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1. Abstract 

Three machine learning (ML) predictive models were developed for the prediction of vertical and two 

orthogonally oriented horizontal stresses in the Utah FORGE well 16A(78)-32. The ML models were 

trained using laboratory-based triaxial ultrasonic wave velocity (labTUV) data wherein wave velocities 

were measured with various combinations of true triaxial applied stress. The ultrasonic velocities data 

include compressional, fast shear, and slow shear velocities in each of three directions for a total of nine 

velocities for each stress combination. However, because the ultimate goal is to deploy the trained model 

for interpretation of field sonic log data where only the vertically-propagating waves are measured, the 

work here focuses on just the wave velocities with vertical (z-direction) propagation. Also, because vertical 

(overburden) is often well constrained, one approach explored here is to take the vertical stress also as 

known and train the model to predict the two horizontal stresses.  

Feed forward artificial neural network (FFNN) has been applied to build three data-driven ML predictive 

models for vertical and two horizontal stresses in the Granitoid formation from well 16A(78)-32. Prior to 

the execution of FFNN algorithm, the available data was thoroughly analyzed through exploratory data 

analysis (EDA) in order to understand the data distribution, relationship between input and output features, 

and to identify the relative importance of input features with respect to output. EDA was performed using 

different libraries of open-source software Python (ver:3.9.13) such as Pandas, Seaborn, Matplotlib, and 

SciPy executed on Spyder IDE (ver:5.2.2). The FFNN algorithm was implemented using Deep Learning 

Toolbox of MATLAB 2022 software and optimized by tuning different hyperparameters such as neurons 

count in hidden layers, training function, activation function, and realization count in order to obtain reliable 

and consistent prediction outcomes. The ML prediction model is converted to empirical mathematical 

correlation which can be used to estimate vertical and horizontal stresses provided that the same input 

variables and their ranges are used. All three developed ML models demonstrated reliable and consistent 

prediction performance for the vertical and two horizontal stresses in terms of low root means squared error 

(RMSE) and high coefficient of correlation (R). The first ML model for vertical stress (σz) exhibited the 

training (model building) and testing (validation) RMSE error of 3.1 and 3.5, respectively. The R value for 

training and testing was found to be 0.975 and 0.978 for the vertical stress (σz) model. In the case of the 

first horizontal stress (σx) model, the ‘R’ values were determined to be 0.965 and 0.923 for the testing and 

training results. The excellent model functioning was reflected by the low RMSE errors for testing (4.4) 

and training (6.3) prediction, respectively. Likewise, the second horizontal stress model (σy) demonstrated 

the ‘R’ value of 0.95 for testing and 0.934 for training prediction. The prediction RMSE errors were 

observed to be 4.2 and 4.8 for training and testing and training datasets, respectively. In summary, accuracy 

measures revealed excellent prediction performance of all three ML models for stress prediction. The 

proposed ML models were able to capture the stress variation trends for testing and validation dataset to 

provide reliable and robust stress prediction. An explicit mathematical correlation can be confidently 

applied for stress estimation using the same input variables and ranges for which the model was developed.  

2. Task and Milestone Description 

This report documents the task completion and technical accomplishments comprising achievement of 

Milestone 2.2.1, as per the project SOPO. The validation of milestone accomplishments is illustrated in 

Figures 14-18 demonstrating the key outcomes of the developed machine learning models for vertical and 

horizontal stresses.   

Milestone 2.2.1 – the task encompasses three data-driven machine learning (ML) models developed for 

the prediction of vertical and two orthogonally oriented horizontal stresses (x, y, and z-directions) in 

Granitoid Formation using the experimental dataset. The experimental data was generated using the core 
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samples of Granitoid Formation retrieved from the well 16A(78)-32. The detailed description about the 

experimental work was documented in Milestone report 2.1.1 of the project.  

The first ML model was developed for vertical stress ‘σz’ (z-direction) using three velocity components 

in vertical direction as input features including one compressional (P) and two shear (S) wave slownesses. 

Note that slowness is adopted here for convenience because field sonic logs report slowness, which is just 

the inverse of the velocity. There are two vertically-propagating S-wave slownesses corresponding to waves 

polarized in x and y directions, respectively.  

The second ML model was developed for horizontal stress in x-direction ‘σx’ using four input features 

including P-wave, fast S-wave, slow S-wave slowness, and stress in vertical direction. The third model was 

built for horizontal stress in y-direction ‘σy’ using the same four input features, i.e., P-wave, fast S-wave, 

slow S-wave slowness, and stress in vertical direction. By considering both x- and y-directional stresses the 

validation of the trained model shows it is capable, in principle, of predicting both minimum and maximum 

horizontal stress magnitudes using field sonic logging data and overburden stress as constrained by 

integrating the density log. 

Three ML prediction models were developed using feed forward neural network (FFNN) technique. A 

total of 46 data points were utilized for the prediction modelling. Dataset was subjected to routine 

exploratory data analyses (EDA) techniques prior to the ML model execution such as statistical parameters, 

histograms, correlation coefficients using Pearson, Spearman, and Kendall criteria, violin plots, heat maps, 

and pair plots etc. While reflective of the chosen testing matrix rather than intrinsic rock properties, such a 

routine of quantifying descriptive statistics is nonetheless a part of good practice as it aids with selection of 

ML models and training strategies that are suited to the nature of the datasets.  

