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Conventional fracture models 

PKN model PL3D model 

(Image credit: Adachi et al. 2000) 
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How real fracture system looks like 

(Large Block Test, Yucca Mountain. 

Wagoner, 2000) 

(Warpinski and Teufel,  1987) 
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What do we need to simulate hydraulic stimulation of reservoir 

 Objective: 

• Study the effectiveness of stimulation strategies through 

simulating fluid-fracture and fracture-fracture interactions.  

 Physical mechanisms need to be covered: 

• Fluid flow due to pressure gradient; 

• Rock deformation; 

• Variation of aperture width; and  

• Rock fracturing. 

 Other variables: 

• Natural fracture system; 

• In situ stress; 

• Stimulation parameters. 



5 

Modules and their coupling 

Solid Solver

Flow SolverRemeshing
 Module

Joint Model
Joint displacement

Joint stress
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Important Components 

 Flow solver – Finite volume method 

Two mechanisms: 

― Flow in fractures due to pressure gradient. 

― Mass conservation with varying total 

fracture volume. 
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Important Components 

 Fracturing criterion (LEFM) 

• Generalized displacement correlation method. 

• Based on critical stress intensity function 
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 Injection well  

Expected fracture path  

Core simulation domain  

Extended 

simulation domain 

(partial)  
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Simulation Results

KGD, closed-form solution

Predicted fracture 
growth rate 
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Model verification: classical KGD model 
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Model validation: lab test results 

Blanton, 1982 
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Interaction between propagating and existing fractures 

σxx=-20MPa  

σyy=-10MPa 

σyy=-10MPa 

Pumping 

18MPa 
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Interaction between propagating and existing Fractures 
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Application to more complex fracture networks 

Zero-pressure flow boundary 

Injection well 

Core simulation domain 

Extended simulation domain (partially shown) 
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15MPa
10MPa

Stress rotation 

I: Effects of in situ stress: principal stress orientation & anisotropy 
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10MPa
10MPa

11MPa
10MPa

12MPa
10MPa

15MPa
10MPa

Less anisotropy 

I: Effects of in situ stress: principal stress orientation & anisotropy 
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II: Multi-well stimulation 

Connected 

to Well A Connected 

to Well B 
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(a) Case D-1, left pumping only 

0.011 Darcy 
(c) Case D-3, left-then-right pumping 

0.025 Darcy 
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III: Effects of stimulation pressure 

13 MPa 

10 MPa 

In situ 
stress 

Injection 
well 

Production 
well 

Stimulated with 14 

MPa pumping pressure 

Stimulated with 16 

MPa pumping pressure 

Flow in unstimulated 
fracture network 

Preexisting fracture 
network 
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Thermal analysis based on the predicted fracture network. 

Before stimulation After stimulation 
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(Preliminary NUFT analysis results provided by Yue Hao at LLNL.) 
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Thermal analysis based on the predicted fracture network. 

(Preliminary NUFT analysis results provided by Yue Hao at LLNL.) 
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Concluding Remarks 

 Challenges: 

• The coupling of multiple modules. 

• High computational cost. 

 Benefits: 

• Explicit simulation of fracture-fracture and fracture-fluid interaction. 

• Capable of handling complex fracture networks. 

• Simple and physically meaningful input parameters. 

 Further development, enhancement, and validation 

• Methodology works; preliminary results are reasonable and 

inspiring. 

• Collecting stimulation scenarios to investigate (poster on 

Tuesday). 
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(a) Case D-1, left pumping only 

0.011 Darcy 
(b) Case D-2, right pumping only 

0.013 Darcy 

(c) Case D-3, left-then-right pumping 

0.025 Darcy 
(d) Case D-4, right-then-left pumping 

0.026 Darcy 
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Interaction Between Propagating and Existing Fractures 
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Interaction Between Propagating and Existing Fractures 
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Interaction Between Propagating and Existing Fractures 
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Interaction Between Propagating and Existing Fractures 
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Application to more complex fracture networks 
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Model verification: classical KGD model 
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Application to more complex fracture networks 

Pre-stimulation 
fracture network 

Post-stimulation 
fracture network 
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Application to more complex fracture networks 

σxx σyy 

Results published in ARMA 2011 Symposium 


