

FORGE Post Hydraulic Fracturing Wells 16A & 16B April 2024 Circulation Testing

Neubrex Fiber Optics Monitoring on 16B Shell UT Cable

Acquisition Date: April 2023

Neubrex Energy Services (US), LLC

Dana Jurick | Executive VP, Neubrex Energy Services (US), LLC Dr. Artur Guzik | Software Engineering and Services, Neubrex Infra AG Elizabeth Davidson | Data Analyst, Neubrex Energy Services (US), LLC

Funding for this work was provided by the U.S. DOE under grant DE-EE0007080 "Enhanced Geothermal System Concept Testing and Development at the Milford City, Utah FORGE Site".

We thank the many stakeholders who are supporting this project, including Smithfield, Utah School and Institutional Trust Lands Administration, and Beaver County as well as the Utah Governor's Office of Energy Development and Utah's Congressional Delegation.

During field operations, Neubrex worked with many operational experts and received critical assistance from many people, including John McLennan, Joseph Moore, Kevin England, Leroy Swearingen, Alan Reynolds, Garth Larson, Monty Keown, Dr. Mukul Sharma, Ben Dyer, Dr. Peter Meir, and Neubrex Ops Chief Wayne Fishback. The frac, drilling, water management crews and HSE managers were instrumental in getting the surface and downhole work accomplished in a safe and effective manner.

FORGE April 2024 Circulation Key Findings

Distributed fiber optic sensing was used in the 16B as a monitor well during Hydraulic Fracturing of 16A and 16B and during a limited duration post frac circulation test in 16B.

RFS DSS and DTS measurements were made on the Single Mode Fiber #2 and Multimode fiber in the Shell UT Cable of 16B during all operational phases in April 2024.

Circulation tests were monitored with RFS DSS and DTS interrogators and provided useful information about fluid flow from the 16A injector and across to the 16B producer well. The method relies on thermal changes along fiber.

Key Findings

- Benefit from integrating the cross-well strain change data (RFS DSS) from Hydraulic Fracturing periods with the Strain and Temperature data from 9-hour Circulation period. This work supports integrated understanding.
- Perforation depths that were created during the 16B frac are annotated on the circulation test plots and are examined in detail for evidence of fluid inflow and / or temperature change associated with inflow of geothermally heated water from the 16A well injection perforations.
- In 16B, there is an open hole section below the toe of the casing string and 5 stages with 20 total perforation clusters open during the circulation test. The connectivity of these clusters into the reservoir and potential conductivity with well 16A was unknown at time of circulation.

- <u>16B stage 1 perf cluster depths are associated with hydraulic fractures detected from</u> fracture driven interactions detected on fiber from 16A stages 3R, 4, 5 and 6
 - There is clear evidence of fluid inflow and slugging up the 16B wellbore from this region.
 - A clear region of thermal change is interpreted from hydraulic fracture zones during the circulation period.
- <u>16B stage 2 perf clusters depths are associated with fracture driven interactions from</u> 16A Stage7.
 - The upper heelward 3 clusters of the 5-cluster stage show strong thermal response during circulation period. Some thermal slugging can be seen to originate from all 5 clusters.
- <u>16B stage 3 perf clusters are in the region associated with the 16A stage 8 Fracture</u> Driven Interactions during that hydraulic fracturing stage.
 - The lower toeward (bottom) two clusters in this stage show weak thermal response. The upper 3 clusters in this stage show strong and dominant thermal driven strain change response with both slugging and discrete heat signatures.

- <u>16B stage 4</u> clusters are from the upper part of the 16A Stage 8 Hydraulic Fracture.
 - The fiber responses show strong thermal slugging with both fast and slow slugging velocities up the wellbore of 16B during circulation testing. This set of 16B clusters has a lot of strong evidence of thermal fluid input and travel up the wellbore.
- <u>16B stage 5</u> clusters were only perforated and were not "stimulated" during the 16B frac period. Their position was designed based on 16A to 16B Fracture Driven Interactions.
 - This is different than all the other 16B frac stages.
 - These clusters show the best evidence of thermal slug presence and travel up the 16B well during the circulation test period.