The models were trained using seventy percent (70) of the data points while testing and validation of 

model was performed on the remaining thirty percent (30) of the data points. The prediction performances 

of ML models were evaluated using root mean squared error (RMSE) and correlation coefficient ‘R’.  

This report begins with a description of the machine learning technique FFNN used for the prediction 

modelling of stresses. The FFNN model was trained using the Deep Learning Toolbox of MATLAB 

software (MATLAB 2022). Exploratory data analysis was performed using open-source software Python 

(ver:3.9.13) (Python software foundation, 2023) and program codes were run on IDE Spyder (ver:5.2.2) 

(Cerezo et al. 2023). Different libraries of Python software were utilized such as Pandas (McKinney et al. 

2023), Seaborn (Waskom and Seaborn, 2023), Matplotlib (Hunter and Droettboom, 2016), and SciPy (Jones 

et al. 2023) during the performance of EDA. Then, a comprehensive ML modelling workflow with each 

step is presented. The main findings of EDA are discussed for the given input and output features. A 

thorough illustration of the main features of FFNN model optimization and hyperparameter tuning are 

provided. Subsequently, models’ accuracy and prediction performance are discussed. The last section 

demonstrates the mathematical correlation development for the three FFNN prediction models. Finally, the 

key findings and important postulates are provided in conclusions.   

3. Artificial Neural Network (ANN) 

 Artificial neural network (ANN) is one of the extensively employed machine leaning methods for 

handling prediction issues, data mining, pattern recognition, and approximation (Mozaffari and Azad, 2014) 

24, 25. Although various types of ANN techniques are used, backpropagation and feedforward ANN 

algorithms are the most implemented for prediction and training (Chau, 2007). ANN uses various learning 

functions, networks and activation functions to provide the required prediction solution for the specified 

problem (Mohaghegh et al. 1994). 

 ANN solves the underlying problem through replicating the components and operations of the 

nervous system of human beings. Artificial neurons are components of an explicit architectural network 

that are chosen based on the specifications of the given engineering challenge (Ali, 1994). In order to 
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produce accurate, dependable, and consistent prediction outcomes, ANN establishes connections among 

the nonlinear variables using a massive collection of algorithms (Otchere, 2021). In general, feed-back 

neural networks (FBNN) and feed-forward neural networks (FFNN) are the two types of ANN that are 

widely used. FFNN is a basic and simplest ANN design that uses interconnected perceptron layers to build 

a forward-only, unidirectional process of transferring information. In order to identify a precise and 

pertinent output feature, the knowledge of input features is transmitted nonlinearly via activation function 

of hidden layers. The second variant, which has the same architectural qualities as FFNN with the extra 

feature of establishing a back loop, is equally accepted, and frequently used for ANN applications (Saggaf 

et al. 2003). The back loop feature of FBNN iteratively refines the predicted output feature by delivering 

error information to execute the algorithm again to modify the weights until accuracy measures (errors and 

correlation coefficients) can no longer be improved (Saikia, 2020). 

 Numerous interconnections were established through the specified routes for the interaction between 

the nodes of ANN structure. Each node of the hidden layer is assigned with specific weight to streamline 

the functionality of ANN structure (Hornik et al., 1989). During the training process, algorithms are fed 

with input features in the form of vectors. After the output errors are routed back, the weights between the 

nodes are finely adjusted using gradient descent. The process is kept repeating until the output errors are 

not further improved. The gradient descent uses the error function to update the weights between the nodes 

of ANN structure as shown in Eq. 1 (Avseth and Mukerji, 2002).  

ΔW(t) = ΔW(t − 1) ∗ α + ΔE ∗  η ∗ (t)   (Eq. 1) 

Where η, E, Δw, and α, demonstrate adjusted weights, output error, learning components, and momentum, 

respectively. 

There are various advantages of using ANN as compared to other supervised ML algorithms.  

1. It has the ability to handle the non-linearity and complexity association between input and output features.    

2. ANN functions with great efficiency while dealing with high dimensionality of the data.  

3. ANN can demonstrate the complicated classification groups and non-limiting functions that contain 

output and input features.  

4. Methodology – Modelling Approach 

4.1. Machine Learning Modelling Workflow 

 The ML workflow started with data collection, data cleaning and exploratory data analysis of 

experimental dataset to explore the data distribution, relationships, and relative importance of input features 

with respect to output features. Exploratory data analysis was performed using different libraries of open-

source software Python (ver:3.9.13) (Python software foundation, 2023) and program codes were executed 

on Spyder (ver:5.2.2) integrated development environment (Cerezo et al. 2023). The Pandas (ver:1.4.4) 

library of Python (McKinney, 2022) was used to extract the Microsoft Excel data and generate data frame 

on Python software. The Seaborn (ver:0.11.2) library was employed for generating the heat maps, pair 

plots, histogram, KDE, and violin plots (Waskom and Seaborn, 2023). All EDA plots were generated using 

the Matplotlib.pyplot module of Matplotlib (ver:3.5.2) library of Python (ver:3.9.13) software (Hunter and 

Droettboom, 2016). Statistical features and correlation coefficients (Pearson, Spearman, and Kendall) were 

determined using Scipy (ver:1.9.1) library (Jones et al. 2023). After EDA analysis, dataset is ready to be 

fed for ML modelling. All the Python libraries and IDE (Integrated Development Environment) collectively 

function under the Anaconda (ver:22.9.0) package (Anaconda Inc. 2023).   

