

MAT MIXED AIR TEMPERATURE

DO DIGITAL OUTPUT

- 7. THE CONTRACTOR SHALL PERFORM WORK IN A SKILLED AND PROFESSIONAL MANNER. 8. ALL CONTRACTORS ARE RESPONSIBLE TO FIELD COORDINATE WORK SCHEDULE WITH OWNER REPRESENTATIVE.
- 9. THE CONTRACTOR SHALL WORK AND COORDINATE WITH THE OTHER TRADES.
- 10. ALL EQUIPMENT SHALL BE NEW AND IN UNDAMAGED CONDITION. ANY EQUIPMENT FOUND DEFECTIVE SHALL BE IMMEDIATELY REMOVED FROM THE PROJECT.
- 11. PROVIDE 3 COPIES OF AN OPERATION AND MAINTENANCE MANUAL FOR ALL EQUIPMENT. EACH PIECE OF EQUIPMENT SHALL STATE THE CONTRACT DATE AND THE NAME, ADDRESS AND PHONE NUMBER FOR THE PRIME CONTRACTOR, SUBCONTRACTOR PERFORMING THE INSTALLATION, AND THE LOCAL VENDOR FOR SPARE PARTS. THE MANUALS SHALL CONTAIN MAINTENANCE INSTRUCTIONS REQUIRED FOR THE INSTALLED EQUIPMENT. MANUALS SHALL BE BOUND IN A THREE RING HARD COVER BINDER. O & M MANUALS SHALL BE SUBMITTED TO THE OWNER PRIOR TO FINAL WALK THROUGH OF THE PROJECT.
- 12. PROVIDE OWNER TRAINING FOR THE INSTALLED EQUIPMENT. TRAINING SHALL BE HELD ONLY AFTER ALL OF THE EQUIPMENT IS INSTALLED AND PROPER OPERATION IS VERIFIED.
- 13. CONTRACTOR SHALL SUBMIT A CERTIFIED REPORT INDICATING SYSTEM PERFORMANCE INCLUDING, BUT NOT LIMITED TO, VOLTAGE AND AMPERAGE MEASUREMENTS OF ALL EQUIPMENT GREATER THAN 1/3 H.P. WATER BALANCE MEASUREMENTS OF EACH COIL AND PUMP. AIR BALANCE MEASUREMENTS OF OUTSIDE AIR DELIVERY, AIR HANDLING UNIT SUPPLY, SUPPLY DIFFUSERS, EXHAUST AND RETURN GRILLES. AIR BALANCE SHALL BE WITHIN 10% OF DESIGN CONDITIONS. THE REPORT CERTIFICATION SHALL BE AS FOLLOWS: I (name) of (company) CERTIFY THAT ALL MEASUREMENTS, FIGURES AND STATEMENTS
 - INDICATED IN THIS REPORT WERE TAKEN BY ME OR UNDER MY SUPERVISION AND ARE ACCURATE AS OF (date). DESIGN FLOWS WERE BASED UPON PLANS DATED (xx/xx/xx).

1

2

С

B

4

6

INPUT/OUTPUT INSTRUMENT AIR INVERT ELEVATION INCH INSUL INSULATION

J-BOX JUNCTION BOX

LEAVING AIR TEMPERATURE POUND LEAVING LIQUID TEMPERATURE LOCATION

LOW VOLTAGE LEAVING WATER TEMPERATURE MAKE-UP AIR OR MIXED AIR

MAXIMUM 1000 BTU PER HOUR MECHANICAL CONTRACTOR MINIMUM CIRCUIT AMPS

MECH MECHANICAL MINIMUM MANUFACTURER MOCP MAX OVER CURRENT PROTECTION

> NOT FOR CONSTRUCTION NATURAL GAS NOT IN CONTRACT NOT TO SCALE

OUTSIDE AIR ON CENTER OPEN END DUCT

OPNG OPENING OPP OPPOSITE PUMP

> PERPENDICULAR PROPYLENE GLYCOL PLUMBING PANEL

PLUMBING CONTRACTOR

POUNDS PER HOUR PRESSURE PRESSURE RELIEF VALVE POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH POUNDS PER SQUARE INCH GAUGE

QUANTITY

RADIUS RETURN AIR ROOF DRAIN RELIEF

REVERSE OR REVISION RETURN AIR GRILLE REVOLUTIONS PER MINUTE ROOF TOP UNIT

SUPPLY AIR SANITARY SCHEDULE SECTION SEPARATOR SQUARE FEET SUPPLY GRILLE

SHEET SHWR SHOWER SIMILAR STATIC PRESSURE SPEC SPECIFICATIONS SQUARE SS STAINLESS STEEL

T&B

W/

W/IN

W/O

WB

WC

WG

DIAPHRAGM EXPANSION TANK

ENTERING WATER TEMPERATURE T&P

EXISTING TO REMAIN

FLOAT AND THERMOSTATIC

FRESH AIR

FLOOR DRAIN

FOOT (FEET)