Key Assessments about Post Frac Circulation Test

- Both RFS DSS strain and DTS temperature signals from 16B fibers are responding to thermally driven fluid in and around the 16B well and fluid entering the 16B at perf locations.
- Evidence shows clear association between the location of hydraulic fractures generated from the 16A frac process, the 16B frac process and the location of inflowing fluid driven temperature change signals.
 - The assumption is made that the RFS DSS signals are not dominated by mechanical strain change behind pipe during circulation
 period. If the fiber response on the SMF#2 and MMF are driven by thermal changes, then these data are evidence of hot fluids
 through the reservoir, into the near wellbore regions, through the perforations and moving up 16B casing to the surface.
- After 16A pumping was stopped there is a cool back period on 16B that also contains important information about which zones produced the most heated fluid, and these discrete signatures are also useful indicators of which fractures are most productive in terms of conductive fractures and inflow allocation.
- Fiber optic RFS DSS and DTS can be further used in combination with DAS data that was also acquired during this
 period in attempts to produce quantitative estimates of relative inflow contribution per clusters from all open
 clusters in the 16B well during the circulation test period.

(The integration of DAS data to support analysis of "relative fluid inflow production and relative allocation" is not yet completed at time of reporting.)

	Measured Depth (Referenced to KB = 31.5 ft)								
	Gun 1	Gun 2	Gun 3	Gun 4	Gun 5	Frac Plug Top			
Frac Plug #1						9,777			
Stage 1 (16B)	9,769 - 9,773	9,756 - 9,760	9,745 - 9,749	9,690 - 9,694					
Frac Plug #2						9,600			
Stage 2 (16B)	9,508 - 9,512	9,475 - 9,479	9,459 - 9,463	9,447 - 9,451	9,429 - 9,433				
Frac Plug #3						9,415			
Stage 3 (16B)	9,389 - 9,393	9,343 - 9,347	9,265 - 9,269						
Frac Plug #4						9,165			
Stage 4 (16B)	9,054 - 9,058	9,026 - 9,030	8,995 - 8,999	8,958 - 8,962					
Frac Plug #5						8,915			
Stage 5 (16B)	8,879 - 8,883	8,870 - 8,874	8,834 - 8,838	8,774 - 8,778					

20 FDI features were chosen as Perforation Points for 16B Plug and Perf Operations. This is the table of Stage Plug and Perf Settings used in the 16B Hydraulic Frac Operation. UTAH FORGE Wellbore Trajectory Diagram

NEUBREX ENERGY SERVICES (US), LLC

Well 16A Circulation Pumping Rate & Well 16B Discharge Rate

Injection and

Discharge Rate

Well 16B(78)-32 Circulation Test Response

Well 16B – DTS temperature change relative to Baseline prior Circulation Period on April 27

Well 16B – DTS temperature change – at selected depths over time

IEUBREX

Well 16B – DTS temperature change depth series - annotated

Well 16B – DTS T change – selected times over well MD deptherex

UTAH FORGE EVO2 - 16A FRAC, EVO3 - 16B FRAC & CIRCULATION 16B RFS DSS Strain Change Rate

16B RFS DSS Strain Change Rate

16A Frac Hit Depths vs 16B Cluster Depths & Circulation Results

Planned 16B Frac Pump Schedule Stages 1 – 4

Step Name	Step Pump Rate (bpm)	Step Fluid Volume (bbl)	Step Fluid Type	Cum Fluid Volume (bbl)	Step Prop Conc (PPA)	Step Prop Type (US mesh)	Step Prop Volume (lbm)	Cum Prop Volume (lbm)	Step Slurry Volume (bbl)	Step Pump Time (min)	Cum Pump Time (min)
Pad	60	640	Slickwater	640	0.00		0	0	640	10.7	10.7
0.5 PPA	60	320	Slickwater	960	0.50	100	6,720	6,720	327	5.5	16.1
0.75 PPA	60	320	Slickwater	1,280	0.75	100	10,080	16,800	331	5.5	21.6
1.00 PPA	60	640	Slickwater	1,920	1.00	100	26,880	43,680	669	11.2	32.8
1.00 PPA	60	640	Slickwater	2,560	1.00	40/70	26,880	70,560	669	11.2	43.9
1.25 PPA	60	320	Slickwater	2,880	1.25	40/70	16,800	87,360	338	5.6	49.6
1.50 PPA	60	320	Slickwater	3,200	1.50	40/70	20,160	107,520	342	5.1	55.3
Flush	60	350	Slickwater	3,550	0.00			0 107,520	35	0 5.	8 61.
lickwater	3,550 bbl		149,100 gal		100-mesh sand 40/70-mesh sand		43,68 63,8	43,680 lbm 63,840 lbm			

