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1. Technical Summary 

Three optimized machine learning (ML) predictive models were employed for the prediction of in-situ 

stresses including vertical, minimum horizontal and maximum horizontal stresses in Utah FORGE well 

16A(78)-32 using field sonic log data. Firstly, the ML models were trained and tested using laboratory-

based triaxial ultrasonic wave velocity (labTUV) data wherein wave velocities were measured with various 

combinations of true triaxial applied stress. The labTUV data represent the Granitoid formation retrieved 

from well 16A(78)-32. The labTUV data include compressional, fast shear, and slow shear velocities in 

each of three directions for a total of nine velocities for each stress combination. The ultimate objective of 

this work is to predict the in-situ stresses using field sonic log data which are measured in the vertical 

direction. Therefore, only the vertically-propagating compressional and shear wave velocities were utilized 

to develop ML models. The algorithms of trained ML models were then employed for the estimation of in-

situ stresses through interpreting field sonic logs. Also, because vertical (overburden) is often well 

constrained, one approach explored here is to take the vertical stress also as known and train the model to 

predict the two horizontal stresses.  

The work has been divided into two folds. Firstly, the feed forward artificial neural network (FFNN) 

technique was applied to develop three data-driven ML predictive models for vertical and two orthogonally 

oriented horizontal stresses in the Granitoid formation using labTUV data. The first ML model was trained 

for vertical stress ‘σz’ using labTUV dataset using vertically propagating compressional, fast shear, and 

slow shear wave slowness as input features. The second and third ML models were developed for horizontal 

stress in x and y-directions (‘σx’ and ‘σy’) using labTUV dataset using compressional, fast shear, slow shear 

wave slowness, and stress in vertical direction as input features. The models were trained using seventy 

percent (70%) of the data points while testing and validation of models was further performed on fifteen 

percent (15%) of the data points. The prediction performances of ML models were evaluated using residual 

errors, root mean squared error (RMSE), average absolute percentage error, and determination coefficient 

(R2). The optimum settings (neuron structure and hyperparameters) of trained ML models were then 

implemented to predict the in-situ vertical and horizontal stresses in the geothermal well 16A(78)-32 using 

field sonic log and vertical stress (field estimation) data. Prior to the execution of FFNN algorithm, the 

available data were thoroughly explored and analyzed through different exploratory data analysis (EDA) 

techniques in order to understand the data distribution, trends, patterns, interrelationship of input and output 

features, and to identify the relative importance of input features with respect to output.  

Open source software, namely Python (ver:3.9.13), was used for the EDA analyses. Various libraries 

of Python (ver:3.9.13) include Pandas, Seaborn, Matplotlib, and SciPy Pandas, Seaborn, Matplotlib, and 

SciPy. The codes and algorithms were executed using two on two different integrated development 

environments (IDEs) such as Spyder (ver:5.2.2) and Visual Studio Code (ver: 1.81.1.). EDA such as 

statistical parameters, histograms, correlation coefficients using Pearson, Spearman, and Kendall criteria, 

violin plots, heat maps, and pair plots, and so forth is applied prior to the ML model execution. While 

reflective of the chosen testing matrix rather than intrinsic rock properties, such a routine of quantifying 

descriptive statistics is nonetheless a part of good practice as it aids with selection of ML models and 

training strategies that are suited to the nature of the datasets. 

The ML modelling was performed using the FFNN algorithm executed using Deep Learning Toolbox 

of MATLAB 2022 software. ML models were optimized by tuning different hyperparameters such as neuron 

count in hidden layers, training function, activation function, and realization count in order to finally 

achieve reliable and consistent prediction outcomes. Furthermore, the optimized FFNN models were 

generalized through sensitivity analysis to uncover the underlying physics. Sensitivity analysis revealed the 

impact of each input feature on target output (stress) following the underlying physics of the ML models. 

In the second phase, optimized ML models were employed on field sonic logs (blind dataset) for the 

prediction of in-situ stresses. As the models were trained on an experimental dataset representing the core 

samples retrieved from the depths of 5474 and 5850 feet, a log interval ranging from 5000 to 6000 feet was 
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selected for in-situ stress prediction using trained ML models. The empirical mathematical correlations 

were also extracted from the optimized ML models that can be applied to estimate vertical and horizontal 

stresses in the Granitoid formation provided that the same ranges of input and output features are used.  

All three ML models demonstrated consistent and reliable prediction performance for the vertical and 

two horizontal stresses in terms of low average absolute percentage error (AAPE), root means squared error 

(RMSE) and high coefficient of determination (R2). The first ML model for laboratory-based vertical stress 

(σz) exhibited the training (model building) and testing (validation) RMSE of 1.7 and 1.65, and AAPE of 

2.51 and 2.47, respectively. For the ‘σz’ stress, R2 was found to be 0.954 and 0.963 for training and testing 

and validation dataset, respectively. Further, the model also exhibited excellent performance on log data 

(blind dataset) for in-situ vertical stress prediction. The log-based ML predicted field vertical stress (Sv) 

was found to be in good agreement with field estimation of stress reflecting RMSE of 0.66 and 1.5, and 

AAPE of 1.58 and 3.36, for the depths of 5474 and 5850 feet, respectively.  

Secondly, for the first laboratory-based horizontal stress ‘σx’ model, the R2 values were observed to be 

0.984 and 0.971 for the testing and validation and training results. The excellent model functioning was 

reflected by the low RMSE and AAPE errors for testing (1.48 and 3.1) and training (2.05 and 3.03) 

prediction, respectively. This model was employed for the prediction of maximum horizontal stress (SHmax) 

in the field using the same input features for which the model was originally trained, however, in this case 

input features were obtained from the field sonic logs and vertical stress data. The predicted stress was 

found to be in harmony with field estimation of SHmax stress. The predicted SHmax exhibited RMSE and 

AAPE of 0.9 and 0.05 at the depth of 5474 ft and 2.89 and 0.15 at the depth of 5850 ft, respectively. 

Likewise, the second laboratory-based horizontal stress model for ‘σy’ demonstrated the R2 value of 0.986 

for testing and 0.955 for training prediction. The prediction RMSE and AAPE were observed to be 1.41 

and 2.50, and 0.61 and 1.1 for testing and validation and training datasets, respectively. This model was 

employed for the prediction of minimum horizontal stress (SHmin) in the field using sonic logs and vertical 

stress. The predicted SHmax reflected excellent accuracy when compared to the field estimated SHmax with 

RMSE and AAPE of 2.1 and 8.05 at the depth of 5474 ft and 0.82 and 2.82 at the depth of 5850 ft, 

respectively.   

In summary, accuracy measures revealed excellent prediction performance of all three ML models for 

both laboratory-based and log-based stress predictions. Sensitivity analysis revealed that the proposed ML 

models are able to capture the underlying physics demonstrating the variations of ultrasonic wave velocities 

under the influence of stress. Therefore, the trained models successfully predicted the blind sonic log data 

for the reliable estimation of in-situ stresses. Hence, the proposed ML models function well for both 

experimental and field log datasets. The ML based explicit mathematical correlations can be confidently 

applied for stress estimation without running the ML programs provided that the input features and ranges 

are the same.   

2. Task and Milestone Description 

This report documents the task completion and technical accomplishments comprising achievement of 

Milestone 2.3.1, as per the project Statement of Project Objectives (SOPO). The validation of milestone 

accomplishments is illustrated in Figures 14 through 18 demonstrating the key outcomes of the developed 

machine learning models for vertical and horizontal stresses.   

