

45th US Rock Mechanics/Geomechanics Symposium American Rock Mechanics Association San Francisco, CA, June 29, 2011

Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model

Pengcheng Fu, Scott M. Johnson, and Charles R. Carrigan

Atmospheric, Earth, and Energy Division Lawrence Livermore National Laboratory

Background

 Hydraulic fracturing is an effective method for enhancing permeability of geological formations.

How real fracture system looks like

(Large Block Test, Yucca Mountain. Wagoner, 2000)

(Warpinski and Teufel, 1987)

State of the art

What do we need to simulate hydrofrac?

- Physical processes need to be covered:
 - Fluid flow due to pressure gradient;
 - Rock deformation;
 - Variation of aperture width; and
 - Rock fracturing.

Important Components

• Flow solver – Finite volume method

$$\frac{\partial q}{\partial l} + \frac{\partial w^{h}}{\partial t} = 0 \qquad \kappa \frac{\partial P}{\partial l} = -q$$

$$\kappa_{ij} = \frac{w_{ij}^{h3}}{6\mu(L_i + L_j)}$$

$$w_{ij}^{h3} = \frac{w_i^{h3} w_j^{h3} (L_i + L_j)}{w_i^{h3} L_j + w_j^{h3} L_i}$$

$$\dot{V}_{ij} = \kappa_{ij} (P_i - P_j)$$

$$P_{i} = \begin{cases} K \left(\frac{m_{i}}{V_{i} \rho_{ref}} - 1 \right) & \text{if } m_{i} / V_{i} \geq \rho \\ P_{vap} & \text{if } m_{i} / V_{i} < \rho \end{cases}$$

Two mechanisms:

- Flow in fractures due to pressure gradient.
- Mass conservation with varying total fracture volume.

Important Components

- Fracturing criterion
 - Estimates stress intensity factors using a generalized displacement correlation method
 - Handles mixed mode fractures
- Adaptive remeshing

Model verification: classical KGD model

Model validation: lab test results

Concluding Remarks

- Challenges:
 - The coupling of multiple modules.
 - High computational cost.
- Benefits:
 - Explicit simulation of fracture-fracture and fracture-fluid interaction.
 - Capable of handling complex fracture networks.
 - Simple and physically meaningful input parameters.
 - Induced seismicity naturally emerges in the simulation.
- Further development, enhancement, and validation

Acknowledgements

 This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Lawrence Livermore National Laboratory

Release number: LLNL-PRES-489801

Before stimulation

After stimulation

Т

300

266

231

197

163

129

94

60

5 years

Before stimulation

After stimulation

5 years