 Subsequently, the FFNN type of ANN technique with the feature of back propagation was employed 

to develop prediction models for vertical and horizontal stresses in the Granitoid Formation. Training of 

model was performed using the Deep Learning Toolbox of MATLAB software (MATLAB, 2022). Grid 

search cross validation process was used for optimizing the hyperparameters in FFNN. The complete 

workflow adopted in this study is shown in Figure 1.  
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Figure 1: Modelling Workflow for this study 

4.2. Exploratory Data Analysis (EDA) 

 In this study, ultrasonic wave velocity (actually the inverse of the velocities, the P- and S-wave 

slownesses) and stress data were used to develop three machine learning (ML) prediction models for 

vertical stress (σz) and two orthogonally oriented horizontal stresses (σx and σy). The dataset was obtained 

from the true triaxial ultrasonic velocity (TUV) experiments on lower and upper granitoid formations with 

samples at 5474’ MD and 5850’ MD, respectively. See Bunger et al. (2023) for a detailed description of 

the labTUV experiments.  
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 Based on this available dataset, a total of 46 TUV data points were utilized that contain P-wave (hzz), 

and S-wave slowness (hzy and hzx), in z-direction under different combinations of applied stresses ‘σz’, 

‘σx’, and ‘σy’ in z, x, and y directions respectively (Figure 2). Note that throughout this report, each loading 

combination is designated an identifier, its “dataset number”. While the order of these does not have 

physical meaning, it is nonetheless sometimes useful for visualizing the span of the data to report data by 

this number.  

 The first ML model was developed to predict the vertical stress ‘σz’ using P and S-wave slowness ‘hzz,’, 

‘hzy’, and ‘hzx’ as inputs features. Note that throughout this report, slownesses (‘h’) are given two 

subscripts, where the first gives the propagation direction and the second gives the direction of particle 

motion. Hence, ‘hzz,’, ‘hzy’, and ‘hzx’ all describe waves propagating in the z-direction and indicate the P-

wave, the y-polarized S-wave, and the x-polarized S-wave, respectively. For the second ML model, four 

input features including ‘hzz,’, ‘hzy’, ‘hzx’ and ‘σz’ were utilized to predict the stress (σx) applied in x-

direction. The third ML model was developed using the same four input features (‘hzz,’, ‘hzy’, ‘hzx’ and 

‘σz’) for the prediction of stress ‘σy’ applied in y-direction. The total data points were split into two portions. 

The first portion (seventy percent) of the dataset was dedicated for model training while validation and 

testing of the trained model was performed using the second portion (remaining thirty percent) of the data 

points. Testing and training sets of data used for ‘σz’, ‘σx’, and ‘σy’ prediction models are presented in 

Figures 3-5, respectively. 

 Testing and training datasets were firstly subjected to exploratory data analysis (EDA) for the purpose 

of data cleaning (if necessary, although none was needed in this case), understanding the data distribution, 

relative importance, and relationships of input and output features. The EDA is essential for feature 

selection prior to the execution of ML algorithms to ultimately generate a robust prediction model. 

Important statistical parameters such as maximum, minimum, mode, mean, median, kurtosis, skewness, 

and standard deviation of input and output features are demonstrated in Table 1. The statistical indicators 

are reflective of the choices of testing matrix (load combinations) carried out in the lab, not of any intrinsic 

rock behavior. Visualization of data distribution for each feature is provided by the violin plots that 

expresses the data points in the form of kernel density estimation function (KDE). Violin plots are important 

to visualize the extreme values, inter quartile range (IQR), and arithmetic mean in the dataset as shown in 

Figure 5. Bimodal distribution of data can also be easily identified by visualizing violin plots as shown for 

‘hzy’ and ‘σx’ features (Figure 6).  

 
Figure 2:  Total Dataset used for all three ML prediction models. 
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Figure 3: Training and testing dataset used for vertical stress ‘σz’ prediction model. 

 

  

Figure 4: Training and testing dataset used for horizontal stress ‘σx’ prediction model. 

 

 

   

Figure 5: Training and testing dataset used for horizontal stress ‘σy’ prediction model. 
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Figure 6: Violin plots for input and output variables 

 Data distribution of all input and output features in the form of histogram is shown in Figure 7. 