Milestone 2.3.1: The task incorporates the development and implementation of ML models for the 

prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses 

in well 16A(78)-32. The detailed description about the experimental work was documented in Milestone 

report 2.1.1 of the project. 

This Milestone task 2.3.1 follows the Milestone report 2.2.1 that elaborated the ML model development 

and validation strategy comprehensively. In this Milestone task, prediction performances of ML models are 
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further improved and implemented carefully for the estimation of in-situ stresses (i.e., Sv, SHmin, and SHmax 

over the depth ranging from 5000 to 6000 feet in the well 16A(78)-32).  A comparison between ML-based 

and field-based in-situ stresses estimations reflected the excellent harmony in terms of nominal errors at 

the sampling depths. The accomplishment of the Milestone task 2.3.1 is illustrated in Figures 20 through 

22 demonstrating coherence between ML-based and field-based estimation of in-situ stresses.    

Further, the ML models were capable of capturing the physical phenomenon between the sonic wave 

slowness and stresses (Figure 19). The underlying physics was uncovered by the sensitivity analysis (model 

generalization) of each input feature on the target output of the trained models which is a supporting 

argument for the successful implementation of ML models on the field sonic and stress datasets at the 

sampling depths. The sensitivity analysis revealed the impact of each input feature on the target output 

(stress) through a specific physical relationship. 

Various stages were accomplished during the model development phase such as EDA, ML model 

development, uncovering the underlying model’s physics, and implementation of optimized model for field 

stresses estimation. This report begins with a description of the ML technique FFNN used for the prediction 

modelling of stresses. Then, a comprehensive ML modelling workflow with each step is presented. The 

main findings of EDA are discussed for the given input and output features. A thorough illustration of the 

main features of FFNN model optimization and hyperparameter tuning are provided. Subsequently, models’ 

accuracy and prediction performance are discussed. The sensitivity analysis was presented to check the 

models’ ability of capturing underlying physics. Then, optimized ML models were implemented on field 

sonic log data for the estimation of in-situ stresses in well 16A(78)-32. The last section demonstrates the 

mathematical correlations development for the three FFNN prediction models. Finally, the key findings and 

important postulates are provided in conclusions.   

3. Artificial Neural Network (ANN) 

 Artificial neural network (ANN) is one of the extensively employed ML methods for handling 

prediction issues, data mining, pattern recognition, and approximation (Mozaffari and Azad, 2014) 24, 25. 

Although various types of ANN techniques are used, backpropagation and feedforward ANN algorithms 

are the most implemented for prediction and training (Chau, 2007). ANN uses various learning functions, 

networks and activation functions to provide the required prediction solution for the specified problem 

(Mohaghegh et al. 1994). 

 ANN solves the underlying problem through replicating the components and operations of the nervous 

system of human beings. Artificial neurons are components of an explicit architectural network that are 

chosen based on the specifications of the given engineering challenge (Ali, 1994). In order to produce 

accurate, dependable, and consistent prediction outcomes, ANN establishes connections among the 

nonlinear variables using a massive collection of algorithms (Otchere, 2021). In general, feed-back neural 

networks (FBNN) and feed-forward neural networks (FFNN) are the two types of ANN that are widely 

used. FFNN is a basic and simplest ANN design that uses interconnected perceptron layers to build a 

forward-only, unidirectional process of transferring information. In order to identify a precise and pertinent 

output feature, the knowledge of input features is transmitted nonlinearly via activation function of hidden 

layers. The second variant, which has the same architectural qualities as FFNN with the extra feature of 

establishing a back loop, is equally accepted, and frequently used for ANN applications (Saggaf et al. 2003). 

The back loop feature of FBNN iteratively refines the predicted output feature by delivering error 

information to execute the algorithm again to modify the weights until accuracy measures (errors and 

correlation coefficients) can no longer be improved (Saikia, 2020). 

 Numerous interconnections were established through the specified routes for the interaction between 

the nodes of ANN structure. Each node of the hidden layer is assigned with specific weight to streamline 

the functionality of ANN structure (Hornik et al., 1989). During the training process, algorithms are fed 

with input features in the form of vectors. After the output errors are routed back, the weights between the 
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nodes are finely adjusted using gradient descent. The process is kept repeating until the output errors are 

not further improved (note: all variables appearing in equations in this report are defined in the 

Nomenclature section near the end of the report).  

ΔW(t) = ΔW(t − 1) ∗ α + ΔE ∗  η ∗ (t)   (Eq. 1) 

 The gradient descent uses the error function to update the weights between the nodes of ANN structure 

as shown in Eq. 1 (Avseth and Mukerji, 2002). Where η, E, Δw, and α, demonstrate adjusted weights, output 

error, learning components, and momentum, respectively. 

 There are various advantages of using ANN as compared to other supervised ML algorithms.  

1. It has the ability to handle the non-linearity and complexity association between input and output features.    

2. ANN functions with great efficiency while dealing with high dimensionality of the data.  

3. ANN can demonstrate the complicated classification groups and non-limiting functions that contain 

output and input features.  

4. Methodology – Modelling Approach 

4.1. Machine Learning Modelling Workflow 

The ML workflow started with data collection, data cleaning and exploratory data analysis of 

experimental dataset to explore the data distribution, patterns, relationships, and relative importance of 

input features with respect to output features. Exploratory data analysis was performed using different 

libraries of open-source software Python (ver:3.9.13) (Python software foundation, 2023) and program 

codes were executed on two integrated development environments (IDE) including Spyder (ver:5.2.2) 

(Cerezo et al. 2023) and Visual Studio Code (Microsoft,2015). The Pandas (ver:1.4.4) library of Python 

(McKinney, 2022) was used to extract the Microsoft Excel data and generate a data frame on Python 

software. The Seaborn (ver:0.11.2) library was employed for generating the heat maps, pair plots, 

histogram, kernel density estimation (KDE) function , and violin plots (Waskom and Seaborn, 2023). All 

EDA plots were generated using the Matplotlib.pyplot module of Matplotlib (ver:3.5.2) library of Python 

(ver:3.9.13) software (Hunter and Droettboom, 2016). Statistical features and correlation coefficients 

(Pearson, Spearman, and Kendall) were determined using Scipy (ver:1.9.1) library (Jones et al. 2023). After 

EDA analysis, the dataset is ready to be fed for ML modelling. All the Python libraries and IDE (Integrated 

Development Environment) collectively function under the Anaconda (ver:22.9.0) package (Anaconda Inc. 

2023).   

Subsequently, the FFNN type of ANN technique with the feature of back propagation was employed 

to develop prediction models for vertical and horizontal stresses in the Granitoid formation. After that, the 

trained models were implemented to estimate in-situ stresses in well a6A(78)-32 using field sonic log data. 

Training of the model was performed using the Deep Learning Toolbox of MATLAB software (MATLAB, 

2022). Grid search cross validation process was used for optimizing the hyperparameters in FFNN. The 

optimized FFNN models were used for stress estimation using field sonic log data. The complete workflow 

adopted in this study is shown in Figure 1.  
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Figure 1: Modelling Workflow for this study 

4.2. Exploratory Data Analysis (EDA) 

 In this study, ultrasonic wave velocity (actually the inverse of the velocities, the P- and S-wave 

slowness) and stress data were used to develop three ML prediction models for vertical stress (σz) and two 

orthogonally oriented horizontal stresses (σx and σy). The ML models were trained on labTUV datasets 

representing the Granitoid formation with samples retrieved from 5474 ft MD and 5850 ft MD, 
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respectively. Further description of labTUV experiments can be found in Bunger et al. (2023).  Then, 

optimized algorithms of trained models were employed to predict the in-situ stresses using field sonic logs. 

