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1. Introduction 

In FORGE project 6-3721, Global Technology Connection, Inc. (GTC), in collaboration with the 

Georgia Institute of Technology (GT) and Idaho National Laboratory (INL), proposes to develop 

a predictive tool to estimate the future magnitude of induced seismicity using artificial intelligence 

(AI) and physics-based modeling. This tool will use the Utah FORGE existing seismic data, 

injection parameters, and geophysical model predictions to make probabilistic estimations, i.e., a 

distribution of estimations representing the likelihood of different possible outcomes. Before 

proceeding with prediction, it is essential to clearly define the model’s inputs and outputs. While 

injection parameters can be directly used as inputs, it is also necessary to determine a method for 

calculating seismic responses from seismic waveforms to serve as outputs. The following sections 

detail the progress made in obtaining time-series data with identified events, providing a 

foundation for constructing these predictive models. 

 

2. Magnitude Frequency Distribution (MFD) Statistics (Task 1.3) 

The temporal seismicity magnitude-frequency distribution (MFD) statistics, which includes the a-

value, b-value, and magnitude of completeness (Mc), are crucial for understanding seismicity rates 

(a-value) and can also serve as indicators of subsurface stress conditions (b-value) (Stein and 

Wysession, 2003). Hence, these are essential parameters in seismic hazard analysis (Reiter, 1990). 

Studies have shown that integrating temporal b-values, Mc, and the volume of injected fluids can 

be used in estimating the Maximum Magnitudes (Mmax) (Van der Elst, 2016; Li et al., 2022), an 

important parameter that is forecasted during injection. 

To estimate the MFD statistics for Utah Forge, we start by using the catalog for detected events 

during the stimulation experiments conducted in April 2022 (Niemz et al., 2024). We first obtained 

the Mc for the entire three stages of stimulation using the Maximum Curvature Method (Wiemer 

and Wyss, 2000), Mc by b-value stability (Cao and Gao, 2002), and the Mc Lilliefors (Herrmann 

and Marzocchi, 2020). These analyses yield magnitudes of completeness of –1.30, -0.35, and –

0.65, respectively. The Mc results from the Lilliefors methods are consistent with the result from 

Niemz et al., 2024 for the circulation stage. Subsequently, using the maximum likelihood method 

(Aki, 1965; Bender, 1983; Utsu, 1999), computed temporal b-values within a moving window of 

150 data points (Figure 1). The results indicate b-values predominantly ranging between 1.0 and 

2.5, which are typical of geothermal systems. In addition, we observe a gradual increase and 

decrease in the b-value, which correlates with the time of the stimulation stages. We considered 

using an equal moving time window for b-value computations to standardize time intervals, as 

using a fixed number of data points results in varying time spans and potential inconsistencies. 



However, this approach was constrained by several time windows lacking a sufficient number of 

events to compute the parameter reliably. 

Next, we will conduct a thorough detection on the continuous data to identify additional events 

within and outside the three stages. This will enable the use of a regular time step for b-value 

calculations and other MFD statistical parameters. 

Figure 1: (a) Temporal b-value for the 2022 stimulation based on the catalog from Niemz et al., 

2024. Red and black lines are the b-values computed using Mc Lilliefors and the maximum 

likelihood method, respectively. (b) Summary of the computed b-values using the different 

methods. 

3. Detected Events from continuous data. (Task 1.3) 

During the data processing stage, it is necessary to transform seismic waveforms into Magnitude-

Frequency Distributions (MFD). Achieving this requires access to a high-resolution seismic 

catalog. However, due to limitations in the available data, we focused on the 2022 stimulation data 

to demonstrate the workflow. In previous research (Li et al., 2023), corresponding labels for MFD 

construction were typically defined as the number of events or the maximum magnitude within a 

given time window. Unfortunately, the 2022 stimulation data only span one week, encompassing 

just a few thousand earthquakes across three stimulation stages. This restricted time frame 

introduces challenges, such as a limited dataset and difficulties in appropriately setting the time 

window for analysis. Moreover, the currently available catalog is low-resolution, leading to 

inconsistencies and a lack of smoothness in the corresponding labels required for MFD 

computation. 



 
Figure 2. Earthquake catalog (Niemz et al., 2024) of 2022 stimulation data. Black point are the 

as-reported events. Green, yellow, and red points are categorical severity based on the team’s 

criteria and will be used as targets for later model training. 

 

To address these challenges, we developed a workflow to directly detect potential seismic events 

from continuous waveforms and generate a high-resolution catalog, which can subsequently be 

used to compute the corresponding Magnitude-Frequency Distribution. The workflow begins with 

applying a bandpass filter of 100 to 1800Hz. This step eliminates low-frequency noise from 

machinery at the site, as the induced microseismic events from the forge are expected to be pulse-

like with high-frequency components (Sobot et al., 2024). Thereafter, we obtained the waveform 

envelope for the continuous waveforms from the individual stations by applying the Hilbert 

transform. Finally, we stacked the envelopes from the different stations by performing cross-

correlation and shifting on the maximum amplitude (Figure 3). This step enhances the signal’s 

representation, focusing on the dominant frequencies relevant to the detection of seismic events. 