Histogram revealed that P-wave slowness ‘hzz’ is positive (right) skewed indicating that most of the data 

points are clustered towards the left side of distribution reflecting non-symmetric distribution. A major 

portion of the ‘hzz’ dataset is clustered towards to the left side of the plot (values are lower than the mean 

values) that leads to the longer tail on right side of the distribution. The S-wave slowness ‘hzx’ and ‘hzy’ is 

not skewed or slightly negatively skewed indicating fairly symmetric distribution of data on both sides of 

the mean value. The majority of data points exist around the mean values of these input features. On the 

contrary, the stresses ‘σz’, ‘σx’, and ‘σy’ data is negative (left) skewed exhibiting majority of the dataset is 

larger than mean value with longer tail on left side. The distribution revealed that mean value is smaller 

than mode and median. Kurtosis of P-wave slowness is leptokurtic with heavier tailed and peaked 

distribution as reflected by higher positive value. Most of the data points lie in the tail of distribution instead 

of close proximity of the mean value. Other five input features such as S-wave slowness (hzx and hzy) and 

stress (σz, σx, and σy) data distribution reflect platykurtic distribution with lower and broader peaks. The 

tail of data distribution curve is lighter than normal distribution indicating minimum chances of outlier 

existence in the dataset. These features are lacking extreme values with flatter distribution around the mean 

value that reflects good data quality of data.  

 The relative importance of all the input features were explored using three criteria namely Pearson, 

Spearman, and Kendall correlation coefficients (R) as shown in Figure 8. For the first ML model, the input 

feature ‘hzz’ exhibited strong inverse correlation with output ‘σz’ while relatively weaker correlations were 

observed for the other two input features ‘hzy ’and ‘hzx’. On the other hand, horizontal stress ‘σx’ exhibited 

strong correlation with P-wave slowness ‘hzz’ and vertical stress ‘σz’. S-wave slowness ‘hzy’ and ‘hzx’ 

demonstrated weaker correlation with ‘σx’. For the case of other horizontal stress ‘σy’, three input features 

‘σz’, ‘hzy’ and ‘hzx’ demonstrated strong relationship and P-wave slowness ‘hzz’ reflected weaker 

relationship with ‘σy’.   

 The heat maps revealed the collinearity between the pairs of input and output variables as shown in 

Figure 9. Heat maps were generated using the Spearman, Pearson, and Kendall correlation criteria. 

Furthermore, pair plots among all the input and output variables demonstrated the inter-relationships 

between all the pairs of output and input features in a single plot (Figure 10). The velocity variations with 

stresses are more prominent for the Lower Granitoid Formation. It could be observed in the pair plots that 

P- and S-wave slowness have inverse relationship with vertical and horizontal stresses however, the impact 

is more pronounced for Lower Granitoid Formation compared to Upper Granitoid Formation. The diagonal 
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of pair plot represents the KDEs distribution of the variables. Pairs of slowness exhibited direct relationship 

between them. Pearson, Spearman, and Kendall's correlation criterion are provided in Eqs. 2–4, 

respectively. 

ρ𝑝𝑒𝑎𝑟𝑠𝑜𝑛 =
k ∑ xy −  (∑ x)(∑ y)

√k(∑ x2) − (∑ y)2 √k(∑ b2) − (∑ b)2
  (Eq. 2) 

Where y and x represent the respective variables, and number of samples are represented by k.  

ρ𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = ρ𝑝𝑒𝑎𝑟𝑠𝑜𝑛

cov(𝑥, 𝑦)

𝛾𝑥𝛾𝑦
  (Eq. 3) 

τ𝑘𝑒𝑛𝑑𝑎𝑙𝑙 =
𝑛𝑐 − 𝑛𝑑

𝑛(𝑛 − 1)
2⁄

 (Eq. 4) 

Where 𝑛𝑐 and 𝑛𝑑 represent the values of number of concordant and discordant pairs and total number of 

samples are represented by ‘n’. 

Table 1: Statistical indicators of dataset used in ML Modelling 

Statistical 

Parameters 

hzz 
(µs/ft) 

hzy 
(µs/ft) 

hzx 
(µs/ft) 

σz 
(MPa) 

σx 
(MPa) 

σy 
(MPa) 

Minimum 53.0 92.1 94.2 0.0 0.0 0.0 

Maximum 69.6 117.8 110.4 54.9 65.0 55.1 

Mean  55.4 101.4 102.2 41.2 38.3 32.4 

Mode 54.7 93.6 103.2 49.9 40.0 31.1 

Median 54.6 104.2 103.0 49.1 40.0 31.1 

St. Dev. 3.2 6.7 2.8 15.1 17.0 12.4 

Kurtosis 11.9 -1.0 2.8 2.0 0.1 1.3 

Skewness 3.4 0.0 -0.3 -1.8 -0.4 -1.0 

 

 

Figure 7: Histogram and KDE plots of input and output datasets 
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Figure 8: Coefficient of correlations of input variables with output showing relative importance. 

     

 

Figure 9: Heat maps showing the Pearson, Spearman and Kendall coefficient of correlations between input 

variables. 
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Figure 10: Pair plots showing cross plots between input and output features. 

4.3. Hyperparameter Tuning and Models Optimization  

 This study presented three robust machine learning models developed to predict the stresses in vertical 

(σz) and two horizontal directions (σx and σy) for the Granitoid Formation using fully connected Feed 

Forward Neural Network (FFNN) technique. The ML model was trained using ultrasonic wave velocities 

in z directions which were obtained from the TUV laboratory experiments.  