The in-situ stresses were predicted for the depth interval ranging from 5000 to 6000 ft in well 16A(78)-32.  

 Based on this available dataset, initially 46 data points were available. However, after the data cleaning, 

a total of 41 TUV data points were utilized that contain P-wave (hzz), and S-wave slowness (hzy and hzx), 

in the z-direction under different combinations of applied stresses ‘σz’, ‘σx’, and ‘σy’ in z, x, and y 

directions, respectively (Table 1). Note that throughout this report, each loading combination is designated 

an identifier, its “dataset number”. While the order of these does not have physical meaning, it is 

nonetheless sometimes useful for visualizing the span of the data to report data by this number. Each point 

of dataset represents the result of one labTUV experiment.   

Table 1: Experimental dataset used for ML predictive modeling. 

Experiment 

No. 

hzz 

(µs/ft) 

hzy 

(µs/ft) 

hzx 

(µs/ft) 

σz 

(MPa) 

σx 

(MPa) 

σy 

(MPa) 

1 54.96 107.75 105.12 19.80 19.89 19.75 

2 56.16 108.10 103.34 29.89 29.89 29.89 

3 55.20 108.07 103.96 40.08 29.89 29.99 

4 55.20 108.27 103.49 39.98 29.89 39.84 

5 53.76 106.66 104.16 49.69 29.89 39.98 

6 54.00 106.97 103.30 49.93 39.79 39.98 

7 54.58 108.26 103.37 49.93 40.03 29.99 

8 55.20 107.35 103.34 49.93 39.88 25.11 

9 53.04 105.49 103.23 49.93 40.03 34.86 

10 53.76 105.15 103.23 49.93 39.88 37.50 

11 54.72 106.18 103.80 49.93 40.13 32.38 

12 54.48 105.66 103.23 49.93 40.13 31.06 

13 53.28 104.76 103.71 49.93 49.78 31.06 

14 54.58 105.62 103.94 49.93 45.20 31.06 

15 55.04 106.48 103.12 49.93 55.00 31.06 

16 53.76 104.54 103.64 49.93 59.92 31.06 

17 54.72 105.65 105.22 49.93 65.00 31.06 

18 54.50 105.06 104.38 49.93 62.46 31.06 

19 52.99 103.75 103.58 49.93 62.46 31.06 

20 53.62 104.01 103.61 49.93 64.02 31.06 

21 53.95 104.29 103.36 54.85 62.46 31.06 
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Experiment 

No. 

hzz 

(µs/ft) 

hzy 

(µs/ft) 

hzx 

(µs/ft) 

σz 

(MPa) 

σx 

(MPa) 

σy 

(MPa) 

22 53.76 104.81 102.97 45.00 62.46 31.06 

23 55.06 105.50 102.21 47.44 62.46 31.06 

24 53.28 104.14 102.72 52.51 62.46 31.06 

25 54.24 94.71 100.85 19.94 19.89 19.70 

26 53.76 92.79 100.71 30.38 30.04 29.74 

27 55.68 94.27 101.81 40.08 39.84 39.74 

28 62.72 94.27 100.22 50.42 29.94 39.98 

29 55.89 94.05 99.90 49.69 40.03 39.88 

30 67.68 96.08 100.60 40.23 29.89 40.13 

31 53.76 92.28 100.37 40.08 29.89 49.98 

32 54.48 93.81 99.72 50.17 30.28 49.98 

33 53.76 92.12 101.56 43.98 39.69 39.88 

34 54.72 92.55 101.03 46.91 40.03 39.88 

35 54.24 92.38 100.57 48.51 40.03 40.13 

36 55.44 93.60 101.17 49.93 40.03 40.13 

37 55.68 93.82 94.19 42.08 39.88 40.13 

38 55.68 94.24 100.54 54.85 40.13 40.23 

39 55.44 93.60 94.23 45.15 40.03 49.88 

40 54.24 92.80 99.51 45.10 40.03 55.10 

41 54.24 92.88 101.80 45.05 35.30 50.12 

 

 Note that throughout this report, slowness (‘h’) is given two subscripts, where the first gives the 

propagation direction and the second gives the direction of particle motion. Hence, ‘hzz,’, ‘hzy’, and ‘hzx’ 

all describe waves propagating in the z-direction and indicate the P-wave, the y-polarized S-wave, and the 

x-polarized S-wave, respectively. The illustration of waves propagation direction and particle movement 

is provided in Figure 2.   
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Figure 2: Example of waveforms from Lower Granitoid, x-direction. Waveforms result from two separate 

experiments with transducers oriented to capture the y-polarization (top) and z-polarization (bottom). 

Sketches show sample and transducer orientation to illustrate propagation direction and shear wave 

polarity for each of these cases. (Bunger et al. 2023). 

 The first ML model was trained to predict the vertical stress ‘σz’ using P and S-wave slowness ‘hzz,’, 

‘hzy’, and ‘hzx’ as input features. This model was employed to predict the vertical stress (Sv) in well 

16A(78)-32. The second ML model was developed using four input features including ‘hzz,’, ‘hzy’, ‘hzx’ 

and ‘σz’ to predict the horizontal stress ‘σx’ applied in x-direction. The ‘σx’ stress model was used to predict 

the SHmax in well 16A(78)-32 using sonic logs and vertical stress.  

 The model developed for the second horizontal stress ‘σy’ applied in the y-direction was implemented 

to predict the SHmin for the same well. For this model, the same four input features (‘hzz,’, ‘hzy’, ‘hzx’ and 

‘σz’) were utilized. During the development phase, labTUV datasets were split into three portions. The first 

portion (seventy percent) of the dataset was dedicated for model training while validation and testing of 

the trained model was performed using the second (15%) and third (15%) portions of the data points. The 

entire dataset is shown in Figure 3. Testing and training sets of data used for ‘σz’, ‘σx’, and ‘σy’ prediction 

models are presented in Figures 4 through 6, respectively. 

 Testing and training datasets were firstly subjected to EDA for the purpose of data cleaning, 

understanding the data distribution, trends, patterns, relative importance, and relationships of input and 

output features. The EDA is essential for feature selection prior to the execution of ML algorithms to 

ultimately generate a robust prediction model. Important statistical parameters such as maximum, 

minimum, mode, mean, median, kurtosis, skewness, and standard deviation of input and output features 
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are demonstrated in Table 2. The statistical indicators are reflective of the choices of testing matrix (load 

combinations) carried out in the lab, not of any intrinsic rock behavior. Visualization of data distribution 

for each feature is provided by the violin plots that expresses the data points in the form of a KDE function. 

Violin plots are important to visualize the extreme values, inter quartile range (IQR), and arithmetic mean 

in the dataset as shown in Figure 5. Bimodal distribution of data can also be easily identified by visualizing 

violin plots as shown for ‘hzy’ and ‘σx’ features (Figure 7).  

 Further, boxen plots are another visualization tool that are essential to exhibit the median, IQR, and 

extreme values (Figure 8). The cluster maps demonstrated the cluster connections on the basis of 

collinearity between the pairs of input and output features as shown in Figure 9. Cluster maps were 

generated using the Spearman, Pearson, and Kendall correlation criteria. The patterns, trends and 

similarities/differences between the datasets have been illustrated using swarm plots (Figure 10).  

 
Figure 3: Total Dataset used for all three ML prediction models. 

 

    

Figure 4: Training and testing dataset used for vertical stress ‘σz’ prediction model. 

 

 

 

Training Dataset Testing Dataset 
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Figure 5: Training and testing dataset used for horizontal stress ‘σx’ prediction model. 