GAUGE/GAGE

GFS GLYCOL FEED STATION

GPM GALLONS PER MINUTE

GENERAL CONTRACTOR

GEOTHERMAL PUMP

GSS GEOTHERMAL SOURCE SUPPLY

HDPE HIGH DENSITY POLYETHYLENE

GLHX GROUND LOOP HEAT EXCHANGER

GEOTHERMAL SOURCE PUMP

GEOTHERMAL SOURCE RETURN

GALLON

GALV GALVANIZED

FCO FLOOR CLEANOUT

FPM FEET PER MINUTE

FLR FLOOR

FURN FURNACE

ET

ETR EWT

F&T

FA

FD

FT

GA

GAL

GC

GP

GSP

GSR

HT

HD HEAD

HORIZ HORIZONTAL

HP HORSEPOWER

HW HOT WATER

HR HOUR (HOURS)

HEIGHT

HWR HOT WATER RETURN HWS HOT WATER SUPPLY

TEST AND BALANCE OR TOP AND BOTTOM TEMPERATURE AND PRESSURE RELIEF VALVE TEMP TEMPERATURE OR TEMPORARY TG TRANSFER TYP TYPICAL TRANSFER GRILLE

UNO UNLESS NOTED OTHERWISE V VOLT

VAR VARIABLE OR VARIES VEL VELOCITY VERT VERTICAL VFD VARIABLE FREQUENCY DRIVE VOL VOLUME VS VENT STACK

VTR VENT THRU ROOF WITH WITHIN

WITHOUT WET BULB WATER COLUMN (INCHES OF) WCO WALL CLEANOUT WATER GAUGE WOG WATER, OIL, GAS

WP WEATHER PROOF WP WORKING PRESSURE WSHP WATER SOURCE HEAT PUMP WT WEIGHT

GENERAL NOTES

1. REFER TO CIVIL PLANS FOR COORDINATION OF AMBIENT LOOP AND UTILITIES. 2. REFER TO G701 FOR BUILDING CONNECTION PIPE SIZING.

3. REFER TO G501 FOR BUILDING PENETRATION DETAILS.

7

3 CIRCUIT #5 REVERSE-RETURN PIPING DETAIL

2 AMBIENT LOOP VAULT SECTION VIEW

4 AMBIENT LOOP VAULT SCHEMATIC

5

4

GENERAL NOTES

1. REFER TO CIVIL AND STRUCTURAL DRAWINGS FOR ADDITIONAL VAULT STRUCTURE INFORMATION.

\bigcirc	KEYED NOTES
\bigcirc	REFER TO DETAIL 7/G501 FOR FLOW METER INSTALLATION.
2	PRESSURE RELIEF VALVE SHALL BE PIPED TO GLYCOL FEED STATION GFS-1
3	8" FILL/PURGE PORT WITH BUTTERFLY VALVES.
4	INSTALL TEMPORARY BYPASS PIPING IN PLACE OF AMBIENT LOOP PUMP <u>AL</u> BE UTILIZED FOR SYSTEM FLUSHING. AFTER FLUSHING IS COMPLETE, INSTA AMBIENT LOOP PUMPS <u>ALP-1</u> AND <u>ALP-2</u> .
5	REFER TO DETAIL 7/G502 FOR HDPE PENETRATION THRU WALL TO STEEL TRANSITION.

8

7

6

2 GEOTHERMAL PUMP SECTION VIEW

7

4 GEOTHERMAL MANIFOLD SECTION VIEW

6

REQUIREMENTS. REFER ALSO TO SPECIFICATION SECTIONS 23 21 42, 23 21 53, AND 23 21 59.

2 AIR/DIRT SEPARATOR DETAIL NOT TO SCALE

ATTACHMENT REQUIREMENTS. INSULATE AND PROVIDE JACKET Δ Δ PER SPECIFICATION FOR THE RESPECTIVE WATER SYSTEM.

8 SUPPLEMENTAL PIPE HANGER DETAIL

5

6

9 FLOOR MOUNTED PIPE SUPPORT DETAIL

7

8

6 VERTICAL HEAT EXCHANGER DETAIL

(PRESSURIZE DRY TANK EQUAL TO FILL VALVE PRESSURE)

- LOW CAPACITY AIR VENT

TO PUMP SUCTION

TRACER WIRE (TYP)

1. INSTALL PER MANUFACTURES WRITTEN INSTRUCTIONS. SUPPORT HANGERS SHALL NOT INTERFERE WITH ISOLATION VALVES. PROVIDE REMOVABLE DRAIN PIPING ASSEMBLY AND PIPE TO NEAREST FLOOR SINK. UPON TESTING, REMOVE AND STORE PER OWNER'S DIRECTION.