 The FFNN prediction model for stresses was optimized by improving the coefficient of correlation 

(R) and minimizing the prediction errors through different strategies of hyperparameter tuning. The data 

points were split in to two halves. The train test split function in the MATLAB software (MATLAB, 2022) 

were used to divide the data. The data splitting was an arbitrary occurrence. Data splitting was done in such 

a way that testing data contained the range of the input variables present in the training dataset. Seventy 

percent of the dataset was set aside for the model training and the remaining thirty percent was set aside for 

testing and validation. Seed function was used to regulate the random number generation for each run. ANN 

algorithm was run several times using numerous selected hyperparameters such as input features, neurons 

count in hidden layers, training functions, activation functions, and realizations count. The k-fold strategy 

was used to cross-validate the training process in order to avoid the overfitting of data.  
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 For all three stress prediction models, the FFNN algorithm was executed for different training 

functions such as resilient propagation, Levenberg-Marquardt, BFGS Quasi-Newton, Scaled Conjugate 

Gradient, and Fletcher-Powell Conjugate Gradient to optimize the prediction accuracy ((MATLAB, 2022)). 

Best prediction results were obtained with Levenberg-Marquardt training function for stresses σz, σx, and 

σy. The best activation function was found to be Tangent sigmoidal and linear functions that connect the 

hidden and input layers, and the output and hidden layers, respectively after executing the model using 

different activation functions such as tangent sigmoidal, logarithmic sigmoidal, soft max, linear, triangular 

basis activation functions (MATLAB, 2022). Optimization of neurons count in hidden layers was 

performed by executing the model algorithm at various neurons counts from 5 to 40 starts from lower 

numbers to higher (Opper and Haussler, 1996). A comparison of model performance at different number 

of neurons is demonstrated in Figure 11. The model accuracy was further improved by executing the model 

for 1000 realizations for the selected neurons count in the central hidden layer to catch the non-

distinctiveness of the data points (Zhang, 2022). The optimum prediction results were achieved at 9, 7, and 

9 number of neurons and 375, 678, and 260 realizations for stresses σz, σx, and σy, respectively exhibiting 

minimum errors and maximum coefficient of correlation (R). The best realization for the optimized neurons 

count is shown in Figure 13. 

4.4. Performance Measures  

 Two performance measures such as correlation coefficient (R), and root mean squared error (RMSE) 

were selected for evaluation of accuracy and consistency of the predicted output. The mathematical 

expression of RMSE is demonstrated in Eq. 5. The extent of accuracy was assessed from ‘R’ value between 

predicted and actual values.     

RMSE = √
∑ [𝛽𝑎−𝛽𝑝]2)𝑛

𝑖=1

𝑛
    (Eq. 5) 

Where; 𝛽𝑎 and 𝛽𝑝 are the predicted and actual values and total data counts are represented by ‘n’. 

5. Modelling Results  

 All three stress prediction models exhibited excellent performance in terms of low errors and high 

correlation coefficient (R). The topology of neuron structures for the three models are shown in Figure 12.  

 The developed FFNN models provided reliable and robust predicted vertical and horizontal stress 

values. The prediction performance of all three models FFNN ML model in terms of cross plots between 

predicted and experimental stress values are demonstrated in Figure 14. For the vertical stress ‘σz’ 

prediction model, the correlation coefficient (R) between predicted and experimentally determined stresses 

was observed as 0.978 and 0.975 for testing (unseen data) and training (model building) datasets, 

respectively. The model demonstrated excellent outcome with prediction error (RMSE) of 3.5 and 3.1 for 

testing and training prediction, respectively. The FFNN training and testing predictions of all three 

prediction models (‘σz’, ‘σx’, and ‘σy’) are also compared with experimental stress values demonstrating 

good agreement between them. For the horizontal stress ‘σx’ prediction model, the ‘R’ value between 

predicted and experimental data points was determined to be 0.965 and 0.923 for testing and training data 

points, respectively. The excellent model functioning was reflected by the low RMSE errors for testing 

(4.4) and training (6.3) prediction, respectively.  

 The second horizontal stress ‘σy’ prediction model resulted in reliable and steadfast predicted values of 

stress. The model demonstrated the correlation coefficient (R) of 0.95 for testing and 0.934 for training 

prediction results. The prediction error RMSE for the horizontal stress ‘σy’ was observed to be 4.8 and 4.2 

for testing and training data points, respectively, demonstrating the accuracy of model prediction. Hence, 

all three FFNN models for vertical and horizontal stresses prediction demonstrated accurate, reliable, and 

consistent prediction abilities as reflected by the excellent accuracy measures.  
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 Consequently, accuracy indicators revealed that developed three FFNN models can provide the reliable, 

robust and consistent prediction solution for vertical stress ‘σz’ as a function of ‘hzz’, ‘hzx’ and ‘hzy’ and 

two horizontal stresses (mutually perpendicular) as a function of ‘hzz’, ‘hzx’, ‘hzy’ and ‘σz’ for the given 

input and output features and respective ranges for which the model is trained.  

