

FORGE Post Hydraulic Fracturing Wells 16A & 16B August 2024 Circulation Testing <u>With SLB PLT OVERLAYS</u>

Fiber Optics Monitoring of August 2024 Circulation Tests

Acquisition Date: August 2024 Neubrex Energy Services (US), LLC

Dana Jurick | Executive VP, Neubrex Energy Services (US), LLC Dr. Artur Guzik | Software Engineering and Services, Neubrex Infra AG Sajan Khatara | Petroleum Engineer, Neubrex Energy Services (US), LLC

Funding for this work was provided by the U.S. DOE under grant DE-EE0007080 "Enhanced Geothermal System Concept Testing and Development at the Milford City, Utah FORGE Site".

We thank the many stakeholders who are supporting this project, including Smithfield, Utah School and Institutional Trust Lands Administration, and Beaver County as well as the Utah Governor's Office of Energy Development and Utah's Congressional Delegation.

During field operations, Neubrex worked with many operational experts and received critical assistance from many people, including John McLennan, Joseph Moore, Kevin England, Leroy Swearingen, Alan Reynolds, Garth Larson, Monty Keown, Dr. Mukul Sharma, Ben Dyer, Dr. Peter Meir, and Neubrex Ops Chief Wayne Fishback. The frac, drilling, water management crews and HSE managers were instrumental in getting the surface and downhole work accomplished in a safe and effective manner.

End of Technical Report and Contact Information

• Dana M. Jurick

Chief Operating Officer Neubrex Energy Services US LLC <u>Dana.Jurick@neubrex.com</u> 713-899-1545

• Artur Guzik

Software Engineering and Services Neubrex Infra AG <u>guzik@neubrex.com</u> +41 763-769-890

• Sajan Khatara

Petroleum Engineer Neubrex Energy Services US LLC <u>Sajan.Khatara@neubrex.com</u> 979-224-7492

Distributed fiber optic sensing was used in the 16B as a monitor well during Cross well circulation flow testing from 16A to 16B after hydraulic fracturing had been completed on both wells.

RFS DSS and DTS were the the primary fiber measurement methods used on the Single Mode Fiber #2 and MMF #1 on 16B Shell UT Cable during all flow testing during August 2024.

Circulation tests provided useful information about the distributed temperature changes associated with fluid inflow flow at 16B producer well during the test. The data were tied to a SLB PLT that was run after the Fiber Test data was acquired. These measurements were not co-synchronous due to a fiber failure that occurred prior to the PLT logs being run in late August.

Key Assessments about Post Frac Circulation Test

- Both RFS DSS strain change, strain change rate and DTS temperature signals are responding to thermally driven fluid in flow at the 16B well as fluid was pumped into the 16A injector well.
- Clear evidence shows association between the location of previously generated and mapped hydraulic fractures generated during the 16A and 16B frac stimulations and the location of thermally driven strain and temperature signals inferred to be associated with inflowing thermally heated fluids.
- Many of the initial thermal signatures can be "tracked" as they move up the wellbore as so called "thermal slugs" and their velocities can me calculated.
- After pumping was stopped on 16A there is a cool back period that also contains important thermal signal
 information about those zones which warm or cool back over time. These post pumping signatures may be
 indicators of which zones produced the most or hottest fluid. These discrete signatures may also be useful
 indicators of which fractures are most productive in terms of heat transfer.
- Fiber optic RFS DSS and DTS can be further used in combination with DAS data that was also acquired during this period in attempts to produce quantitative estimates of relative inflow contribution per clusters from all open clusters in the 16B well (20 clusters plus an open hole section below casing) during the circulation test period.

(The integration and analysis of DAS data from the circulation period to be used for "relative production allocation" is not yet completed as of November 2024.)

Well 16B(78)-32 – RFS DSS <u>strain change rate</u> – Circulation

Well 16B(78)-32 – RFS DSS <u>strain change rate</u> – w PLT Plot

NEUBREX

Cross well circulation test analysis

August 2024

Extended Flow Test

Well 16B – SLB PLT Summary Report

			Cor Fiel We	Hi- npany d: Wi II: For	Temp /: Uni dcat ge 16	PLT versit	- Inte y of U)-32	rpre Itah	tation - S	Stag	e		Uta	h For Test: Date <u>Surv</u>	rge 16 HT F 28-4 ey: Pi	6B(78 PLT ([Aug-2 roduci)-32 Di Dri 024 ing	HiTem II)	р Р
Depth (ft)	z	3000	PPRE psia	3300	393	TEMP °F	405	-4	SPIN rps	8	-150	CVEL ft/min	150	0	QZT B/D	15000	0	QZI B/D	6000
-									-	5	~		5						
									1	ŧ			1						
8600			┢		•	_	_	H		t		-							
			+		-		_		- 23	ŧ		-							
8700			1						- È I	٤.									
									31	Į.									
	_								- 22	T									
8800					Ť				E.	ŧ		-							
			4		•		-		3	1	•	-							
8900					_		_		3.5	-						<u> </u>			
									3										
			٩		•	٦			24		•	-	\leq						
9000						t			É				ſ						
			_	_			-			-		_				-			
9100					_	_				-		_	4			_		_	
									3 - 2			•							
0200								-	21										
9200				1					~										
	_		-	-			+					~	-						
9300			_	_	_					-	4	_	-			_			
	~																		
9400																			
										T							T		
	2		_	+			-					-							
9500			_							-		_				_	\vdash		
_																			
9600																			
								Ľ		T							T		
		_	_					H											
9700			_					H		-						_	\vdash		
	-																		