3 AUTOMATIC AIR VENT ASSEMBLY DETAIL

WARNING TAPE

(BY CIVIL)

FINAL GRADE

PUMF	SCHEDU	JLE																											
				DESIGN	DESIGN			DUMD	VIBR	ATION		MOTOR					ELECTRICAL				PLIMP	SIZE (IN)						· · · · · · · · · · · · · · · · · · ·	
			WORKING	FLOW	HEAD	DEAD HEAD	FLOW @	EFFICIENCY	ISOLA	ATION						FREQUENCY	DISCO	NNECT	CONTROLL	LER/STARTER			IMPELLER SIZE	WEIGHT		SUCTION			1
TAG	SERVES	PUMP TYPE	FLUID	(GPM)	(FT. HD)	(FT. HD)	100%	(%)	TYPE	DEFL.	BHP	HP	RPM	VOLT	PHASE	(HZ)	BY	TYPE	BY	TYPE	SUCTION	DISCHARGE	(IN.)	(LBS)	FRAME	DIFFUSER	MANUFACTURER	MODEL	NOTES
ALP-1	AMBIENT LOOP	IN-LINE	25% PG	500	60	68.7	113	77.3			10.1	15	1,647	208	3	60					5	5	8.875	465	254TC	GF-3X	BELL & GOSSETT	E-80SC 5x5x9.5B	1 - 5
ALP-2	AMBIENT LOOP	IN-LINE	25% PG	500	60	68.7	113	77.3			10.1	15	1,647	208	3	60					5	5	8.875	465	254TC	GF-3X	BELL & GOSSETT	E-80SC 5x5x9.5B	1 - 5
GSP-1	GLHX-1	IN-LINE	25% PG	500	90	102	118	75.9			15.4	20	1,738	208	3	60					5	5	10.125	630	256TC	GF-3X	BELL & GOSSETT	E-80SC 5x5x11	1 - 5
GSP-2	GLHX-1	IN-LINE	25% PG	500	90	102	118	75.9			15.4	20	1,738	208	3	60					5	5	10.125	630	256TC	GF-3X	BELL & GOSSETT	E-80SC 5x5x11	1 - 5
NOTES:																													

1. REFER TO SPECIFICATION SECTION 23 21 23 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.

2. PROVIDE SHAFT GROUNDING AS REQUIRED PER MOTOR SPECIFICATION 23 05 13.

3. MOTOR ENCLOSURE SHALL BE TOTALLY ENCLOSED, FAN COOLED, AND RATED FOR OUTDOOR OPERATION.

4. IMPELLER SIZE TO BE THE MAX SIZE FOR THE RATED HORSEPOWER. DO NOT TRIM TO SELECTION POINT. 5. SUCTION DIFFUSER SELECTION BASED ON BELL & GOSSETT MODELS.

EXPA	NSION	TANK	SCHEDU	LE																PR	ESSI	URE RE	LIEF	VALVE	SCH	EDULI	Ξ				
					SIZE	CAP	ACITY		SYSTEM		SYSTEM C	OPERATING	SYSTEM TE	MPERATURE									IN	LET	OL	TLET					
						MIN. ACCEPT.	MIN. TANK	FIELD AIR	WATER		RANGE (G	GAUGE PSI)	RAN	GE (°F)									SIZE		SIZE			SETTING			
TAG	ΟΠΑΝΤΙΤΧ	SYSTEM	TYPE			VOLUME					MIN	МАХ	MIN	MAX		WET WEIGHT		MODEL	NOTES	TAG	;	SERVES	(IN.)	ANSI CLASS	(IN.)	ANSI CLASS	LOCATION	(PSIG)	MANUFACTURER	MODEL	NOTES
ET-1	1	AMBIENT		88	36	280	317	17	28,500	PROPYLENE -	18	79	40	90	1 1/2	3,320	BELL & GOSSETT	B-1200	1, 2	PRV-	-1 AN	IBIENT LOOP	3/4"	125	3/4"	125	DISCHARGE SIDE OF PUMP	110	BELL & GOSSETT	790-110	1, 2
NOTES:																				PRV-	2 0	GLHX LOOP	3/4"	125	3/4"	125	DISCHARGE SIDE OF PUMP	110	BELL & GOSSETT	790-110	1
1. 2.	CONTRACTOR	SHALL DOCU	MENT WATER VOLUM	E COMPRESS E REQUIRED	FOR SYSTEM FIL	AND NOTIFY ENG	AKS DURING FIL BINEER OF THE A	ACTUAL SYSTE	M WATER VOL	E PRESSURE AND F LUME (GAL.). RECO	REPLACE AIR V	VALVE. VOLUMES IN CO	ORRESPONDING	G O&M MANUA	LS AND TAB REP	ORT.				<u>NOT</u>	<u>TES:</u> 1. REF	FER TO FLOW DIA(GRAMS ANI	D/OR PLANS FOR	R INSTALLA	- TION LOCATIO	N.				