Next, we apply a peak detection algorithm (Marcos, 2021) to identify potential peaks from the 

calculated envelope. When comparing the detected peaks with the events listed in the existing low-

resolution catalog (Figure 3), the results demonstrate that this method successfully detects the 

cataloged events and identifies additional potential seismic events that are not included in the 

catalog. This expanded detection capability significantly increases the number of events available 

for analysis, enabling the computation of a more comprehensive and reliable MFD. 

 



 
Figure 3: Envelope function before and after cross-correlation and shifting. 



 
 

Figure 4: The comparison of detection method results and earthquake catalog. 

 

However, despite this improvement, challenges remain during the processing. Specifically, a gap 

exists between the potential events detected from the envelope and the events listed in the 

earthquake catalog. This discrepancy arises because the detected potential events are based on 

envelope amplitude, which represents a measure of signal strength, while MFD calculations 

require earthquake magnitudes. To bridge this gap, it is crucial to establish a robust relationship 

between the envelope amplitude and the earthquake magnitude. This step involves accurately 

calibrating the amplitude values to approximate magnitudes, ensuring that the resulting MFD 

reflects the true distribution of earthquake magnitudes. To achieve this, we focused on events that 

were detected by both our workflow and the existing earthquake catalog. These overlapping events 

serve as a reliable basis for calibration, as they are consistently represented in both datasets. By 

leveraging this overlap, we can establish a functional relationship between envelope amplitude and 

earthquake magnitude. 

 



 

Figure 5: The relationship between the events detected by our workflow and those listed in the 

earthquake catalog. 

 

After exploring various fitting approaches, we selected a cubic function to model the relationship 

between the envelope amplitudes and the corresponding earthquake magnitudes from the two 

catalogs. This decision was based on its superior performance compared to other fitting methods 

in capturing the nuances of the data. As illustrated in Figure 5, the cubic function effectively aligns 

the envelope amplitudes with the instantaneous magnitudes of the overlapping events, providing a 

robust calibration model. This calibration establishes a direct relationship between the envelope 

amplitude and the moment magnitude. With this relationship in place, we can now estimate the 

moment magnitudes for other events detected exclusively by our workflow. These calculated 

magnitudes allow us to construct a complete MFD for the three stimulation stages in 2022 (Figure 

5).  

 

 



 

Figure 6: The potential events distribution before and after the transform. 

 

The MFD not only provides insight into the seismic activity during these stages but also enables 

the generation of key metrics, such as the maximum magnitude and the number of events within 

specified time windows. As demonstrated in previous research (Li et al., 2023), these metrics are 

critical for understanding seismic responses and can be used as labels for machine learning models. 

By setting these derived metrics as labels, we can construct a comprehensive dataset to train 

models for predicting traffic light states or MFD distributions. Ultimately, this workflow bridges 

the gap between raw seismic data and actionable predictions. 

 

 

Figure 7: The max magnitude and number of event distributions of 2022 stimulation based on 

our workflow detected catalog. 

 



4. Conclusion and next step 

Here, we analyzed various methods for calculating Magnitude-Frequency Distributions (MFDs), 

recognizing their critical role in understanding seismic responses. A key observation is that 

regardless of the approach used, a high-precision earthquake catalog is essential for accurate MFD 

computation. However, due to data limitations, obtaining such high-resolution catalogs quickly 

and consistently remains a significant challenge. To address this, we constructed a workflow to 

generate an “inaccurate high-resolution catalog” directly from seismic waveforms. This workflow 

leverages advanced signal processing techniques, such as envelope computation and peak 

detection, to extract potential seismic events from continuous waveforms. 

 

Despite the potential of this workflow, limitations in the dataset, such as the short observation 

window and low-resolution catalog, restricted its immediate application. As a result, we were 

unable to utilize the generated catalog to train a machine-learning model to predict MFDs 

effectively. This limitation underscores the importance of improving both the input data and the 

workflow itself to achieve more reliable results. In the next step, we will reanalyze the 2022 

stimulation data alongside the upcoming 2024 stimulation data. Using these datasets, we will 

employ our workflow to generate high-resolution earthquake catalogs that can be used to train 

models for MFD prediction. This step will provide an opportunity to validate the workflow’s 

effectiveness and its ability to enhance model training with more comprehensive and accurate data. 

 

Additionally, we plan to refine the strategies within the workflow to improve the reliability and 

accuracy of the generated catalogs. These refinements include exploring better fitting functions to 

establish a more robust relationship between envelope amplitudes and earthquake magnitudes, 

adjusting the envelope computation method to capture signal characteristics more effectively, and 

optimizing the peak detection algorithm to minimize false positives and ensure higher catalog 

fidelity. These enhancements aim to address the current limitations and create a workflow capable 

of generating earthquake catalogs with greater precision and credibility. By integrating these 

improvements, our goal is to construct a robust and scalable framework for MFD generation and 

prediction. This next phase of research will bridge the gap between theoretical advancements and 

practical implementation, contributing to more accurate and reliable seismic modeling. 
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