 

 

   

Figure 6: Training and testing dataset used for horizontal stress ‘σy’ prediction model. 

 

 

Figure 7: Violin plots for input and output variables

Training Dataset Testing Dataset 

Training Dataset Testing Dataset 
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Figure 8: Boxen plots for input and output features. 

 

 

Figure 9: Cluster maps of features using the Pearson, Spearman and Kendall criteria.  
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Figure 10: Swarm plots of input and output features. 

 The relative importance of all the input features was explored using three criteria namely Pearson, 

Spearman, and Kendall correlation coefficients (R) as shown in Figure 11. For the first ML model, the 

input feature ‘hzz’ exhibited strong inverse correlation with output ‘σz’ while relatively weaker correlations 

were observed for the other two input features ‘hzy ’and ‘hzx’. On the other hand, horizontal stress ‘σx’ 

exhibited a strong direct and inverse relationship with vertical stress ‘σz’ and P-wave slowness ‘hzz’, 

respectively. S-wave slowness ‘hzy’ and ‘hzx’ demonstrated relatively weaker correlation with ‘σx’. For the 

case of other horizontal stress ‘σy’, two input features ‘hzy’ and ‘hzx’ demonstrated a strong inverse 

relationship while ‘σz’, and ‘hzz’ reflected a weaker direct relationship with ‘σy’. Pearson, Spearman, and 

Kendall's correlation criteria are provided in Eqs. 2 through 4, respectively.   

 Furthermore, pair plots among all input and output variables demonstrated the inter-relationships 

between all pairs of output and input features in a single plot (Figure 12). The velocity variations with 

stresses are prominent for the Granitoid formation. It could be observed in the pair plots that P- and S-wave 

slowness have inverse and direct relationships with ‘σz’ respectively. The horizontal stress ‘σx’ exhibited 

almost similar relationship trends with ‘hzz’, ‘hzx’ and ‘hzy’. However, relationship trends are reverse for 

‘σz’. The diagonal of the pair plot represents the histograms with KDE distribution of each feature. P-wave 

slowness exhibited an inverse relationship with S-wave slowness.  

 Histograms shown within pair plots revealed that P-wave slowness ‘hzz’ is positively (right) skewed 

indicating that most of the data points are clustered towards the left side of distribution reflecting non-

symmetric distribution. A major portion of the ‘hzz’ dataset is clustered towards  the left side of the plot 

(values are lower than the mean values) that leads to the longer tail on right side of the distribution. The S-

wave slowness ‘hzx’ and ‘hzy’ is not skewed or slightly negatively skewed indicating fairly symmetric 

distribution of data on both sides of the mean value. The majority of data points exist around the mean 

values of these input features. On the contrary, the stresses ‘σz’, ‘σx’, and ‘σy’ data are negatively (left) 

skewed exhibiting that the majority of the dataset is larger than the mean value with a longer tail on the left 

side. The distribution revealed that the mean value is smaller than mode and median. Kurtosis of P-wave 

slowness is leptokurtic with heavier tailed and peaked distribution as reflected by a higher positive value. 

Most of the data points lie in the tail of distribution instead of in close proximity of the mean value. Other 
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five input features such as S-wave slowness (hzx and hzy) and stress (σz, σx, and σy) data distribution reflect 

platykurtic distribution with lower and broader peaks. The tail of data distribution curve is lighter than 

normal distribution indicating minimum chances of outlier existence in the dataset. These features are 

lacking extreme values with flatter distribution around the mean value that reflects good quality of data.  

ρ𝑝𝑒𝑎𝑟𝑠𝑜𝑛 =
k ∑ ab − (∑ a)(∑ b)

√k(∑ a2) − (∑ a)2 √k(∑ b2) − (∑ b)2
 (Eq. 2) 

Where b and a represent the respective variables, and number of samples are represented by k.  

ρ𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = ρ𝑝𝑒𝑎𝑟𝑠𝑜𝑛

cov(𝑎, 𝑏)

𝛾𝑎𝛾𝑏
  (Eq. 3) 

τ𝑘𝑒𝑛𝑑𝑎𝑙𝑙 =
𝑛𝑐 − 𝑛𝑑

𝑛(𝑛 − 1)
2⁄

 
(Eq. 4) 

 Where 𝑛𝑐 and 𝑛𝑑 represent the values of number of concordant and discordant pairs and total number 

of samples are represented by ‘n’. 

 

Table 2: Statistical indicators of dataset used in ML Modelling 

Statistical 

Parameters 

hzz 
(µs/ft) 

hzy 
(µs/ft) 

hzx 
(µs/ft) 

σz 
(MPa) 

σx 
(MPa) 

σy 
(MPa) 

Minimum 53.0 92.1 94.2 19.8 19.9 19.7 

Maximum 67.7 108.3 105.2 54.9 65.0 55.1 

Mean  55.0 100.8 102.1 45.6 42.4 35.8 

Mode 54.7 93.6 103.2 49.9 40.0 31.1 

Median 54.5 104.3 103.1 49.9 40.0 32.4 

St. Dev. 2.5 6.3 2.4 8.0 12.7 7.9 

Kurtosis 17.5 -1.8 4.2 3.9 -0.7 0.2 

Skewness 4.0 -0.3 -1.8 -2.0 0.5 0.4 
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Figure 11: Coefficient of correlations of input variables with output showing relative importance.

 

Figure 12: Pair plots showing cross plots between input and output features. 
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4.3. Hyperparameter Tuning and Models Optimization  

 The first stage of the study presented three robust ML models developed to predict the stresses in 

vertical (σz) and two horizontal directions (σx and σy) for the Granitoid formation using fully connected 

FFNN techniques with the additional feature of back propagation. The ML model was trained using 

ultrasonic wave velocities in the z direction that were obtained from the labTUV experiments.  

 The FFNN prediction model for stresses was optimized by improving the coefficient of determination 

(R2) and minimizing the prediction errors through different strategies of hyperparameter tuning. The data 

points were split into two halves. The train test split function in the MATLAB software (MATLAB, 2022) 

was used to divide the data. The data splitting was an arbitrary occurrence and was done in such a way that 

testing and validation data contained the range of the input variables present in the training dataset. Seventy 

percent of the dataset was set aside for the model training and the remaining thirty percent was set aside for 

testing (15%) and validation (15%). Seed function was used to regulate the random number generation for 

each run. ANN algorithm was run several times using numerous selected hyperparameters such as input 

features, neuron count in hidden layers, training functions, activation functions, and realizations count. The 

k-fold cross validation strategy was adopted during the training process in order to avoid the data 

overfitting.  

 For all three stress prediction models, the FFNN algorithm was executed for different training functions 

such as resilient propagation, Levenberg-Marquardt, BFGS Quasi-Newton, Scaled Conjugate Gradient, and 

Fletcher-Powell Conjugate Gradient to optimize the prediction accuracy (MATLAB, 2022). Best prediction 

results were obtained with Levenberg-Marquardt training function for stresses σz, σx, and σy. The best 

activation function was found to be Tangent sigmoidal and linear functions that connect the hidden and 

input layers, and the output and hidden layers, respectively, after executing the model using different 

activation functions such as tangent sigmoidal, logarithmic sigmoidal, soft max, linear, triangular basis 

activation functions (MATLAB, 2022). Optimization of neuron count in hidden layers was performed by 

executing the model algorithm at various neuron counts from 5 to 40 starts from lower numbers to higher 

(Opper and Haussler, 1996). A comparison of model performance at different number of neurons is 

demonstrated in Figure 13. The model accuracy was further improved by executing the model for 1000 

realizations for the selected neurons count in the central hidden layer to catch the non-distinctiveness of the 

data points (Zhang, 2022). The optimum prediction results were achieved at 38, 14, and 10 number of 

neurons and 70, 68, and 6 realizations for stresses σz, σx, and σy, respectively, exhibiting minimum 

prediction errors and maximum coefficient of determination (R2). The model performance of 100 

realizations and best selected realization for the optimized neuron count are shown in Figure 14. After 

optimizing the neuron count and realization, the FFNN algorithm was executed at the optimum neuron 

structure and hyperparameters to observe the best model performances for stresses ‘σz’, ‘σx’, and ‘σy’. 
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Figure 13: Neuron optimization based on prediction performance. 