21

C5

6

14

13.8

193

460 @ 185'

100

GLYCOL FEED SYSTEM DIMENSIONS PRESSURE SYSTEM TANK RANGE PRESSURE VOLUME DIAMETER HEIGHT (PSIG) (PSIG) TAG LOCATION SERVES FLUID MIX (GAL) (IN.) (IN.) GFS-1 AMBIENT LOOP VAULT AMBIENT LOOP 25% PG 5 - 55 55 24 49

NOTES: 1. SEE SPECIFICATION SECTIONS 23 21 15 FOR ADDITIONAL SYSTEM REQUIREMENTS. 2. PROVIDE LOW LEVEL ALARM PANEL WITH REMOTE MONITORING DRY CONTACTS AND SELECTABLE AUDIBLE ALARM.

- 3. UNIT SHALL BE PROVIDED WITH THE FOLLOWING:
- A. PUMP SUCTION HOSE WITH INLET STRAINER. B. PRESSURE PUMP WITH THERMAL CUT-OUT.
- C. INTEGRAL PRESSURE SWITCH.
- D. INTEGRAL CHECK VALVE.
- E. CORD AND PLUG.
- F. PRE-CHARGED ACCUMULATOR TANK WITH EPDM DIAGPHRAGM. G. MANUAL DIVERTER VALVE FOR PURGING AIR AND AGITATING CONTENTS OF STORAGE TANK.
- H. ADJUSTABLE PRESSURE REGULATING VALVE (5 55 PSIG) WITH PRESSURE GAUGE.
- I. LOW LEVEL CUT-OUT.

AIR/D	IRT SEPA	RATOR	SCHED	ULE								
TAG	LOCATION	SYSTEM	TYPE	STRAINER	GPM	MAX. PRESSURE DROP (FT. HD)	SIZE (IN.)	DRY WEIGHT (LBS)	WET WEIGHT (LBS)	MANUFACTURER	MODEL	NOTES
ADS-1	AMBIENT LOOP VAULT	AMBIENT LOOP	COALESCING	YES	500	3	6	165	366	BELL & GOSSETT	CRSN-6F	1 - 3
NOTES:		ATION SECTION 2										
1. 2.	UNIT SHALL BE INST	ALLED TO ALLOW	FOR PROPER R	EMOVEABLE OF ST	RAINER. COORI	DINATE SERVICE CL	EARANCE BE	ELOW UNIT.				