University of Utah Forge 16B(78)-32

Interpretation Results: Surface Flowrate Resust

Stage	Perfor	ations	Water (bpd)	Water (%)
		1) 	1	

	8774	8778	trace	trace
F	8834	8838	1309.0	10.8%
5	8870	8874	314.2	2.6%
	8879	8883	1489.0	12.3%
	8958	8962	1381.2	11.4%
4	8995	8999	765.9	6.3%
4	9026	9030	1439.9	11.9%
	9054	9058	986.9	8.2%
3				
2	Below	4388.3	36.3%	
1				
1	Totals	,	12074.4	100.0%

B University of Utah / Forge 16B(78)-32

University of Utah Forge 16B(78)-32

Interpretation Results: Surface Flowrate Res

Log Analyst: Leonid Kolomytsev / Cas

Stage	Perfor	ations	Water (bpd)	Water (%)
5	9270	9276	3112.2	25.8%
4	9320	9493	4573.9	37.9%
3				
2	Below	9240	4388.3	36.3%
1				

Totals	12074.4	100.0%

Circulation test – 16A pumping Pressure and Rate and 16B Pressure

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Energy Services

RFS DSS Strain Rate during Initial Circulation between Wells

Rate Changes on 16A Pump - 0 to 2.5 bbl/min to 5.0 bbl/min to 7.5 bbl/min – 16B RFS DSS Thermal Driven Strain

- Events:
 - 1st increase of rate and pressure on 16A: 2024-08-09 23:16:59
 - 2nd increase of rate and pressure on 16A: 2024-08-10 19:00:4
- Strain response: 2024-08-10 20:54:52
- Delay from 16A to 16B is approx. 1 h 54 min

Input Rate Change: 5 bbl/min to 7.5 bbl/min pump rate increase

Input Rate Change: 5 bbl/min to 7.5 bbl/min pump rate increase

Injection Rate: 10 bbl/min pump rate Steady

Injection Rate: 10 bbl/min pump rate Steady

Injection Rate: 10 bbl/min pump rate Steady

10 bbl/min pump rate Steady

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well Survey Renderings

Based on schematics and deviation survey data provided by Operator

Monitored well

Monitored well

Gun barrel view

Monitored well

Measurements

Summary of measurements using RFS, DTS, and BCF

RFS = Rayleigh Frequency Shift fiber optic measurement

DTS = Distributed Temperature Sensing fiber optic measurement

BCF = Brillouin Center Frequency fiber optic measurement

Distributed Temperature Sensing

- -- first trace: Aug 12, 2024, 19:24:32
- -- last trace: Aug 16, 2024, 14:12:27
- -- number of traces: 2269
- -- number of samples per trace: 1582
- -- average temporal interval (sec): 144

Well 16B(78)-32 – DTS – waterfall – temperature overview

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well 16B(78)-32 – DTS – selected traces

Brillouin absolute total strain

- -- first trace: Aug 12, 2024, 20:04:49
- -- last trace: Aug 16, 2024, 14:05:54
- -- number of traces: 3232
- -- number of samples per trace: 78349
- -- average temporal interval (sec): 100

Well 16B(78)-32 – Total Absolute Strain – overview

NEUBREX

Well 16B(78)-32 – Total Absolute Strain – selected traces

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well 16B(78)-32 – after JB/fiber repair

- Fiber break detected on Aug 11, 2024 at 4:34:15 UTC
- Occurred in surface JB north of the wellhead
- JB leaking fluid

RFS strain change

- -- first trace: Aug 09, 2024, 20:00:24
- -- last trace: Aug 16, 2024, 14:17:18
- -- number of traces: 14,164
- -- number of samples per trace: 39,175

Well 16B(78)-32 – RFS strain change – overview

Well 16B(78)-32 – RFS strain change – selected depths

NEUBREX

Well 16B(78)-32 – RFS strain change – selected traces

Well 16B(78)-32 – RFS strain change period 1 – zoomed in

Well 16B(78)-32 – after JB/fiber repair

- Fiber break detected on Aug 11, 2024 at 4:34:15 UTC
- Occurred in surface JB north of the wellhead
- JB leaking fluid
- Neubrex repair inside junction box
- Splice all fibers back together
- Resume monitoring on 1447pm(local) August 12, 2024
- Gauges also resumed working