Well 16B(78)-32: Actual Pumped

Stage Name	Number of Clusters	Fluid Type	Fluid Volume (bbl)	Pump Rate (bpm)	100-mesh Prop Volume (lb _m)	40/70- mesh Prop Volume (lb _m)	Comments
Stage 1	4	Slickwater	3,624	60 (Avg = 55)	45,600	66,840	
Stage 2	5	Slickwater	4,734	60 (Avg = 56)	46,770	102,000	
Stage 3	3	Slickwater	4,321	60 (Avg = 51)	43,322	70,163	
Stage 4	4	Slickwater	3,800	60 (Avg = 56)	43,217	65,317	
Stage 5 *	4	Slickwater	N/A	N/A	N/A	N/A	Did not pump Stage 5. No able to set frac plug to isolate Stage 4.

* Note Stage 5 was perforated but not pumped with fluid or slurry

www.UtahFORGE.com

Integrated Hydraulic Frac Fiber Optics and Circulation Period Data

- 16A Frac to 16B Strain FDI equals "Frac Log" (Left column)
- 16A Frac to 16B Strain FDI Data "Strain Rate Waterfall Plot"
- Green Arrows and Green Diamonds are the Average Perforation Cluster Depths of each Stage used on 16B Frac
- 16B Circulation Period Strain Waterfall Plot

Field Monitor- RFS DSS Strain Change: Before, During, and After Circulation Testing on 16B Well Fiber behind Pipe

RFS DSS Strain Change RATE during circulation test

NEUBREX ENERGY SERVICES (US), LLC

Zoom Field Monitor- RFS DSS Strain Change RATE: Before, During, After Circulation Testing on 16B 8600 – 9777 MD

Well 16B – RFS strain change rate – with FDI Points

Well 16B – RFS strain change rate– with FDI Points ZOOM

Well 16B – RFS strain change rate– with FDI Points ZOOM

Integrated Hydraulic Frac Fiber Optics and Circulation Period

- 16A Frac to 16B Strain FDI "Frac Log" (Left column)
- 16A Frac to 16B Strain FDI Data "Strain Rate Waterfall Plot"
- Green Arrows and Green Diamonds are the Average Perforation Cluster Depth per Cluster of each Stage used on 16B Frac
- 16B Circulation Period Strain Waterfall Plot

16A Injection Pressure Injection Rate Cumulative Volume

> Summary Waterfall Plot Depth (Y) Time (X) DSS Strain Rate (Color)

Blue = Neg Change Yellow – Red = Positive Strain Change Rate

NEUBREX ENERGY SERVICES (US), LLC

NEUBREX Energy Services

Circulation Period – Example of Upgoing Thermal Slugs From a region of 16B (Green Diamonds are Perf Locations) Arrow indicate slugs

End of Technical Report and Contact Information

Dana Jurick

- <u>Chief Operating Officer and Managing Director</u>
- Neubrex Energy Services (US), LLC
- Bellville, Texas 77418
- Dana.Jurick@neubrex.com
- 713-899-1545
- Dr. Artur Guzik
 - Director of Signal Processing and Optical Fiber Data
 - Neubrex Infra
 - Baden, Switzerland
 - guzik@neubrex.com
 - +41 76 376 98 90

Backup Detail on Data Processing

Measurement Units

The time zone and unit system

Measurement units

- Imperial (US) units are used in the report
 - Distance foot, ft
 - Temperature Fahrenheit degree, °F
 - Pressure pound per square inch, psi

- \bullet Values of strain reported as micro-strain, $\mu\varepsilon$
 - Unless stated otherwise

Time zone

- Results reported in this document are in *Coordinated Universal Time* (UTC)
- Local time zone was *Mountain Daylight Time (MDT)* • UTC Offset: UTC –6

Well Survey Renderings

Based on schematics and deviation survey data provided by Operator

Monitored well

Monitored well

Depth calibration

This Section contains depth mapping of the fiber optics on monitored wells.

Depth calibration between fiber optic measurements and well measured depth features is an essential and critical component of fiber optic data processing.

Depth calibration findings from Neubrex workflow and data

- Final measured depth of the fiber termination = 10,108.46 MD, ft KB
- KB = **31.0 ft MD**
 - Casing tally report
 - Reference location: GL

• Depth Contraction coefficient (SMF 2/MMF 2):

- RFS = 1.0000
- BCF = 1.0000
- DTS = 1.0042

• Offset Correction Distances (SMF 2/MMF 2):

- RFS: 648.94 ft
- BCF: 825.57 ft
- DTS: 419.96 ft

End