3. UNIT SHALL BE PROVIDED WITH AIR VENT AND BLOW DOWN PORT WITH VALVE.

GEOTHERMAL MANIFOLD (GM-1) CIRCUIT SCHEDULE

CIRCUIT SIZING SUMMARY FOR GM-1 LOCATED WITHIN GLHX-1								
CIRCUIT ID #	c	:1	С	2	C	;3	С	:4
CIRCUIT SIZE (IN.)		6	(ô	(3	(6
# OF BORES / CIRCUIT [TOTAL BORE COUNT = 80]	1	8	1	8	1	8	1	2
FLOW RATE PER BORE (GPM)	13	3.8	13	3.8	13	3.8	13	8.8
CIRCUIT FLOW RATE (GPM) [MANIFOLD TOTAL = 1,100 GPM]	24	48	24	48	24	48	16	65
CIRCUIT FLUSHING FLOW RATE (GPM) @ FT HD [MINIMUM FLUSH VELOCITY = 5 FPS]	590 @	D 210'	590 @) 205'	590 @) 205'	395 @	D 180'
APPROXIMATE DISTANCE FROM MANIFOLD TO FIRST BORE ON CIRCUIT (FT) [CONTRACTOR TO VERIFY]	1(00	8	0	6	0	7	0
APPROXIMATE DISTANCE FROM LAST BORE ON CIRCUIT (FT) TO MANIFOLD [CONTRACTOR TO VERIFY]	4	06	38	36	3(56	26	68
CIRCUIT PIPE SIZING BETWEEN BORES (IN.)	GSR	GSS	GSR	GSS	GSR	GSS	GSR	GSS
$GEO\;MANIFOLD\;\;\to\;BORE\;1$	6		6		6		6	
$BORE1 \ \rightarrow \ BORE2$	6	1.5	6	1.5	6	1.5	4	1.5
$BORE\ 2\ \rightarrow\ BORE\ 3$	6	2	6	2	6	2	4	2
BORE 3 \rightarrow BORE 4	6	3	6	3	6	3	4	3
BORE 4 \rightarrow BORE 5	6	3	6	3	6	3	4	3
BORE 5 \rightarrow BORE 6	4	3	4	3	4	3	4	3
BORE 6 \rightarrow BORE 7	4	3	4	3	4	3	3	3
BORE 7 \rightarrow BORE 8	4	4	4	4	4	4	3	4
BORE 8 \rightarrow BORE 9	4	4	4	4	4	4	3	4
BORE 9 \rightarrow BORE 10	4	4	4	4	4	4	3	4
BORE 10 \rightarrow BORE 11	4	4	4	4	4	4	2	4
BORE 11 \rightarrow BORE 12	4	4	4	4	4	4	1.5	4
BORE 12 \rightarrow BORE 13	3	4	3	4	3	4		
BORE 13 \rightarrow BORE 14	3	4	3	4	3	4		
BORE 14 \rightarrow BORE 15	3	6	3	6	3	6		
BORE 15 \rightarrow BORE 16	3	6	3	6	3	6		
BORE 16 → BORE 17	2	6	2	6	2	6		
BORE 17 \rightarrow BORE 18	1.5	6	1.5	6	1.5	6		
LAST BORE \rightarrow GEO MANIFOLD		6		6		6		6

1. REFER TO SPECIFICATION SECTIONS 23 21 42, 23 21 53, 23 21 59 AND 23 21 56 FOR ADDITIONAL REQUIREMENTS. 2. REFER TO DETAILS FOR ADDITIONAL SIZING AND ROUTING REQUIREMENTS.

3. GPS COORDINATES SHALL BE DOCUMENTED FOR ALL BORES.

NOTES:

1

- 4. GSR = GEOTHERMAL SOURCE WATER RETURN FROM BUILDING TO GEOTHERMAL MANIFOLD.
- 5. GSS = GEOTHERMAL SOURCE WATER SUPPLY FROM GEOTHERMAL MANIFOLD TO BUILDING.

6. EACH CIRCUIT SHALL BE PIPED IN A REVERSE-RETURN ARRANGEMENT. 7. GSR PIPE REDUCERS SHALL BE INSTALLED DOWNSTREAM OF THE RESPECTIVE

BORE CONNECTION WHEN PIPE SIZE CHANGES; GSS PIPE INCREASERS SHALL BE INSTALLED UPSTREAM OF THE RESPECTIVE BORE CONNECTION WHEN PIPE SIZE CHANGES.

2

	ELECT	RICAL				
PS	VOLT	PHASE	FREQUENCY (HZ)	MANUFACTURER	MODEL	NOTES
.7	115	1	60	AXIOM	SF100	1 - 3

SYSTE	M PIPE	E FLUS	HING	REQU	REMI
				CIRCUITS	
SYSTEM	GEO MANIFOLD #	# OF CIRCUITS	CIRCUIT SIZE (IN.)	MIN. FLUSH VELOCITY (FPS)	FLUSHING FLOW (GPM)
GLHX-1	GM-1	5	6	5.0	NOTE 6
AMBIENT LOOP	-	-	-	-	-
<u>NOTES:</u> 1. 2. 3. 4. 5.	REFER TO SP FLUSHING SH FLUSHING CO MECHANICAL MANIFOLD HE SCHEDULED. SCHEDULED	ECIFICATION S IALL OCCUR F ONTRACTOR TO CONTRACTOI EADERS SHALI ALL MANIFOL MINIMUM FLUS	SECTION 23 21 OLLOWING PR O DEVELOP AN R SHALL COOR - BE FLUSHED D CIRCUIT VAL SH FLOW REQU	59 FOR ADDITI ESSURE TEST ID SUBMIT A F IDINATE FLUSI SEPARATE FR VES SHALL BE JIRED TO MAIN	ONAL FLUSI ING IN ACCO LUSHING PL H/PURGE PO OM THE DIS CLOSED AN TAIN MINIMU
6. 7.	REFER TO GE DISTRIBUTIOI FLUSHING TH	OTHERMAL M N MAINS TO TH IE DISTRIBUTIO	ANIFOLD (GM-' IE FARLEY BUI ON MAINS TO T	1) CIRCUIT SCH LDING AND TO HE AMBIENT L	IEDULE FOR THE AMBIE .00P = 15'.

