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1. Technical Summary 

In this report, the deep/machine learning (DL/ML) based workflow is illustrated for the prediction of in-

situ stresses i.e. minimum, intermediate, and maximum principal stresses in the subsurface geological 

formations in the Utah FORGE well 16B(78)-32. The workflow was completed in a sequence of four stages. 

In the first stage, a total of four hundred sixty-five ‘465’ true triaxial ultrasonic velocity (TUV) experiments 

were performed in laboratory on five subsurface core samples (93 on each core) obtained from the 

geothermal production well 16B(78)-32 drilled at the Utah FORGE site. The TUV experiments involve the 

measurements of ultrasonic wave including compressional (P-) and two shear (Sfast and Sslow) wave 

velocities are measured under various combinations of true triaxial applied stress. It is important to note 

that ultrasonic wave velocities were measured in core samples in such direction that velocities propagate 

along the wellbore axis in order to imitate the actual field scenario.  

In the second stage, DL/ML predictive models were developed for three principal stresses i.e vertical 

and two mutually orthogonal horizontal stresses by training and validation of five DL/ML algorithms using 

TUV experimental data. Further, the prediction performance of DL/ML models were evaluated for different 

portions of datasets in order to determine the minimum number of TUV experiments to be performed that 

are sufficient to develop reliable prediction models of three principal stresses. The analysis allows us to 

obtain the minimum size of TUV dataset that can be utilized to develop reliable prediction models of 

principal stresses in order to reduce the experimental time, labor and resources to ultimately improve the 

overall efficiency of the process. As illustrated, TUV experiments were performed on five different core 

samples, therefore distinctive DL/ML models of three principal stress were developed for each core sample. 

A total of three DL and two ML algorithms such as deep neural network (DNN), convolutional neural 

network (CNN), and gated recurrent units (GRU), random forest (RF) and extreme gradient boosting (XGB) 

were employed for the model development. For the training and validation of predictive model of vertical 

stress (σy), three input features including P-, Sfast- and Sslow- wave velocities i.e. Vzz, Vzx, Vzy were utilized 

as input features. For the development of predictive models of two orthogonally oriented horizontal stresses 

(σx and σz), vertical stress (σy) was also used as input feature in addition to the three ultrasonic velocities 

(Vzz, Vzx, Vzy). Then, the best DL/ML algorithm with highest prediction accuracy was selected for the in-

situ stress prediction in the well 16B(78)-32. The training of DL/ML models was performed using 70% of 

the TUV dataset and 30% dataset was assigned for model testing/validation. The prediction accuracy of 

DL/ML models were evaluated using graphical and statistical metrics such as coefficient of determination 

(R2), residual error (RE), root mean squared error (RMSE), and average absolute percentage error (AAPE). 

It is important to note that prior to the development of the DL/ML models, the TUV datasets of five core 

samples were thoroughly discovered and evaluated through various exploratory data analysis (EDA) 

techniques in order to comprehend the data distribution patterns, trends, features interrelationships, and to 

determine the relative importance of input features with respect to target output. Optimization of the DL/ML 

models was performed by tuning hyperparameters associated with each of the DL/ML algorithms. 

Hyperparameters associated with DNN models include number of hidden layers, neuron counts in hidden 

layers, optimizer, activation function, learning rate, batch size, and dropout rate that were precisely tuned 

to ultimately achieve the optimized prediction outcome. After the optimization process, generalization 

capabilities of the DNN models of three principal stresses (σy, σz, and σx) were also evaluated by 

parametric/sensitivity analysis. Parametric analysis revealed the excellent generalization capabilities of the 

DNN predictive models reflecting the underlying physical phenomenon through demonstrating constitutive 

relation between each of the input features with predicted output.  

The proposed DL/ML models exhibited excellent and reliable prediction performance for the three 

principal stresses (σy, σz and σx), however best prediction accuracy was demonstrated by DNN models 

reflecting low prediction errors (RMSE and AAPE) and high R2. The DNN model for stress σy exhibited 

the AAPE and RMSE of 3.43% and 2.05 MPa for training and 4.93% and 2.88 MPa for validation subsets 

of data. The predictions of validation and training phases reflected the R2 of 0.98 and 0.984. For the DNN 

model of σx, validation and training results demonstrated the AAPE of 3.66% and 3.08%, RMSE of 1.89 
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and 1.73 MPa, and R2 of 0.977 and 0.979, respectively. Further, DNN  model performance was observed 

to be superior for σz stress with RMSE of 1.83 and 2.01, and AAPE of 4.13, and 4.97, for the training ad 

validation phases, respectively. 

