Metering and Monitoring Plan for the Flagg Loop Geothermal Network in Framingham, MA

This report describes the metering and monitoring strategy for geothermal networks as developed for the Flagg Loop in Framingham, MA. This report is a product from the Budget Period 1 (BP1) "Planning and Design" of the Community Geothermal Heating and Cooling (CGHC) grant awarded by the Department of Energy (DOE) to HEET. The partner organizations of this project are: Eversource Energy- the Deployment Partner; the City of Framingham - the Municipal Partner, Salas O'Brien - the Design Partner, and HEET, the main recipient. HEET is a non-profit with a mission to drive systems change through an ethical and efficient thermal energy transition

The metering and monitoring system was designed to include all necessary data to calculate the extent of synchronous and asynchronous load cancellation observed on hourly, daily, and seasonal scales. By analyzing these load cancellations, the efficiency and reliability of the geothermal system can be improved. Additionally, the system design will help optimize seasonal and thermal performance through strategic operation and thermal storage. This involves the careful management of energy flows to ensure the system operates efficiently across different seasons, balancing heating and cooling demands.

Key components of this optimization strategy include the installation of BTU meters, pump power meters, and temperature sensors, which are crucial for accurately monitoring system performance. These instruments provide real-time data on energy usage, flow rates, and temperature variations, enabling precise adjustments to maintain optimal performance. Tables 1 and 2 serve as a reference, outlining critical data points to be collected, their significance, and the methods for measurement and collection. The data points include ground loop water supply temperatures, flow rates, and delta T (temperature difference) over time, which help determine appropriate seasonal variations and assess the need for supplemental heating and cooling equipment. Additionally, data on the cost and time required to charge the wellfield, ground loop water flow, and the addition of make-up water/glycol provide insights into operational efficiency and maintenance needs.

The team ensured that the design incorporated comprehensive monitoring and data collection strategies. This enables accurate tracking of system performance and identification of any issues that may arise during operation. These accomplishments reflect significant progress made during the initial phases of the project, setting a strong foundation for future work.

Data Point	Significance & Learning	How Measured / Collected
Ground loop water supply	Determine appropriate and	Btu and temperature meters
temperatures (°F) to buildings;	acceptable seasonal variations	on the ground-loop heat
seasonal variations	in wellfield temperatures given	exchanger's supply and return
	customer-side equipment	connections; heat flows and
	requirements	temperatures logged and
		stored every hour throughout
		operational life of project
Ground loop water supply	Assess the need for	Btu and temperature meters
temperatures (°F) to buildings;	supplemental heating and	on the ground-loop heat
year-over-year comparisons	cooling equipment (i.e. cooling	exchanger's supply and return
	tower and boiler) in order to	connections; heat flows and
	maintain the effectiveness of	temperatures logged and
	the ground loop throughout its	stored every hour throughout
	operational life	operational life of project
Ground loop delta T (°F)	Study the allowable tolerance	Btu and temperature meters
between return and supply	for delta T based on customer's	on the ground-loop heat
over time	equipment ratings,	exchanger's supply and return
	performance, etc.	connections; heat flows and
		temperatures logged and
		stored every hour throughout
		operational life of project
Cost / time required to charge	Best practices for cost-	Boiler trends (supply/return
the wellfield (if needed to	effectively, sustainably	temperatures, fire rate, flow)
balance the wellfield	charging the wellfield (e.g.,	logged on an hourly basis and
temperature)	during nighttime off-peak	stored throughout operational
	hours if an electric boiler on a	life of project
	TOU rate structure)	
Ground loop water flow (GPM)	Assess the flow requirements	Flow meters on the ground-
over time	of the system during varying	loop heat exchanger's supply
	climate conditions; identify	and return connections; water
	any central flow imbalances	flows (GPM) logged and stored
	(i.e., leaks)	every hour throughout
		operational life of project
Addition of make-up	Assess the typical volume and	Consumption meter (gallons)
water/glycol (gallons) over	cost requirements of keeping	on the make-up system; log of
time (if required due to leaks,	the system full of working	glycol purchases, if applicable
flushing, etc.)	fluid	

 Table 1. Eversource Geothermal Network Monitoring Data Points

Run-time and electricity	Better understand the	Trends programmed for each
consumption (hours and kWh)	operational load profile and	central pump
of central loop infrastructure	cost of the central pumping	
	system	
Cost of customer building-side	Better understand (and, in the	Log using invoiced cost for
HVAC installation (maximum,	future, advise on) the cost to	each customer's system
minimum, median, average)	install or retrofit existing	
	customer-side HVAC systems	
	to function with a community	
	ground loop; understand cost	
	range across system types	
Cost of annual customer-side	Better understand (and, in the	Log using invoiced cost for
preventative maintenance and	future, advise on) the	each customer's system
unscheduled repairs	customer-side maintenance	
	and repair costs to be incurred	
	when connecting to a	
	community ground-loop	
Amount of water quality	Understand the tendency of	Monthly water quality tests
impact / scale buildup (from	scale to occur and whether	(PPM, scale, etc.) in two
both Company and customer	condenser water should be	locations within the central
sides of loop)	provided directly to customers	loop as well as at two randomly
	or via a heat exchanger;	selected customer connections
	determine who would own the	
	heat exchanger	
Occupant comfort / space	Understand customers'	Surveys
conditioning	satisfaction levels with the	
	GSHP condenser water service	
Timeframes	Better understand time	Information logged during
	requirements for customer	course of project management
	acquisition, equipment and	
	labor procurement, and	
	construction activities across a	
	range of installation types	

Table 2. Eversource Geothermal Network Monitoring Topic Areas

Topic Area	Data Points to Collect
Validate Installation and Costs	System installation costs
	Ongoing O&M costs
Customer Acceptance	Customer Satisfaction surveys
	Customer comfort
Carbon Reductions	Emissions reductions

	System Performance
Technology Performance	System Performance
	Changes in customer energy consumption
Cost Savings	Changes in customer heating and cooling costs