WATE	ER FLOW ME	TER SCH	EDULE												
						FLO	WRANGE				BTU M	IETER			
TAG	LOCATION	SERVES	METER TYPE	FLUID	PIPE SIZE (IN.)	MIN. (GPM)	MAX. (GPM)	REMOTE DISPLAY (YES/NO)	PRESSURE RATING	POWER SUPPLY (BY TCC)	REQUIRED (YES/NO)	MODEL	MANUFACTURER	MODEL NO.	NOTES
FM-1	AMBIENT LOOP VAULT	AMBIENT LOOP	INLINE ELECTROMAGNETIC	25% PG	8	15	5,072	YES	ASME CLASS 150	24V	NO	-	ONICON	F-3108	1, 2
FM-2	GLHX VAULT	GLHX-1	INLINE ELECTROMAGNETIC	25% PG	10	24	7,925	YES	ASME CLASS 150	24V THRU BTU METER	YES	SYSTEM-20	ONICON	F-3110	1 - 3
NOTES:	SEE SPECIFICATION SECT														

1.	SEE SPECIFICATION SECTION 23 09 13 FOR ADDITIONAL INFORMATION.
2.	FLOW METER SHALL BE CALIBRATED BY MANUFACTURER PRIOR TO SHIPPING FO
3.	PROVIDE BTU METER COMPATIBLE WITH FLOW METER TO FUNCTION AS A BTU ME
	INTEGRATED TO THE DISTRICT CONTROL SYSTEM BY TEMPERATURE CONTROL C

	ONEDOLL
GROUND LOOP HEAT EXCHANGER PARAMETERS	
GROUND LOOP HEAT EXCHANGER (GLHX) I.D. #	GLHX-1
BORE COUNT (QTY)	80
BORE DEPTH (FT)	800
TOTAL GLHX LENGTH (FT)	64,000
BORE SPACING (FT)	18
BORE PIPE DIAMETER (IN)	1.5
BORE HOLE DIAMETER (IN)	5.5
NUMBER OF MANIFOLDS (QTY)	1
NUMBER OF CIRCUITS/MANIFOLD (QTY)	5
NUMBER OF BORES/CIRCUIT (QTY) NOTE: BORE COUNT VARIES PER CIRCUIT	(REFER TO GEO MANIFOL CIRCUIT PIPING SCHEDUL
HYDRAULIC PARAMETERS	
FLUID	25% PROPYLENE GLYCO
FLOW RATE PER GLHX (GPM)	1,100
FLOW RATE PER BORE (GPM)	13.8
MAXIMUM CIRCUIT PRESSURE DROP (FT HD)	70
MANIFOLD PRESSURE DROP (FT HD)	5
GEO MAINS PRESSURE DROP (FT HD)	5
GLHX PRESSURE DROP (FT HD)	80
APPROXIMATE WATER VOLUME PER GLHX (GAL) [INCLUDES MANIFOLD, CIRCUITS AND BORES]	16,000
EXTERIOR GLHX PRESSURE DROP (FT HD) [AS MEASRUED ACROSS SUPPLY/RETURN ENTERING/EXITING BLDG.]	80
APPROXIMATE SYSTEM WATER VOLUME (GAL) [INCLUDES EXTERIOR DISTRIBUTION PIPE AND GLHX VOLUME + 10%]	28,500
PIPING REQUIREMENTS	
VERTICAL BORE PIPE	SDR-11 HDPE (4710 RESIN)
CIRCUIT PIPE	SDR-11 HDPE (4710 RESIN)
LATERAL PIPE (CUP TO VAULTS)	SDR-11 HDPE (4710 RESIN)
SOIL BORING REMOVAL	(
ESTIMATED VERTICAL BORE SOIL REMOVAL (CU. YD) [APPROXIMATE, T.B.D. BY CONTRACTOR]	400
NOTES: 1. REFER TO SPECIFICATION SECTIONS 23 21 42, 23 21 53, 23 21 59 AND 23 21 6 REQUIREMENTS. 2. REFER TO DETAILS FOR ADDITIONAL SIZING AND ROUTING REQUIREMENTS 3. PROVIDE GEOTHERMAL VAULTS AS INDICATED ON PLANS AND AS SPECIFI	62 FOR ADDITIONAL S. ED.

