.48 | 4844127.34 | 1286.23 | $9: 53: 24 \mathrm{AM}$ | 30 -Oct | 980107.16 | G 233 |
| Diff | 0.04 | -0.01 | 0.01 |  |  | 0.02 |  |
|  |  |  |  |  |  |  |  |
| 4 | 627211.66 | 4842754.53 | 1316.62 | $7: 49: 55 \mathrm{AM}$ | $17-$-oct | 980106.75 | G 233 |
| 90004 | 627212.22 | 4842755.10 | 1316.64 | $10: 14: 43 \mathrm{AM}$ | $30-$ Oct | 980106.79 | G 233 |
| Diff | -0.56 | -0.57 | -0.02 |  |  | -0.04 |  |
|  |  |  |  |  |  |  |  |
| 1 | 623952.35 | 4845512.29 | 1282.46 | $7: 12: 40 \mathrm{AM}$ | $17-$ Oct | 980113.50 | G 233 |
| 90001 | 623952.30 | 4845512.29 | 1282.43 | $10: 31: 28 \mathrm{AM}$ | $30-$ Oct | 980113.50 | G 233 |
| Diff | 0.05 | 0.00 | 0.04 |  |  | 0.00 |  |

## APPENDIX H. DATA DISK CONTENTS

## Data

Newberry_Gravity.csv: Comma separated ASCII XYZ file containing gravity principal facts for this survey.

The following are columns included in this file.

| Stn: | Zonge 2006 Survey: 1-378, Zonge 2010 Survey: 400-799, Base <br> stations: 1000, 2000, 3000. Public domain stations: 8000-8327. <br> Ormat Nevada Survey: 901-1059 |
| :--- | :--- |
| Date: | Date |
| Time: | Local time (GMT-7) |
| WGS84_LatDD: | WGS84 Latitude decimal degrees |
| WGS84_LonDD: | WGS84 Longitude decimal degrees |
| NAD27Z10_E: | UTM Easting, Zone 10N, meters. NAD27 |
| NAD27Z10_N: | UTM Northing, Zone 10N, meters. NAD27 |
| NAD83Z10_E: | UTM Easting, Zone 10N, meters. NAD83 |
| NAD83Z10_N: | UTM Northing, Zone 10N, meters. NAD83 |
| WGS84_Ht: | WGS84 Ellipsoidal Height |
| Geoid_09: | Geoid 2009 |
| NAVD88: | Station elevation, meters. NAVD88 vertical datum |
| NGVD29: | Station elevation, meters. NGVD29 vertical datum |
| 3D_Qual: | Station position and height quality |
| STD_Ht: | Station height quality |
| Class: | RTK=Real-time Kinematic, PP=Post processed |
| Code_ID: | Point Code= Gravity |
| Reading: | L\&R G-735 and G-233 counter reading |
| Meter: | Meter serial number |
| Inst_ht: | Gravity meter height |
| Abs_Grav: | Observed Gravity, milligals |
| Free_Air: | Free Air gravity, milligals |
| Curv_C: | Bullard B curvature correction for a density of 1.00 gm/cc |
| TC_2m_16m: | Terrain corrections for 2m to 16.6m for a density of 1.00 gm/cc |
| gm/cc |  |

TC_16m_167Km: RasterTC terrain correction results for a density of $1.00 \mathrm{gm} / \mathrm{cc}$ SBA200, etc: Simple Bouguer Anomaly. Density: $2.00 \mathrm{gm} / \mathrm{cc}$ to $2.67 \mathrm{gm} / \mathrm{cc}$ CBA200, etc: Complete Bouguer Anomaly. Density:2.00 gm/cc to $2.67 \mathrm{gm} / \mathrm{cc}$

G233.sfc: Meter calibration file for Model-G serial number 233.
G735.sfc: Meter calibration file for Model-G serial number 735 .
MMDDYYYY.raw files: Daily raw instrument dump files. X, Y in NAD83 UTM Zone 12N.
Elevation in NAVD88 vertical datum.

## Plots

Digital images in Geosoft map ${ }^{1}$ and ArcView tiff file formats. Coordinates in NAD27, UTM Zone 10N, meters.

## Terrain Grids

WGS84LATLON_10m.grd: NED $1 / 3$ arc second digital terrain grid in Geosoft grid format to a radius of 20 km from the survey area.

WGS84LATLON_65m.grd: SRTM 2 arc second digital terrain grid in Geosoft grid format to a radius of 167 km from the survey area.

Horizontal datum: WGS84 Lat/Lon.
Vertical datum: NAVD88

## Report

Newberry_Grav_LR: Gravity data acquisition logistics report (this report) in Adobe PDF format.

[^0]
[^0]:    ${ }^{1}$ Requires Geosoft Oasis Montaj Viewer software. Free download available at: http://www.geosoft.com/downloads/index.asp