 

 

Figure 14: Prediction AAPE for selected 100 realizations at optimized neurons count for ‘σz’, ‘σx’, and 

‘σy’ models. 
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4.4. Performance Measures  

 The predictive models’ performances were assessed using four accuracy measures including coefficient 

of determination (R2), residual errors (RE), root mean squared error (RMSE), and average absolute 

percentage error (AAPE). The extent of accuracy was assessed from ‘R’ value between predicted and actual 

values.    

Residual Error = (σmeasured − σpredicted)  (Eq. 5) 

AAPE (%)  =  
∑|(σmeasured−σpredicted)|

100

σmeasured

total data points
  (Eq. 6) 

RMSE = √∑(𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
   (Eq. 7) 

𝑅2 = [
k ∑ xy− (∑ x)(∑ y)

√(k(∑ x2)−(∑ x2)) √k(∑ y2)−(∑ y2)
]

2

   (Eq. 8) 

The mathematical expressions of the accuracy measures are demonstrated in Eqs. 5 through 8. 

5. Modelling Results  

 All three stress prediction models exhibited excellent performance in terms of low prediction errors 

and high R2. The general topology of neuron structures for the prediction models are shown in Figure 15.  

 The developed FFNN models provided reliable and robust predicted vertical and horizontal stress 

values. The prediction performance of all three models FFNN in terms of cross plots between predicted 

and experimental stress values are demonstrated in Figure 16. For the vertical stress ‘σz’ prediction model, 

the R2 values between predicted and experimentally determined stresses were observed to be 0.963 and 

0.954 for testing (unseen data) and training (model building) datasets, respectively. The model 

demonstrated excellent outcome with prediction RMSE of 1.65 and 1.7, and AAPE of 2.51 and 2.47 for 

testing and training prediction, respectively. The FFNN training and testing predictions of all three 

prediction models (‘σz’, ‘σx’, and ‘σy’) are also compared with experimental stress values demonstrating 

good agreement between them. For the horizontal stress ‘σx’ prediction model, the R2 values between 

predicted and experimental data points were determined to be 0.984 and 0.971 for testing and training data 

points, respectively. The excellent model functioning was reflected by the low RMSE and AAPE errors for 

testing (1.48 and 3.1) and training (2.05 and 3.03) prediction, respectively.  

 The second horizontal stress ‘σy’ prediction model also resulted in reliable and steadfast predicted 

values of stress with demonstration of R2 of 0.986 for testing and 0.955 for training prediction results. The 

prediction error AAPE and RMSE for the stress ‘σy’ was observed to be 0.61 and 1.1 for testing and 1.42 

and 2.50 for training data points, respectively, demonstrating the accuracy of model prediction. Hence, all 

three FFNN models for vertical and horizontal stress prediction demonstrated accurate, reliable, and 

consistent prediction abilities as reflected by the excellent accuracy measures. The performances for testing 

and validation at the optimal parameters of FFNN model in terms of mean squared error (MSE) are 

demonstrated in the Figure 15. The prediction performance of all three models FFNN ML model in terms 

of cross plots between predicted and experimental stress values and residual errors of training and testing 

of models are demonstrated in Figure 17. 

 Consequently, accuracy indicators revealed that developed three FFNN models can provide the 

reliable, robust and consistent prediction solution for vertical stress ‘σz’ as a function of ‘hzz’, ‘hzx’ and 

‘hzy’ and two horizontal stresses (mutually perpendicular) as a function of ‘hzz’, ‘hzx’, ‘hzy’ and ‘σz’ for the 

given input and output features and respective ranges for which the model is trained. The comparison 
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between the predicted and experimental stress ‘σz’, ‘σx’, and ‘σy’ values revealed good harmony between 

them as shown in Figure 18. The models’ accuracy measures are compared for the proposed three stress 

‘σz’, ‘σx’, and ‘σy’ prediction models and demonstrated in Figure 19. All three ML models exhibited 

excellent prediction performance as reflected by evaluation metrics. Thus, the developed ML models could 

be implemented on sonic logs for the estimation of field stress.   

   

Figure 15: Generalized ANN topology showing neurons structure for stress prediction models. 

          
 

 
 

Figure 16: Models’ performance during execution at optimum setting. 
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Figure 17: Training and testing prediction performance for ‘σz’, ‘σx’, and ‘σy’ for the proposed FFNN 

models. The last two plots represent residual error for training and testing of models. 
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Figure 18: Comparison of testing and training predictions with experimental stresses ‘σz’, ‘σx’, and ‘σy’. 

The last two plots are depicting the residual errors for training and testing outcomes. 
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Figure 19: Comparison of prediction error RMSE and AAPE for stress  ‘σz’, ‘σx’, and ‘σy’ stresses models. 

6. Sensitivity Analysis (Model Generalization)  

 After optimizing the models’ performances, it is important to evaluate whether the model has captured 

the underlying physics of the predicted phenomenon. Sensitivity (trend) analysis was performed to evaluate 

the reliability of the proposed FFNN prediction. The analysis was performed on a generated dataset in 

which one input feature value was changing while all other input features were kept constant. The proposed 

FFNN model was applied on the dataset to see the impact of changing the values of only one feature on the 

predicted output. Sensitivity analysis revealed that each input feature is able to uncover the underlying 

physics of the prediction problem effectively. The impact of each input feature such as ‘hzz’, ‘hzx’, and ‘hzy’ 

on the predicted output was evaluated.  While evaluating effects of changing P-wave slowness ‘hzz’ on 

stress ‘σz’, other two S-wave slowness ‘hzx’, and ‘hzy’ were kept constant. The effect of ‘hzz’ was evaluated 

for different combinations of ‘hzx’, and ‘hzy’ values as demonstrated in Figure 20. For each combination, 

‘hzz’ is following the specific trend reflecting the underlying physics of the prediction phenomenon. A 

similar approach was applied for evaluating the impact of S-wave slowness on the stress ‘σz’. The results 

are illustrated in Figure 20.    
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Figure 20: Sensitivity analysis results for stress ‘σz’ prediction model. 

7. Stress Estimation from Well logs using Trained ML Models  

 The optimized setting of the FFNN model including neural network arrangements and other related 

hyperparameters were saved. The trained FFNN models were then implemented on field sonic log data for 

stress estimation in well 16A(78)-32. Sonic log data contain the vertically propagating compression wave 

slowness and shear wave slowness polarized in two orthogonal orientations. As mentioned in a previous 

section the ML models were trained on the labTUV dataset generated on Granitoid rock samples retrieved 

from a depth of 5474 and 5850 ft. Therefore, well log intervals ranging from 5000 to 6000 ft were selected 

for the in-situ stress estimation. 