4

						SUNE	DOLE			
SERVICE	LOCATION	VOLTAGE/ PHASE	MOTOR BHP	MOTOR HP	INTEGRAL BYPASS	FURNISHED BY	INSTALLED BY	MANUFACTURER	MODEL	NOTES
ALP-1	AMBIENT LOOP VAULT	208 / 3	10.1	15		M.C.	E.C.	ABB	ACH580-01	1
ALP-2	AMBIENT LOOP VAULT	208 / 3	10.1	15		M.C.	E.C.	ABB	ACH580-01	1
GSP-1	GLHX VAULT	208 / 3	15.4	20		M.C.	E.C.	ABB	ACH580-01	1
GSP-2	GLHX VAULT	208 / 3	15.4	20		M.C.	E.C.	ABB	ACH580-01	1
<u>NOTES:</u> 1.	REFER TO SPECI	FICATION SECTION	ON 23 05 14 F(OR ADDITION	AL REQUIREM	ENTS.				

GLHX SIZING PARAMETERS SCHEDULE									
FORMATION THERMAL CONDUCTIVITY TEST (TEST BORE TW-FP SEPTEMBER 22-23, 2022)									
FORMATION THERMAL CONDUCTIVITY	1.78 BTU/FT-HR-°F								
FORMATION THERMAL DIFFUSIVITY	1.10 FT2/DAY								
UNDISTURBED FORMATION TEMPERATURE	53.9 °F								
TEST BORE DEPTH	615 FT								
THERMAL PROPERTIES									
PIPE RESISTANCE	0.xxx H-FT-°F/BTU								
GROUT THERMAL CONDUCTIVITY	1.4 BTU/FT-HR-°F								
BORE HOLE THERMAL RESISTANCE	0.245 H-FT-°F/BTU								
SIZING PARAMETERS - LOAD AND WATER CONDITIONS									
PEAK COOLING LOAD (BTU/HR)	-								
SOURCE WATER - COOLING MODE (ENTERING/LEAVING SOURCE TEMP)	-								
PEAK HEATING LOAD (BTU/HR)	-								
SOURCE WATER - HEATING MODE (ENTERING/LEAVING SOURCE TEMP)	-								
RESULTING GLHX PARAMETERS									
WORKING FLUID	25% PROPYLENE GLYCOL								
GEOTHERMAL SYSTEM FLOW RATE	1100 GPM								
TOTAL BORE COUNT (QTY)	80								
BORE DEPTHS (FT)	800								
TOTAL BORE LENGTH (FT)	64,000								
<u>NOTES:</u> 1									

6

	8	0
GSS	GSR	GSS
	6	
1.5	4	1.5
2	4	2
3	4	3
3	4	3
3	4	3
3	4	3
4	4	4
4	3	4
4	3	4
4	3	4
4	3	4
	2	4
	1.5	4
6		6

2. PIPE OUTLET TO GLYCOL FEED STATION GFS-1.

JIREMENT SCHEDULE

			MANIFOLI (NO	D HEADER TE 5)						
FLUSHING FLOW (GPM)	PRESSURE (FT HD)	HEADER SIZE (IN)	MIN. FLUSH VELOCITY (FPS)	MIN. FLUSH FLOW (GPM)	PRESSURE (FT HD)	MAIN SIZE (IN)	MIN. FLUSH VELOCITY (FPS)	FLUSHING FLOW (GPM)	PRESSURE (FT HD)	NOTES
NOTE 6	NOTE 6	10	5.0	1,250	15	8	5.0	800	NOTE 7	1 - 7
-	-	-	-	-	-	8	5.0	800	130	1 - 4

TIONAL FLUSHING PROCEDURES AND REQUIREMENTS.

TING IN ACCORDANCE WITH SPECIFICATION SECTIONS 23 21 42 AND 23 21 53. FLUSHING PLAN FOR ENGINEER APPROVAL PRIOR TO FLUSHING.

SH/PURGE PORT REQUIREMENTS WITH FLUSHING CONTRACTOR TO ENSURE FLUSHING PLAN CAN BE ACHIEVED. FROM THE DISTRIBUTION MAINS. FLUSHING OF MAINS AND MANIFOLD HEADERS SHALL BE PERFORMED FROM THE CUP WITH A FLOW RATE AND PRESSURE AS BE CLOSED AND MANIFOLD HEADER BYPASS VALVE OPEN WHEN FLUSHING MANIFOLD HEADER. FLUSHING FLOW RATES SHALL NOT BE LESS THAN THE AINTAIN MINIMUM FLUSH VELOCITIES. REFER TO PLANS FOR BYPASS VALVE LOCATIONS WITHIN GEOTHERMAL VAULT.

CHEDULE FOR FLUSHING FLOW AND PRESSURE REQUIREMENTS. TO THE AMBIENT LOOP SHALL BE FLUSHED SEPARATELY. PRESSURE FOR FLUSHING THE DISTRIBUTION MAINS TO THE FARLEY BUILDING = 30'. PRESSURE FOR

OR MINIMUM AND MAXIMUM FLOW RATES.