Well 16B(78)-32 – RFS strain change after REPAIR By Neubrex

NEUBREX Energy Services

Well 16B(78)-32 – RFS strain change – selected traces

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well 16B(78)-32 – RFS strain change – selected traces

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

RFS DSS strain change rate calculated every 49 seconds

- -- first trace: Aug 12, 2024, 18:37:58
- -- last trace: Aug 16, 2024, 14:17:18
- -- number of traces: 6749
- -- number of samples per trace: 39,175
- -- average temporal interval (sec): 49

Well 16B(78)-32 – RFS strain change rate – overview

Well 16B(78)-32 – RFS strain change rate – period 1

Well 16B(78)-32 – RFS strain change rate – period 1 (zoomed)

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well 16B(78)-32 – RFS strain change rate – period 2

	JL			Hi-	Temp	PLT	- Inter	pretation -	Stag	е		Uta	h For	ge 16	6B(78)-32	HiTem	р Р
N			Con Fiel Wel	npany d: Wi I: For	r: Uni dcat ge 16	versity 6B(78)	of Ut -32	ah					Test: Date Surv	HT F : 28-4 ey: Pi	PLT ((Aug-2 roduc	Di Dri 024 ing	II)	
Depth (ft)	Z	3000	PPRE psia	3300	393	TEMP °F	405	SPIN -4 rps	8	-150	CVEL ft/min	150	0	QZT B/D	15000	0	QZI B/D	6000
								5	5	r	_	\mathbf{F}						
								\$	ţ,									
8600		_	┢	_	•				H		-							
	_	_	-					- \$	<u>}</u>		_							
8700		_						1	11									
								S S	<u>}</u>									
			T					1 È	X									
8800		_	╋	_	1		-		}{		-							-
	° 🛋	_	4	_	4		_	Ę	¥.		_	-						
8900					Л			1	2									
3 3								3)			T						
	_	_	-	_	- 1	7		3.	ŧ		_	2						
9000		_	-4	_	_	4		<u></u>		-	_	-			_			
		_	٩			5					-							
9100												1						
												T						
	-	_	_				-	- 21			-	Ŧ						
9200	_	_		4	_					1	_			_	_			_
											\mathbf{x}							
-										F								
9300		-						_	_	7					-			_
		_		-	_				_		_	-		-	-		-	_
9400																		
8 8	~			1			1				-							
9500		-	_	_						_		_			-			
9600																		
3 3																		
		_																
9700		_					_		_		_	_	_		_			_

University of Utah Forge 16B(78)-32

Interpretation Results: Surface Flowrate Resu

Stage Perforations	(bpd)	(%)
--------------------	-------	-----

	8774	8778	trace	trace
F	8834	8838	1309.0	10.8%
5	8870	8874	314.2	2.6%
	8879	8883	1489.0	12.3%
	8958	8962	1381.2	11.4%
	8995	8999	765.9	6.3%
4	9026	9030	1439.9	11.9%
	9054	9058	986.9	8.2%
3				
2	Below	9240	4388.3	36.3%
1				
	Totals	.)	12074.4	100.0%

Log Analyst: Leonid Kolomytsev / Cas

University of Utah / Forge 16B(78)-32

University of Utah Forge 16B(78)-32

Interpretation Results: Surface Flowrate Res

Stage	Perfor	ations	Water (bpd)	Water (%)
5	9270	9276	3112.2	25.8%
4	9320	9493	4573.9	37.9%
3				
2	Below	9240	4388.3	36.3%
1				

Well 16B(78)-32 – RFS strain change rate – overview

Well 16B(78)-32 – RFS strain change rate – overview

NEUBREX

Well 16B(78)-32 – RFS strain change rate – period 3

Well 16B(78)-32 – RFS strain change rate – period 3 (zoomed)

Well 16B(78)-32 – RFS strain change rate – period 4

Well 16B(78)-32 – RFS strain change rate – period 4 (zoomed)

Well 16B(78)-32 – RFS strain change rate – period 5

NEUBREX

Well 16B(78)-32 – RFS strain change rate – period 5 (zoomed)

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well 16B(78)-32 – RFS strain change rate – period 6

Well 16B(78)-32 – RFS strain change rate – period 6 (zoomed)

Well 16B(78)-32 – RFS strain change rate – period 6 (zoomed)

STRICTLY CONFIDENTIAL NEUBREX ENERGY SERVICES (US), LLC

Well 16B(78)-32 – RFS strain change rate – period 6- failure

End of Technical Report and Contact Information

• Dana M. Jurick

Chief Operating Officer Neubrex Energy Services US LLC <u>Dana.Jurick@neubrex.com</u> 713-899-1545

• Artur Guzik

Software Engineering and Services Neubrex Infra AG <u>guzik@neubrex.com</u> +41 763-769-890

• Sajan Khatara

Petroleum Engineer Neubrex Energy Services US LLC <u>Sajan.Khatara@neubrex.com</u> 979-224-7492