 However, it is important to emphasize that ML based predictive models should be implemented only 

if the dataset contains the same statistical range of input and output features for which the models were 

originally trained. Therefore, the well log data underwent cleaning to bring the data within the same range 

of input and output features so that best prediction results could be achieved. After data cleaning, FFNN 

models were employed to predict vertical (Sv), minimum horizontal (Shmin), and maximum horizontal 

(Shmax) stresses using the same input features for which the models were trained.  

 All three FFNN trained models successfully predict the in-situ stresses for the selected log interval. 

The FFNN based predicted stresses using sonic logs were also compared with the field estimations of 

stresses that revealed good harmony between them. Specifically, the models demonstrated excellent 

performance for sampling depths in terms of low prediction AAPE and RMSE. Comparison between FFNN 

predicted and field estimations of Sv, Shmin, and Shmax stresses are shown in Figures 21-23, respectively.  

 Further, ML-based stress gradients were computed and compared with field estimations. Field 

estimations of vertical stress were obtained by integrating the densities of rock formations. Therefore, field 

estimation of Sv might be quite reliable to compare and check the consistency of ML-based in-situ stresses. 

However, the scenario is different for horizontal stresses that are computed using the elastic model 

assuming the rock is isotropic (Blanton and Olson, 1999). The stress model for the transversely isotropic 
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(TI) rocks is elaborated in Thiercelin and Plumb, (1994) and Higgins et al. (2008).  

𝜎ℎ − 𝛼𝜎𝑝𝑝 =  
𝐸ℎ𝑜𝑟𝑧

𝐸𝑣𝑒𝑟𝑡
 

𝜐𝑣𝑒𝑟𝑡

1−𝜐ℎ𝑜𝑟𝑧
(𝜎𝑣 − 𝛼(1 − 𝜉)𝜎𝑝𝑝) +

𝐸ℎ𝑜𝑟𝑧

1−(𝜐ℎ𝑜𝑟𝑧)2 𝜀ℎ +
𝐸ℎ𝑜𝑟𝑧 𝜐ℎ𝑜𝑟𝑧

1−(𝜐ℎ𝑜𝑟𝑧)2 𝜀𝐻  (Eq. 9) 

𝜎𝐻 − 𝛼𝜎𝑝𝑝 =  
𝐸ℎ𝑜𝑟𝑧

𝐸𝑣𝑒𝑟𝑡
 

𝜐𝑣𝑒𝑟𝑡

1−𝜐ℎ𝑜𝑟𝑧
(𝜎𝑣 −  𝛼(1 − 𝜉)𝜎𝑝𝑝) +

𝐸ℎ𝑜𝑟𝑧

1−(𝜐ℎ𝑜𝑟𝑧)2 𝜀𝐻 +
𝐸ℎ𝑜𝑟𝑧 𝜐ℎ𝑜𝑟𝑧

1−(𝜐ℎ𝑜𝑟𝑧)2 𝜀ℎ  (Eq. 10) 

 An elastic model approach is used to obtain the log-based horizontal stresses for TI anisotropic rocks 

as illustrated in Eqs. 9 and 10. The tectonic strain factors are sometimes assumed for the given basin that 

may lead to several uncertainties in the horizontal stress computation. Since log based Shmin and Shmax 

estimation may have been based on few assumptions it may cause a deviation from the actual stresses 

present at the site.  

 Based on this scenario, comparing ML predicted Shmin and Shmax with log-based Shmin and Shmax 

might not be enough to reach the firm conclusion about the consistency and reliability of the ML-based 

horizontal stresses (Shmin and Shmax). The horizontal stresses may not be taken as a benchmark for the 

purpose of validation of ML-based Shmin and Shmax.   

 FFNN predicted stress gradients were found to be in good agreement with the field estimations with 

some exceptions due to different rock types and physical properties (Figure 24). The stress gradients for 

Sv, Shmin, and Shmax stresses are demonstrated in Figure 25. A comparison revealed that FFNN intelligent 

models were able to capture the sonic waves variation to ultimately predict the vertical, minimum 

horizontal, and maximum horizontal stresses in well 16A(78)-32. The results imply that trained models and 

extracted mathematical correlations could be implemented to estimate the in-situ stresses.   
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Figure 21: Vertical stress (Sv) prediction in the well 16A(78)-32 using trained FFNN model. 
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Figure 22: Minimum horizontal stress prediction in the well 16A(78)-32 using trained FFNN model. 
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Figure 23: Maximum horizontal stress prediction in the well 16A(78)-32 using trained FFNN model. 

 The implementation of the FFNN model on field sonic logs for in-situ stress estimation provided a 

close match between field estimation and ML-based predicted in-situ stresses at the sampling depths of 

5474 and 5850 feet. Further, the Granitoid rock intervals have been identified through the correlation of 

gamma ray and sonic logs as well as dynamic Poisson’s ratio. The interval was selected based on distinctive 

gamma ray log value corresponding to sampling depths. It was observed that for the interval of Granitoid 

formation, the predicted stresses demonstrated pretty good agreement with the field estimation of stresses 

(Figure 23). 

 The stress gradients were also computed from the predicted in-situ stresses and compared with the field 

estimations. At the sampling depths, the FFNN predicted stresses are pretty close to field estimation. A 

comparison between the FFNN prediction-based stress gradients and field estimation is exhibited in Figure 

24. A comparison of prediction errors for RMSE and AAPE are demonstrated in Figure 25.  
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Figure 24: Correlation of in-situ stresses and well logs. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Comparison of ML based prediction of in-situ stress gradients and field estimation stress 

gradients. 

 

 

 

Well log Suite 16A(78)-32 
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8. Mathematical Correlation Development 

 All three optimized FFNN prediction models were converted into empirical mathematical correlations 

for stress estimations in vertical and two horizontal directions. The mathematical model can be 

conveniently used for stress estimation without running ML codes. The mathematical correlation functions 

well with the extracted weights and biases of an optimized FFNN model. Weights and biases for each 

optimized model are provided in Tables 3 through 5. 

8.1. Vertical Stress ‘σz’ Prediction Model 

 The mathematical expression of ML prediction model is given as below. 

 (𝜎𝑧)𝑁 = ∑ 𝑊𝑞𝑟𝑛ℎ𝑞 + 𝑏𝑟
𝐻𝑛
𝑞=1      (Eq. 11) 

𝑛ℎ𝑞 = 𝑓(∑ 𝑊𝑝𝑞𝑖𝑝 + 𝑏𝑞)
𝑁𝑝

𝑝=1       (Eq. 12) 

𝑛ℎ𝑞 = 𝑓 ((𝑊1𝑞(ℎ𝑧𝑧)𝑁 + 𝑊2𝑞(ℎ𝑧𝑦)
𝑁

+ 𝑊3𝑞(ℎ𝑧𝑥)𝑁 + 𝑏𝑞) (Eq. 13) 

f (x) = 
2

1+𝑒−2𝑥 − 1 = tanh(x) (Hyperbolic Tangent Sigmoidal Activation Function) (Eq. 14) 

 

𝐼𝑛𝑝𝑢𝑡𝑠 (𝑖𝑝) =
(ψ𝑚𝑎𝑥−ψ𝑚𝑖𝑛)(𝑖−𝑖𝑚𝑖𝑛)

(𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛)
+ ψ𝑚𝑖𝑛   (Eq. 15) 

 However, input features were normalized before the FFNN simulations (using Eq. 15), where, ψ𝑚𝑎𝑥 

and ψ𝑚𝑖𝑛 are 1 and -1 respectively. The maximum and minimum values of input features are provided in 

Table 1.  

