35th Annual Meeting of the Geothermal Resources Council San Diego, CA, October 24, 2011

Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs

Pengcheng Fu, Scott M. Johnson, and Charles R. Carrigan

Conventional fracture models

How real fracture system looks like

(Large Block Test, Yucca Mountain. Wagoner, 2000)

What do we need to simulate hydraulic stimulation of reservoir

- Objective:
 - Study the effectiveness of stimulation strategies through simulating fluid-fracture and fracture-fracture interactions.
- Physical mechanisms need to be covered:
 - Fluid flow due to pressure gradient;
 - Rock deformation;
 - Variation of aperture width; and
 - Rock fracturing.
- Other variables:
 - Natural fracture system;
 - In situ stress;
 - Stimulation parameters.

Modules and their coupling

Important Components

Flow solver – Finite volume method

$$\begin{split} &\frac{\partial q}{\partial l} + \frac{\partial w^{h}}{\partial t} = 0 \quad \kappa \frac{\partial P}{\partial l} = -q \\ &\kappa_{ij} = \frac{w_{ij}^{h3}}{6\mu(L_{i} + L_{j})} \end{split}$$

$$w_{ij}^{h3} = \frac{w_i^{h3} w_j^{h3} (L_i + L_j)}{w_i^{h3} L_j + w_j^{h3} L_i}$$

 $V_{ij} = \kappa_{ij} (P_i - P_j)$

$$P_{i} = \begin{cases} K \left(\frac{m_{i}}{V_{i} \rho_{ref}} - 1 \right) & \text{if } m_{i} / V_{i} \geq \rho_{r} \\ P_{vap} & \text{if } m_{i} / V_{i} < \rho_{r} \end{cases}$$

Two mechanisms:

- Flow in fractures due to pressure gradient.
- Mass conservation with varying total fracture volume.

Important Components

- Fracturing criterion (LEFM)
 - Generalized displacement correlation method.
 - Based on critical stress intensity function

Model verification: classical KGD model

$$l(t) = 0.679 \left[\frac{Gq_0^3}{\mu(1-\nu)} \right]^{\frac{1}{6}} t^{\frac{2}{3}}$$

Model validation: lab test results

Application to more complex fracture networks

I: Effects of in situ stress: principal stress orientation & anisotropy

I: Effects of *in situ* stress: principal stress orientation & anisotropy

II: Multi-well stimulation

III: Effects of stimulation pressure

Thermal analysis based on the predicted fracture network.

Before stimulation

After stimulation

(Preliminary NUFT analysis results provided by Yue Hao at LLNL.)

Thermal analysis based on the predicted fracture network.

5 years

Without stimulation

With stimulation

(Preliminary NUFT analysis results provided by Yue Hao at LLNL.)

Concluding Remarks

- Challenges:
 - The coupling of multiple modules.
 - High computational cost.
- Benefits:
 - Explicit simulation of fracture-fracture and fracture-fluid interaction.
 - Capable of handling complex fracture networks.
 - Simple and physically meaningful input parameters.
- Further development, enhancement, and validation
 - Methodology works; preliminary results are reasonable and inspiring.
 - Collecting stimulation scenarios to investigate (poster on Tuesday).

Acknowledgments

 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Release number: LLNL-PRES-489801

Application to more complex fracture fietworks

L

Application to more complex fracture networks

Application to more complex fracture networks

Results published in ARMA 2011 Symposium