    

 
Figure 11: Models’ performance comparison for different number of neurons 

 

   

Figure 12: ANN topology showing neurons structure for: (A) ‘σz’, (B) ‘σx’, and (C) ‘σy’ prediction 

models. 
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Figure 13: RMSE comparison for selected 100 realizations at optimized number of neurons for ‘σz’, ‘σx’, 

‘σy’ models. 
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Figure 14: Training and testing prediction performance for ‘σz’, ‘σx’, and ‘σy’ for the proposed FFNN 

models 

The comparison between the predicted and experimental stress ‘σz’, ‘σx’, and ‘σy’ values revealed good 

harmony between them as shown in Figures 15-17. The models’ accuracy measures are compared for the 

proposed three stress ‘σz’, ‘σx’, and ‘σy’ prediction models and demonstrated in Figure 18. All three ML 

model exhibited excellent prediction performance as reflected by evaluation metrics. However, the highest 

accuracy was revealed by the vertical stress ‘σz’ prediction model with testing R and RMSE of 0.978 and 

3.5, respectively.     
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Figure 15: Comparison of testing and training predictions with experimental ‘σz’. 

 

 

 

Figure 16: Comparison of testing and training predictions with experimental ‘σx’. 
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Figure 17: Comparison of testing and training predictions with experimental ‘σy’. 

6. Mathematical Correlation Development 

 All three optimized FFNN prediction models were converted into empirical mathematical correlations 

for stress estimations in vertical and two horizontal directions. The mathematical model can be 

conveniently used for stress estimation without running ML codes. The mathematical correlation functions 

well with the extracted weights and biases of optimized FFNN model. Weights and biases for each 

optimized model are provided in Tables 2-4.  

6.1. Vertical Stress ‘σz’ Prediction Model 

 The mathematical expression of ML prediction model is given as below. 

 (𝜎𝑧)𝑁 = ∑ 𝑊𝑞𝑟𝑛ℎ𝑞 + 𝑏𝑟
𝐻𝑛
𝑞=1      (Eq. 6) 

𝑛ℎ𝑞 = 𝑓(∑ 𝑊𝑝𝑞𝑖𝑝 + 𝑏𝑞)
𝑁𝑝

𝑝=1       (Eq. 7) 

𝑛ℎ𝑞 = 𝑓 ((𝑊1𝑞(ℎ𝑧𝑧)𝑁 + 𝑊2𝑞(ℎ𝑧𝑦)
𝑁

+ 𝑊3𝑞(ℎ𝑧𝑥)𝑁 + 𝑏𝑞) (Eq. 8) 

f (x) = 
2

1+𝑒−2𝑥 − 1 = tanh(x) (Hyperbolic Tangent Sigmoidal Activation Function)  (Eq. 9) 

However, input features were normalized before the FFNN simulations (using Eq. 10).    

𝐼𝑛𝑝𝑢𝑡𝑠 (𝑖𝑝) =
(ψ𝑚𝑎𝑥−ψ𝑚𝑖𝑛)(𝑖−𝑖𝑚𝑖𝑛)

(𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛)
+ ψ𝑚𝑖𝑛    (Eq. 10) 

Where, ψ𝑚𝑎𝑥 and ψ𝑚𝑖𝑛 are 1 and -1 respectively. The maximum and minimum values of input features 

are provided in Table 1. After normalization process, input features are shown in Eq. 11-13.  

(ℎ𝑧𝑧)𝑁 = 0.118 ((ℎ𝑧𝑧) − 53.0) − 1    (Eq. 11) 

(ℎ𝑧𝑦)
𝑁

= 0.078 ((ℎ𝑧𝑦) − 92.1) − 1   (Eq. 12) 

(ℎ𝑧𝑥)𝑁 = 0.123 ((ℎ𝑧𝑥) − 94.2) − 1    (Eq. 13) 
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The final output values of model were undergone de-normalization using Eq. 14.  

𝑂𝑢𝑡𝑝𝑢𝑡 =
(ψ𝑚𝑎𝑥−ψ𝑚𝑖𝑛)(𝑖−𝑖𝑚𝑖𝑛)

(𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛)
+ ψ𝑚𝑖𝑛  (Eq. 14) 

During the de-normalization, the values of 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 are taken as -1 and 1 respectively. The ψ𝑚𝑎𝑥 and 

ψ𝑚𝑖𝑛 correspond to the maximum and minimum values of the output feature. The de-normalized output 

feature for the proposed model is shown in Eq. 15. 

 (𝜎𝑧) = 27.45 ((𝜎𝑧)𝑁 + 1) − 0.00  (Eq. 15) 

The model biases and weights for hidden, input, and output layers of FFNN predictive model are provided 

in the Table 2.  

Table 2: Biases and weights connecting the input, output, and hidden layers for FFNN ‘σz’ models. 

