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Background

« Natural Fractures in FORGE
» Abundant natural fractures in FORGE EGS reservoir (4 major fracture sets)
» Different types and scales of natural fractures/discontinuities
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Motivation

« Natural fractures could play a crucial role in FORGE stimulation [1-8]

* Provide reliable data for modeling and analysis
» Stress-dependent Permeability
» Induced Fracture Slip by Injection (hydroshearing conceptual model)

T
N\ x
Pp \\ fracture

I bo
_T

Fracture dilation

T = Co + u(o, — aPy) T

Fracture slip by injection Permeability increase



Sample Preparation and Fracture Geometry

« FORGE Granitoid Core from 78B-32 Well @8504 ft.
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Experimental Methods

- Experimental Configuration [5,7
P 9 [5.7] Two Types of Experiments:

. syingepumpe O Otress-dependent Fluid Flow Test

Porous steel ' = Measure permeability and fracture aperture under
different stresses.

= Establish empirical correlations under FORGE

AE

AE
= /1 conditions

» Fracture slip was not induced
- Copper jacket

| - o Injection-induced Fracture Shear Test

a3

Radial LVDT]

o3

» Induce fracture slip by injection

Fracture

_— » Measure permeability evolution along with
AE / AE

fracture slip

Borehol _ = Establish relationship between permeability and
Axial LVDT 1 VTRV VLR O AP AU Axial LVDT 2 .
shear displacement

P;, Water injection

Syringe pump A
Ye and Ghassemi, 2018; 2020



Stress-dependent Fracture Permeability

« Stress-dependent Fluid Flow Test [5,7]

= Using the effective mean stress at the reservoir (o3 = 30 MPa).

= Hydrostatic test without inducing fracture slip.

» Measurements of permeability and fracture aperture under different stresses.
= Empirical correlations:
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Stress-dependent Fracture Permeability

« Stress-dependent Fluid Flow Test [5,7]

= Empirical correlations:
o Mechanical aperture (d,) vs. effective normal stress (ay, ).
o Mechanical aperture (d,) vs. hydraulic aperture (d,).
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Induced Fracture Slip by Injection

* Injection-induced Fracture Shear Test
" g4 = 120 MPa (~65% critical stress) simulating fractures under sub-critical stress state
» Increase injection pressure to induce fracture slip
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Due to the relatively low stress,
large slip/shear failure was not
induced

0.04 mm slip, 0.03 normal dilation,
8 MPa stress drop

Fluid rate increased from 0.01 to
0.13 ml/min

Permeability enhanced from 0.04
to 0.10 Darcy

The small slip induced significant
flow enhancement

Two phases: aseismic creep and
seismic slip.
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Permeability, Darcy

Induced Fracture Slip by Injection

Injection-induced Fracture Shear Test
= Positive correlation between permeability and fracture slip (described as a linear model)
= Mechanical aperture is larger than hydraulic aperture (resistance to flow by asperities)
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Fracture Stiffness

» The displacement during loading stage was used to determine fracture stiffness
* Norman stiffness: 224 MPa/mm
» Shear stiffness: 172 MPa/mm
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Summary

= Stress-dependent Permeability In a FORGE Granitoid Fracture
o Established empirical correlations between permeability, stress, and fracture aperture

o The hydraulic aperture is not zero even when the mechanical aperture is zero, indicating
that a mechanically closed fracture retains some permeability

o The mechanical aperture is generally larger than the hydraulic aperture. This difference
suggests that the resistance of contacted asperities affects fluid flow in a rough fracture

* Fracture Slip on Permeability

o Shear slip likely enhances permeability (even a small slip) for granite rocks of FORGE,
provided the slip displacement isn't overly large, which could create gouge materials and
clog the fracture

o Large shear slip is unlikely to occur due to stress relaxation along with fracture slip, this is also evidenced by
the low magnitudes of induced seismicity at FORGE (maximum MQ.5 to date)

o Slip can help create a fracture network (inducing fracture propagation and reactivating
secondary fractures) [9]
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