Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation

Pengcheng Fu, Yue Hao, and Charles R. Carrigan

36th Annual Meeting of GRC Oct. 3, 2012

Lawrence Livermore National Laboratory

LLNL-PRES-586695

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Background

- Project: Predicting stimulation-response relationships for engineered geothermal reservoirs
- We need simulation capability for:
 - Reservoir stimulation with hydraulic-fracturing
 - Reservoir stimulation with hydraulic-shearing
 - Thermal effects on long term production
- Discrete Fracture Network-based approach (2D and 3D)
- Validation and demonstration with field data

Interaction between rock-joint-fluid

Interaction between rock-joint-fluid

Two regimes of hydraulic stimulation

$$w(\sigma'_J) - w_i = \frac{(\sigma_M - \sigma_{Mi})H}{E'}$$

$$\Delta \sigma_{M} = \begin{cases} P_{F} / (1 + H / \overline{h_{n}}) & \text{if } P_{F} \leq \sigma_{Mi} (1 + \overline{h_{n}} / H) \\ P_{F} - \sigma_{Mi} & \text{otherwise} \end{cases}$$

Stress s

Rock matrix stress σ_M

Low pressure stimulation. Fracture interaction dominated by joint characteristics.

Minimal interaction through rock matrix.

 $P_F < \sigma_{n0}$

 σ_{n0}

 $w(\sigma'_I) -$

 $\Delta \sigma_{M} =$

High pressure stimulation.

Strong interaction through rock matrix.

 $P_F > \sigma_{n0}$

 $\sigma'_n = 0$

nge

-w max - w

e stress σ'

LLNL-PRES-586695

Lawrence Liv

Fluid-solid coupling for high pressure regime

Fluid-solid coupling for high pressure regime

Fluid-solid coupling for high pressure regime

Fluid-solid coupling for low pressure regime

(4) (4) (5) ---3 (6) -----(2) Node/vertex label (5) Element/cell label

$$P_{F} = \begin{cases} K_{F} \left(1 - \frac{\rho_{ref} L_{C} w}{m_{C}} \right) & \text{if } m_{C} / L_{C} w \ge \rho_{ref} \\ P_{vap} & \text{if } m_{C} / L_{C} w < \rho_{ref} \end{cases}$$

$$w = w_{max} - \frac{Aa + Bb + 1 - \left[(Aa + Bb + 1)^{2} - 4AaBb\right]^{0.5}}{2Ab}$$

$$A = K_F \rho_{ref} L_C / m_C$$
 and $B = \sigma_M - K_F + A w_{max}$

Shear dilation

Excess shear stress

$$\tau' = \tau_0 - \sigma' \mu$$

$$w = w(\sigma', S) = Sw(\sigma')$$

$$S = \begin{cases} 1 + \tau'_{max} (S_{max} - 1) / \tau'_{s} \\ S_{max} \end{cases}$$

if $\tau'_{max} < \tau'_{s}$

otherwise

$$W_{max}$$
 Multiply entropy of σ'_{n0} Effective stress σ'_{n}

Coupling with thermal module

Num. example in 2D

Num. example in 2D

Model validation and demonstration with Habanero data from Cooper Basin

What information to use:

- Relationships of
 - Seismic cloud extent vs. fluid volume injected.
 - Injection pressure vs. flow rate.
 - Pressure decay after shut-in.
 - Production test data.

Preliminary model

Preliminary model

How can the model help?

- Test and validate hypothetical conceptual models.
- Optimize stimulation strategy.
- Optimize production strategy and parameters.

Acknowledgments

 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Laboratory Directed Research & Development

Release number: LLNL-PRES-586695