 
Weights connecting Hidden 

and Input Layers (wpq) 

Weights between 

Output and Hidden 

Layers (wqr) 

Hidden Layer 

Neurons bias values 

Hidden Layer 

Neurons (q) 

Input Layer Neurons (p) Output Neuron (r) Bias (bq) 

1 2 3     

1 2.32 0.76 1.52 -0.71 -2.94 

2 4.23 -4.09 -2.51 3.25 0.50 

3 2.08 2.04 0.28 0.63 -0.86 

4 2.50 1.03 -1.22 -0.52 -0.89 

5 2.58 -2.61 -6.05 -3.47 0.45 

6 2.23 -2.35 0.25 0.30 0.38 

7 0.46 0.95 -2.81 -0.59 -2.13 

8 -0.03 0.25 -2.61 -1.13 2.46 

9 -4.77 -6.33 -5.83 1.19 -0.27 

Bias Values for Output Layer (br) -0.25 

 

 

6.2. First Horizontal Stress ‘σx’ Prediction Model 

 The mathematical expression of ML prediction model is given as below. 

 (𝜎𝑥)𝑁 = ∑ 𝑊𝑞𝑟𝑛ℎ𝑞 + 𝑏𝑟
𝐻𝑛
𝑞=1       (Eq. 16) 

𝑛ℎ𝑞 = 𝑓(∑ 𝑊𝑝𝑞𝑖𝑝 + 𝑏𝑞)
𝑁𝑝

𝑝=1        (Eq. 17) 

𝑛ℎ𝑞 = 𝑓 ((𝑊1𝑞(ℎ𝑧𝑧)𝑁 + 𝑊2𝑞(ℎ𝑧𝑦)
𝑁

+ 𝑊3𝑞(ℎ𝑧𝑥)𝑁 + 𝑊4𝑞(𝜎𝑧)𝑁 + 𝑏𝑞) (Eq. 18) 

f (x) = 
2

1+𝑒−2𝑥 − 1 = tanh(x) (Hyperbolic Tangent Sigmoidal Activation Function) (Eq. 19) 

The normalized input features are shown in Eq. 20 to Eq. 23.  

(ℎ𝑧𝑧)𝑁 = 0.118 ((ℎ𝑧𝑧) − 53.0) − 1    (Eq. 20) 

(ℎ𝑧𝑦)
𝑁

= 0.078 ((ℎ𝑧𝑦) − 92.1) − 1   (Eq. 21) 
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(ℎ𝑧𝑥)𝑁 = 0.123 ((ℎ𝑧𝑥) − 94.2) − 1    (Eq. 22) 

(𝜎𝑧)𝑁 = 0.036 ((𝜎𝑧) − 0.0) − 1     (Eq. 23) 

For the proposed model, the de-normalized model output is demonstrated in Eq. 24. 

 (𝜎𝑥) = 32.5 ((𝜎𝑥)𝑁 + 1) − 0.00    Eq. 24 

The model biases and weights for hidden, input, and output layers of FFNN predictive model are provided 

in the Table 3. 

Table 3: Biases and weights connecting the input, output, and hidden layers for FFNN ‘σx’ models. 

 
Weights connecting Hidden and Input 

Layers (wpq) 

Weights between 

Output and Hidden 

Layers (wqr) 

Hidden Layer 

Neurons bias values 

Hidden Layer 

Neurons (q) 

Input Layer Neurons (p) Output Neuron (r) Bias(bq) 

1 2 3 4     

1 -1.37 -1.33 1.29 -0.52 -0.15 2.46 

2 1.50 0.48 1.19 -0.39 -0.60 -2.24 

3 -0.46 2.24 1.86 0.52 2.03 0.62 

4 3.56 -0.78 4.65 0.67 0.66 -3.08 

5 0.04 1.29 0.47 -0.07 -2.76 0.29 

6 -3.71 3.28 3.31 0.72 -0.12 0.70 

7 -0.87 -0.31 0.96 0.16 0.20 -3.93 

 Bias Values for Output Layer (br) 0.05 

 

 

6.3. Second Horizontal Stress ‘σy’ Prediction Model 

 The mathematical expression of ML prediction model is given as below. 

 (𝜎𝑦)
𝑁

= ∑ 𝑊𝑞𝑟𝑛ℎ𝑞 + 𝑏𝑟
𝐻𝑛
𝑞=1       (Eq. 25) 

𝑛ℎ𝑞 = 𝑓(∑ 𝑊𝑝𝑞𝑖𝑝 + 𝑏𝑞)
𝑁𝑝

𝑝=1        (Eq. 26) 

𝑛ℎ𝑞 = 𝑓 ((𝑊1𝑞(ℎ𝑧𝑧)𝑁 + 𝑊2𝑞(ℎ𝑧𝑦)
𝑁

+ 𝑊3𝑞(ℎ𝑧𝑥)𝑁 + 𝑊4𝑞(𝜎𝑧)𝑁 + 𝑏𝑞) (Eq. 27) 

f (x) = 
2

1+𝑒−2𝑥 − 1 = tanh(x) (Hyperbolic Tangent Sigmoidal Activation Function) (Eq. 28) 

The normalized input features are shown in Eq. 29 to Eq. 32.  