IEASUREMENT SYSTEM PER SECTION 23 09 13. BTU METER SHALL BE CONTRACTOR.

8

AMBIENT LOOP CONTROL DIAGRAM

GEOTHERMAL LOOP: INPUT / OUTPUT SUMMARY TABLE																					
HARDWARE POINTS						FTWARE POI	NTS					ALARMS									
POINT DESCRIPTION			OUT		ANALOG VALUE	BINARY VALUE	SCHED.	WIRELESS	NETWORK	HIGH ANALOG LIMIT	LOW ANALOG	BINARY	LATCH DIAGNOSTIC	SENSOR FAILURE	TREND	RUNTIME	TOTAL	SHOW ON GRAPHIC	DEVICE TAG	NOTES	
	6	9		4 ANALOG	8	4	0	0	0	5	6	11	0	q	26	4	1	30			
				40		RV	SCHED					BINARY					τοται	GRAPHIC	ТАС		
				AU	Λv		OUTLD	WIINELLOO				DINART	LATON	OLNOORTAIL	INCIND		TOTAL		IAO		
GLHX-1 VAULT POINTS																					
GSP-1 START/STOP			Х									Х			Х	Х		X	GSP-1	INCLUDE LEAD/LAG ASSIGNMENT	
GSP-1 VFD SPEED				X	X										х			X	GSP-1		
GSP-1 VFD STATUS						Х									Х			X	GSP-1		
GSP-1 VFD FAULT	X											X			X			x	GSP-1		
GSP-2 START/STOP			х									Х			х	Х		X	GSP-2	INCLUDE LEAD/LAG ASSIGNMENT	
GSP-2 VFD SPEED				X	X										х			x	GSP-2		
GSP-2 VFD STATUS						х									х			Х	GSP-2		
GSP-2 VFD FAULT	X											Х			х			X	GSP-2		
GHLX-1 GEO LOOP RETURN TEMPERATURE		X								Х	Х			X	X			X	TT-1		
GHLX-1 GEO LOOP SUPPLY TEMPERATURE		Х								Х	X			X	Х			Х	TT-2		
GHLX-1 PUMP INLET PRESSURE		Х									Х			Х	Х			х	PS-1		
AMBIENT LOOP RETURN TEMPERATURE		Х								Х	Х			Х	Х			Х	TT-5		
BTU METER (GLHX-1)																					
GHLX-1 GEO LOOP RETURN TEMPERATURE (FM-2)					Х													Х	TT-3		
GHLX-1 GEO LOOP SUPPLY TEMPERATURE (FM-2)					Х													Х	TT-4		
GHLX-1 GEO LOOP FLOW RATE (FM-2)		Х			Х									Х	Х			Х	FM-2		
GHLX-1 GEO LOOP BTU					X										X		Х	X			
SUMP PIT - HIGH WATER LEVEL ALARM																			LS-1		
AMBIENT LOOP VAULT POINTS																					
ALP-1 START/STOP			Х									Х			Х	Х		Х	ALP-1	INCLUDE LEAD/LAG ASSIGNMENT	
ALP-1 VFD SPEED				X	X										Х			X	ALP-1		
ALP-1 VFD STATUS						Х									Х			Х	ALP-1		
ALP-1 VFD FAULT	X											Х			Х			X	ALP-1		
ALP-2 START/STOP			Х									Х			Х	Х		X	ALP-2	INCLUDE LEAD/LAG ASSIGNMENT	
ALP-2 VFD SPEED				X	X										Х			X	ALP-2		
ALP-2 VFD STATUS						Х									Х			X	ALP-2		
ALP-2 VFD FAULT	X											Х			X			X	ALP-2		
AMBIENT LOOP SUPPLY TEMPERATURE		X								X	X			X	X			X	TT-6		
AMBIENT LOOP FLOW RATE		Х												X	Х			Х	FM-1		
AMBIENT LOOP PUMP INLET PRESSURE		X									X			X	X			X	PS-2		
AMBIENT LOOP ADS-1 DIFFERENTIAL PRESSURE		X								X		X		X	X			X	DP-1		
GFS-1 LOW LEVEL ALARM	X											X						X	GFS-1		
SUMP PIT - HIGH WATER LEVEL ALARM	X											Х						X	LS-2		
L	_			Į	I						I	_		I			I]		<u> </u>	

4

5

F

3/32" 1/16"

1/3<u>2"</u> 3/64"

1

2

GENERAL NOTES

1. CONTROLS CONTRACTOR TO INTEGRATE, AND ENSURE COMPATIBILITY OF, PHASE 2 SCADA SYSTEMS WITH EXISTING PHASE 1 SCADA SYSTEM.

8" AMBIENT LOOP

8