(ℎ𝑧𝑧)𝑁 = 0.113 ((ℎ𝑧𝑧) − 53.0) − 1   (Eq. 16) 

(ℎ𝑧𝑦)
𝑁

= 0.123 ((ℎ𝑧𝑦) − 92.1) − 1   (Eq. 17) 

(ℎ𝑧𝑥)𝑁 = 0.182 ((ℎ𝑧𝑥) − 94.2) − 1    (Eq. 18) 

 After the normalization process, input features are shown in Eqs. 16 through 18.  

𝑂𝑢𝑡𝑝𝑢𝑡 =
(ψ𝑚𝑎𝑥−ψ𝑚𝑖𝑛)(𝑖−𝑖𝑚𝑖𝑛)

(𝑖𝑚𝑎𝑥−𝑖𝑚𝑖𝑛)
+ ψ𝑚𝑖𝑛    (Eq. 19) 

 The final output values of the ML model underwent de-normalization using Eq. 19. During the de-

normalization process, the values of 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 were taken as -1 and 1, respectively. ψ𝑚𝑎𝑥 and ψ𝑚𝑖𝑛 

correspond to the maximum and minimum values of the output feature.  

 (𝜎𝑧) = 17.55 ((𝜎𝑧)𝑁 + 1) − 19.8    (Eq. 20) 

 The de-normalized output feature for the proposed model is shown in Eq. 20. The model biases and 

weights for hidden, input, and output layers of FFNN predictive model are provided in Table 3.  
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Table 3: Biases and weights connecting the input, output, and hidden layers for FFNN ‘σz’ models. 

 
Weights connecting Hidden 

and Input Layers (wpq) 

Weights between 

Output and Hidden 

Layers (wqr) 

Hidden Layer 

Neurons bias values 

Hidden Layer 

Neurons (q) 

Input Layer Neurons (p) Output Neuron (r) Bias (bq) 

1 2 3     

1 -1.94 2.60 3.08 -0.38 5.09 

2 -2.39 4.05 0.23 -0.07 4.44 

3 -3.72 2.75 0.09 -0.20 4.28 

4 -4.12 -2.25 1.21 0.57 3.82 

5 0.49 -4.22 0.37 0.45 -4.07 

6 -2.04 -3.55 2.44 -0.17 3.26 

7 4.72 -0.49 -0.69 1.10 -2.85 

8 -0.99 3.91 -2.44 0.18 2.88 

9 -4.06 -1.71 -1.72 0.58 2.61 

10 3.75 -1.82 -2.31 1.20 -2.37 

11 3.95 0.61 -2.32 0.60 -2.78 

12 -2.21 -4.57 -2.92 -0.61 -0.83 

13 -1.47 -1.43 -3.00 -1.08 3.05 

14 0.64 1.50 4.64 -1.88 -2.01 

15 4.78 -3.09 -2.92 -3.02 0.16 

16 -3.86 2.13 -1.56 -1.27 0.03 

17 -2.11 2.01 -1.56 0.56 3.08 

18 -0.22 4.58 -0.90 -3.84 -0.41 

19 -4.55 -4.55 3.00 -3.62 -1.56 

20 2.34 -1.68 2.58 -1.07 1.02 

21 -0.49 -2.32 0.82 0.44 2.44 

22 -0.26 -1.15 -5.27 -2.22 0.18 

23 -3.64 2.68 -2.50 -0.95 0.55 

24 -2.13 5.08 -2.59 -0.32 0.82 

25 -1.53 2.69 2.43 -0.31 3.76 

26 5.36 -3.66 1.96 -0.95 -1.69 

27 5.01 2.18 2.60 0.75 1.39 

28 -0.70 -2.58 7.00 1.19 -3.50 

29 -4.82 3.30 -3.91 2.40 2.25 

30 0.53 4.00 1.57 -3.49 -5.01 

31 1.93 -1.74 4.89 0.50 2.27 

32 -6.18 -2.84 0.79 2.65 -2.47 

33 -2.43 -4.31 3.89 -2.21 -4.48 

34 -0.57 4.26 -1.26 -1.16 5.15 

35 -1.02 -4.40 -0.24 1.91 -2.39 

36 -4.01 3.98 3.64 0.98 -4.24 

37 -1.06 -3.57 1.63 -0.83 5.62 

38 -2.75 -3.02 1.00 0.46 -5.46 

Bias Values for Output Layer (br) -0.10 
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8.2. Maximum Horizontal Stress ‘σx’ Prediction Model 

 The mathematical expression of ML prediction model is given below.  

 (𝜎𝑥)𝑁 = ∑ 𝑊𝑞𝑟𝑛ℎ𝑞 + 𝑏𝑟
𝐻𝑛
𝑞=1       (Eq. 21) 

𝑛ℎ𝑞 = 𝑓(∑ 𝑊𝑝𝑞𝑖𝑝 + 𝑏𝑞)
𝑁𝑝

𝑝=1        (Eq. 22) 

𝑛ℎ𝑞 = 𝑓 ((𝑊1𝑞(ℎ𝑧𝑧)𝑁 + 𝑊2𝑞(ℎ𝑧𝑦)
𝑁

+ 𝑊3𝑞(ℎ𝑧𝑥)𝑁 + 𝑊4𝑞(𝜎𝑧)𝑁 + 𝑏𝑞) (Eq. 23) 

f (x) = 
2

1+𝑒−2𝑥 − 1 = tanh(x) (Hyperbolic Tangent Sigmoidal Activation Function) (Eq. 24) 

 

(ℎ𝑧𝑧)𝑁 = 0.113 ((ℎ𝑧𝑧) − 53.0) − 1    (Eq. 25) 

(ℎ𝑧𝑦)
𝑁

= 0.123 ((ℎ𝑧𝑦) − 92.1) − 1    (Eq. 26) 

(ℎ𝑧𝑥)𝑁 = 0.182 ((ℎ𝑧𝑥) − 94.2) − 1    (Eq. 27) 

(𝜎𝑧)𝑁 = 0.057 ((𝜎𝑧) − 19.8) − 1    (Eq. 28) 

 

 (𝜎𝑥) = 22.55 ((𝜎𝑥)𝑁 + 1) − 19.9     (Eq. 29) 

 The normalized input features are shown in Eq. 25 to Eq. 28.  For the proposed model, the de-

normalized model output is demonstrated in Eq. 29. The model biases and weights for hidden, input, and 

output layers of the FFNN predictive model are provided in Table 4. 

Table 4: Biases and weights connecting the input, output, and hidden layers for FFNN ‘σx’ models. 

 
Weights connecting Hidden and Input 

Layers (wpq) 

Weights between 

Output and Hidden 

Layers (wqr) 

Hidden Layer 

Neurons bias values 

Hidden Layer 

Neurons (q) 

Input Layer Neurons (p) Output Neuron (r) Bias(bq) 

1 2 3 4     

1 0.81 1.59 0.45 -2.21 -1.18 -2.58 

2 1.61 0.36 -0.52 -1.51 0.66 -2.88 

3 -2.25 1.18 0.99 -0.16 0.81 1.78 

4 2.14 -1.67 1.05 -0.04 -0.70 -1.44 

5 -1.47 -0.37 2.55 1.66 -0.42 -0.34 

6 1.47 0.67 1.62 -0.12 -1.02 -0.16 

7 1.22 -0.51 3.80 -2.52 2.28 -0.54 

8 0.17 -3.12 1.59 -1.51 2.26 0.80 

9 1.10 1.09 -2.50 0.50 1.12 -3.03 

10 3.23 2.69 1.10 -1.22 -2.23 -0.37 

11 -1.52 1.97 1.10 -1.44 -1.48 -1.45 

12 0.57 1.14 3.96 -0.22 3.51 1.67 

13 3.85 3.26 -2.90 1.02 1.60 1.75 

14 0.60 -0.97 0.88 -1.59 -0.94 1.97 

 Bias Values for Output Layer (br) 0.06 
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8.3. Minimum Horizontal Stress ‘σy’ Prediction Model 

 The mathematical expression of ML prediction model is given below. 