(ℎ𝑧𝑧)𝑁 = 0.118 ((ℎ𝑧𝑧) − 53.0) − 1    (Eq. 29) 

(ℎ𝑧𝑦)
𝑁

= 0.078 ((ℎ𝑧𝑦) − 92.1) − 1   (Eq. 30) 

(ℎ𝑧𝑥)𝑁 = 0.123 ((ℎ𝑧𝑥) − 94.2) − 1    (Eq. 31) 

(𝜎𝑧)𝑁 = 0.036 ((𝜎𝑧𝑧) − 0.0) − 1    (Eq. 32) 
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For the proposed model, the de-normalized model output is demonstrated in Eq. 33. 

 (𝜎𝑦) = 27.55 ((𝜎𝑦)
𝑁

+ 1) − 0.00  Eq. 33 

 

The model biases and weights for hidden, input, and output layers of FFNN predictive model are provided 

in the Table 4. 

Table 4: Biases and weights connecting the input, output, and hidden layers for FFNN ‘σy’ models. 

 
Weights connecting Hidden and Input 

Layers (wpq) 

Weights between 

Output and Hidden 

Layers (wqr) 

Hidden Layer 

Neurons bias values 

Hidden Layer 

Neurons (q) 

Input Layer Neurons (p) Output Neuron Bias(bq) 

1 2 3 4     

1 -1.54 -0.18 -0.46 -1.37 -0.50 2.82 

2 0.01 -1.23 0.91 -1.99 -0.62 -1.29 

3 0.05 0.45 0.60 -0.96 -0.46 -1.21 

4 0.96 0.80 1.13 1.10 -0.17 0.02 

5 2.56 0.47 0.13 -1.57 0.10 -1.41 

6 -0.74 1.55 1.75 -0.23 -0.16 0.20 

7 1.98 -1.19 -1.16 1.06 -0.27 2.16 

8 0.72 -0.24 3.33 0.10 -0.22 -0.83 

9 1.58 -0.84 1.76 0.85 0.90 2.10 

 Bias Values for Output Layer (br) -0.76 

 

 

 

 

  
Figure 18: Comparison of accuracy measures for the proposed three stress ‘σz’, ‘σx’, and ‘σy’ predictive 

models. 

7. Conclusions 

The project Milestone comprised of training an ML model on laboratory triaxial ultrasonic velocity 

data for Utah FORGE well 16A(78)-32 (Granitoid formation, samples from 5474’-5850’ MD) has been 

completed. In completing this milestone, there have been developed three machine learning models 

intended to eventually be deployed on field sonic log data for estimation of all three principal stress 
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magnitudes as they distribute along well 16A(78)-32. The present Milestone marks a prerequisite that 

enables the work on this next part of the work. The main finding of this task is that the ML models are 

capable of estimating the vertical stress as a function of ultrasonic wave slowness and horizontal stresses 

as a function ultrasonic wave slowness and vertical stress. This conclusion is developed based on promising 

accuracy indicators of both training and testing outcomes reflected the reliability and robustness of the 

predictive models in terms of low RMSE and high correlation coefficient. Hence, the developed 

mathematical correlation can be employed with reasonable confidence for stress estimation across the 

samples zone provided that the same input and output features and ranges are used. The mathematical model 

has to be recalibrated if prediction is required outside the mentioned ranges of input and output features.  

Overall, the best prediction performance was observed for vertical stress as compared to two horizontal 

stresses. This is expected because the wave velocity data was limited to waves propagating in the vertical 

direction in order to match the limitations of the field sonic log data. Nonetheless, the predictions of the 

horizontal stresses using only vertically-propagating wave velocities (or equivalently, slownesses) and the 

well-constrained vertical stress are of acceptable quality and provide a promising path forward for stress 

predictions as a part of the next tasks in this work.  
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9. Nomenclature 

 

p  = Neurons count for input layer 

q  = Neurons count for hidden layer 

ip  = Input features after normalization 

𝑊𝑝𝑞 = Weight connecting input and hidden layer neurons 

𝑊𝑞𝑟 = Weight connecting hidden and output layer neurons 

f  = Activation function  

br  = bias values for output layer 

bq  = bias values for hidden layer 

N   = Feature value after normalization  

Hn  = Total count of hidden layer neurons 

Np  = Total count of input features  

𝑛ℎ𝑞 = Neuron at qth position in central hidden layer 

ψ𝑚𝑖𝑛  = Factor used to normalize the features  

ψ𝑚𝑎𝑥  = Factor used to normalize the features  

hzz  = P-wave slowness in z-direction (vertical) 

hzx  = S-wave slowness in z-direction (vertical) polarized in x-direction  

hzy  = S-wave slowness in z-direction (vertical) polarized in y-direction 

(hzz)N = Normalized P-wave slowness 

(hzx)N = Normalized S-wave slowness in z-direction polarized in x-direction  

(hzy)N = Normalized S-wave slowness polarized in y-direction    

(𝜎𝑧)𝑁 = Normalized vertical stress output  

(𝜎𝑥)𝑁 = Normalized 1st horizontal stress output  

(𝜎𝑦)
𝑁

 = Normalized 2nd horizontal stress output  

𝑖  = Input features  

𝑖𝑚𝑖𝑛 = Input feature’s minimum value 

𝑖𝑚𝑎𝑥 = Input feature’s maximum value    

𝛽𝑎  = Original value 

𝛽𝑝   = Predicted value 

n   = Count of data points 
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