Using fully coupled hydro-geomechanical numerical test bed to study reservoir stimulation with low hydraulic pressure

37th Stanford Geothermal Workshop

Jan. 31, 2012

Pengcheng Fu, Scott M. Johnson, and Charles .R. Carrigan

Lawrence Livermore National Laboratory

LLNL-PRES-524091

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation for low pressure stimulation

 How can we stimulate a fracture network instead of a single primary fracture?

Insights gained from a fully coupled numerical test bed.

Interaction between competing fractures

Parallel fractures weaken SIF of each other

Interaction between competing fractures

Pressurized fracture creates stress shadow on neighbors

$$\sigma_{h} < \sigma_{h}' < P_{1} \qquad (P_{1} - \sigma_{h})\sqrt{\pi a} \ge K_{I-crit}$$
$$(P_{2} - \sigma_{h}')\sqrt{\pi b} \ge K_{I-crit}$$

Low pressure stimulation as a potential solution

- Objective of low pressure stimulation:
 - Stimulate a fracture network covering a large volume of reservoir, instead of a single primary fracture.
 - · Permanent permeability enhancement through shear dilation.
- Assumption:
 - An interconnected fracture network already exists.
- Goal of study:
 - Learn about geomechanical behaviors of reservoir subjected to low pressure stimulation.

Interaction between rock-joint-fluid

Stress shadow: matrix stress increase due to fluid pressure change

$$w(\sigma'_J) - w_i = \frac{(\sigma_M - \sigma_{Mi})H}{E'}$$

$$\Delta \sigma_{M} = \begin{cases} P_{F} / (1 + H / \overline{h_{n}}) & \text{if } P_{F} \leq \sigma_{Mi} (1 + \overline{h_{n}} / H) \\ P_{F} - \sigma_{Mi} & \text{otherwise} \end{cases}$$

Stress s

Rock matrix stress σ_M

 $w(\sigma'_J) - 1$

 σ_{n0}

stimulation. Fracture interaction dominated by joint characteristics.

Minimal interaction through rock matrix.

 $P_F < \sigma_{n0}$

 $\sigma'_n = \sigma_n - P_F$

Low pressure

High pressure stimulation.

 σ_{n0}

Strong interaction through rock matrix.

 $P_F > \sigma_{n0}$

 $\sigma'_n = 0$

e stress σ'

 $\Delta \sigma_{M} =$

8 ULNL-PRES-489801

Fluid-solid coupling for high pressure regime

Fluid-solid coupling for low pressure regime

$$P_{F} = \begin{cases} K_{F} \left(1 - \frac{\rho_{ref} L_{C} w}{m_{C}} \right) & \text{if } m_{C} / L_{C} w \ge \rho_{ref} \\ P_{vap} & \text{if } m_{C} / L_{C} w < \rho_{ref} \end{cases}$$

$$\sigma' = \frac{w_{max} - w}{a - b(w_{max} - w)}$$

$$w = w_{max} - \frac{Aa + Bb + 1 - [(Aa + Bb + 1)^{2} - 4AaBb]^{0.5}}{2Ab}$$

$$A = K_F \rho_{ref} L_C / m_C$$
 and $B = \sigma_M - K_F + A w_{max}$

Behavior of a single fracture: 10 MPa ini. Normal stress

Competition between fractures

What if we pump a little harder?

Competition between fractures

Shear dilation

$$\tau' = \tau_0 - \sigma' \mu$$

$$w = w(\sigma', S) = Sw(\sigma')$$

$$S = \begin{cases} 1 + \tau'_{max} (S_{max} - 1) / \tau'_{s} \\ \text{if } \tau' \tau'_{max} < \tau'_{s} \\ S_{max} \\ \text{otherwise} \end{cases}$$

Numerical example: a reservoir

Start pumping water out of production well by the second s

100

-50

Y

x

50

100

[′]50

150

Numerical example: Results

Concluding Remarks

- Low pressure stimulation is able to stimulate a fracture network.
 - Very different mechanics than high pressure hydro-fracturing.
- How well it works is sensitive to:
 - Initial connectivity of the natural fracture network
 - In situ stress
 - Rock joint characteristics
- Reservoir will infinitely grow, but will be slower and slower
 - It seems to be possible to achieve reasonable circulation with proper well configuration
- Numerical tool can used to study different scenarios
 - Hybrid high pressure low pressure stimulation?

Acknowledgments

 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Laboratory Directed Research & Development

Release number: LLNL-PRES-524091

A companion presentation

"Simulation of Hydraulic Fracture Networks in Three Dimensions" by Settgast et al.

@SESSION 10(B) Modeling 6, Wednesday, 10:45 am