 (𝜎𝑦)
𝑁

= ∑ 𝑊𝑞𝑟𝑛ℎ𝑞 + 𝑏𝑟
𝐻𝑛
𝑞=1       (Eq. 30) 

𝑛ℎ𝑞 = 𝑓(∑ 𝑊𝑝𝑞𝑖𝑝 + 𝑏𝑞)
𝑁𝑝

𝑝=1        (Eq. 31) 

𝑛ℎ𝑞 = 𝑓 ((𝑊1𝑞(ℎ𝑧𝑧)𝑁 + 𝑊2𝑞(ℎ𝑧𝑦)
𝑁

+ 𝑊3𝑞(ℎ𝑧𝑥)𝑁 + 𝑊4𝑞(𝜎𝑧)𝑁 + 𝑏𝑞) (Eq. 32) 

f (x) = 
2

1+𝑒−2𝑥 − 1 = tanh(x) (Hyperbolic Tangent Sigmoidal Activation Function) (Eq. 33) 

(ℎ𝑧𝑧)𝑁 = 0.113 ((ℎ𝑧𝑧) − 53.0) − 1    (Eq. 34) 

(ℎ𝑧𝑦)
𝑁

= 0.123 ((ℎ𝑧𝑦) − 92.1) − 1    (Eq. 35) 

(ℎ𝑧𝑥)𝑁 = 0.182 ((ℎ𝑧𝑥) − 94.2) − 1    (Eq. 36) 

(𝜎𝑧)𝑁 = 0.057 ((𝜎𝑧) − 19.8) − 1    (Eq. 37) 

 

(𝜎𝑦) = 17.7 ((𝜎𝑦)
𝑁

+ 1) − 19.7    (Eq. 38) 

 The normalized input features are shown in Eq. 34 to Eq. 37. For the proposed model, the de-

normalized model output is demonstrated in Eq. 38. The model biases and weights for hidden, input, and 

output layers of the FFNN predictive model are provided in Table 5. 

Table 5: Biases and weights connecting the input, output, and hidden layers for FFNN ‘σy’ models. 

 
Weights connecting Hidden and Input 

Layers (wpq) 

Weights between 

Output and Hidden 

Layers (wqr) 

Hidden Layer 

Neurons bias values 

Hidden Layer 

Neurons (q) 

Input Layer Neurons (p) Output Neuron Bias(bq) 

1 2 3 4     

1 -1.40 -1.29 0.01 1.42 -0.60 2.52 

2 0.47 0.74 -3.26 0.27 -2.51 -3.11 

3 -2.70 -2.36 -1.41 -0.35 2.14 1.78 

4 -2.52 1.49 0.23 -1.44 -2.57 1.26 

5 -0.92 -1.20 1.34 -1.80 -2.23 -0.58 

6 0.10 1.75 -1.93 -2.43 2.07 0.16 

7 -1.09 -3.54 0.43 -1.01 1.81 -0.73 

8 2.01 1.16 -0.38 -2.03 -1.04 1.41 

9 1.65 -2.19 -1.10 -2.37 -1.43 1.43 

10 -0.71 1.45 2.20 -2.16 1.43 -1.95 

 Bias Values for Output Layer (br) -0.80 
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9. Conclusions 

The project Milestone comprised implementation of trained ML models (trained on labTUV) on field 

sonic logs for the estimation of in-situ stresses in Utah FORGE well 16A(78)-32 has been completed. In 

completing the milestone, labTUV-trained ML models were successfully employed for the estimation of 

in-situ vertical, minimum horizontal and maximum horizontal stresses. The present milestone presents the 

ML models as a white box which is able to capture the underlying physics of the prediction problem. The 

main finding of this task is that the labTUV-trained ML models are capable of estimating the in-situ vertical 

stress as a function of field sonic logs slowness (one P-wave and two S-waves), and horizontal stresses as 

a function field sonic logs slowness and vertical stress. This conclusion is developed based on promising 

accuracy indicators of in-situ stress prediction outcomes reflecting the reliability and robustness of the field 

implementation of ML models in terms of low RMSE, AAPE and high R2. Further, ML models have 

uncovered the physics of the phenomenon that actually led to their successful implementation on field sonic 

logs for in-situ stresses prediction especially at the sampling depths. Hence, the mathematical demonstration 

of the proposed ML models can be employed with reasonable confidence for in-situ stress estimation across 

the sample zones provided that the same input/output features and ranges are used. The mathematical model 

has to be recalibrated if prediction is required outside of the mentioned ranges of input and output features. 

Overall, the best in-situ stresses prediction performance was observed for the sampling intervals (5474 

and 5850 ft) as compared to the other locations in the well. This is expected because the ML models were 

trained for the Granitoid samples retrieved from the same depths. Exceptions are possible at locations other 

than sampling depth in terms of different rock properties that lead to different sonic velocity ranges. 

Nonetheless, predictions of the in-situ stresses using labTUV trained ML models are of acceptable quality 

and provide a promising path forward for providing the economical, quick and robust solution for 

estimating in-situ stresses.   
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11. Nomenclature 

p  = Neurons count for input layer, unitless 

q  = Neurons count for hidden layer, unitless 

ip  = Input features after normalization, unitless 

𝑊𝑝𝑞 = Weight connecting input and hidden layer neurons, unitless 

𝑊𝑞𝑟 = Weight connecting hidden and output layer neurons, unitless 

f  = Activation function, unitless 

br  = bias values for output layer, unitless 

bq  = bias values for hidden layer, unitless 

N   = Feature value after normalization, unitless 

Hn  = Total count of hidden layer neurons, unitless 

Np  = Total count of input features, unitless 

𝑛ℎ𝑞 = Neuron at qth position in central hidden layer 

ψ𝑚𝑖𝑛  = Factor used to normalize the features, unitless  

ψ𝑚𝑎𝑥  = Factor used to normalize the features, unitless  

hzz  = P-wave slowness in z-direction (vertical) in μsec/ft 

hzx  = S-wave slowness in z-direction polarized in x-direction in μsec/ft  

hzy  = S-wave slowness in z-direction polarized in y-direction in μsec/ft 

(hzz)N = Normalized P-wave slowness, unitless 

(hzx)N = Normalized S-wave slowness in z-direction polarized in x-direction, 

unitless  

(hzy)N = Normalized S-wave slowness polarized in y-direction, unitless    

σz  = Vertical stress in MPa 

σx  = 1st horizontal stress (along x-direction) in MPa 

σy  = 2nd horizontal stress (along y-direction) in MPa 

(𝜎𝑧)𝑁 = Normalized vertical stress output, unitless 

(𝜎𝑥)𝑁 = Normalized 1st horizontal stress output, unitless  

(𝜎𝑦)
𝑁

 = Normalized 2nd horizontal stress output, unitless 

𝑖  = Input features, unitless  

𝑖𝑚𝑖𝑛 = Input feature’s minimum value, unitless 

𝑖𝑚𝑎𝑥 = Input feature’s maximum value, unitless    
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𝛽𝑎  = Original value, unitless 

𝛽𝑝   = Predicted value, unitless 

n   = Count of data points, unitless 

ΔW = learning components in ANN algorithm, unitless 

α  = momentum parameter, unitless 

η  = output error, unitless 

E  = adjusted weights, unitless 
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