 At the third stage, learning curve was evaluated to explore the performance of ML/DL models for 

different portions/sizes of TUV dataset starting from small portion (20%) to the full range of dataset 

(100%). The purpose of learning curve evaluation is to identify the data adequacy (minimum size) of TUV 

dataset required for reliable and generalized ML/DL models. Models’ performance was observed to be 

improved with gradual increase in the size of dataset up to 80% of dataset (75 data points). After that, no 

significant improvement in the prediction accuracy was observed with further increase in the dataset size. 

Further, models’ explainability and interpretability was evaluated in the fourth stage to comprehend the 

inner working of the complex ML/DL models. Interpretability of the models enhanced the scientific 

validation of the proposed ML/DL models by explaining the rationale behind the models’ prediction.       

At fifth stage, unsupervised K-means algorithm was implemented to classify the subsurface rock 

formations into plurality of petrofacies/rock facies (PF) based on well logging data such as gamma ray 

(GR), bulk density (ρ), photoelectric factor (PEF), and neutron porosity (ϕ). K-means clustering algorithm 

was iteratively executed for a number of petrofacies (clusters) and the optimum number of petrofacies was 

selected based on silhouette index (SI) and inertia values. Optimally six (06) petrofacies were identified in 

subsurface rock formations. The purpose of the subsurface rock classification is to identify the 

representative petrofacies that correspond to the subsurface core depths/locations, along the entire well 

section.  

At the final stage, DNN models (trained on TUV data) with optimum hyperparameters setting were 

selected to implement for the prediction of in-situ principal stresses in the subsurface rock formations in 

well 16B(78)-32 using field sonic and bulk density logs as input data. It is worth mentioning that the 

respective predictive models of σy, σz and σx stresses were employed for the prediction of vertical, minimum 

horizontal and maximum horizontal stresses in the field. However, the performance of DNN models was 

observed to be optimum to predict subsurface in-situ stresses only for the representative PF as they 

encapsulate the petrophysical and formations characteristics similar to core sampling locations/depths. In 

contrast, the performances of DL/ML models for non-representative PF were examined not to be as good 

as for representative PF due to attributes different from the subsurface core locations/depths. It was 

observed that DNN predicted in-situ stresses match closely the in-situ stresses obtained from field-based 

elastic geomechanical model (FB-EGM) for the representative PF as they are illustrative of the constitutive 

behavior of subsurface core sample. In contrast, DNN predictions of stresses were observed to be deviated 

from the FB-EGM stresses estimation for the non-representative PF.  

The entire work was completed using different computational softwares embedded with Anaconda 

package. Open-source software, namely Python (ver:3.12.5), was used for the EDA analyses and DL/ML 

models development. Various libraries of Python (ver:3.12.5) such as Pandas, Seaborn, Matplotlib, and 

SciPy, numpy, openpyxl, and Scikit-learn. The codes and algorithms were executed using two on two 

different integrated development environments (IDE) such as Spyder (ver:5.4.3) and Visual Studio Code 

(ver: 1.98.2).  

In summary, evaluation metric demonstrated excellent performance of DL/ML predictive models of 

three principal stresses for both laboratory-based and log-based stress predictions. Parametric/Sensitivity 

analysis revealed excellent generalization capabilities of the proposed DNN models by capturing the 

variations of ultrasonic wave velocities under the influence of stress. Thus, the DNN models successfully 

predicted the in-situ principal stresses in the geothermal well 16B(78)-32 through interpreting sonic log 

data. The approach can be extended to other wells for the reliable estimation of in-situ stresses in the 

subsurface rock formations.      



8 

 

2. Task and Milestone Description 

This report documents the task completion and technical accomplishments comprising achievement of 

Milestone 2.3.2, as per the project SOPO. The validation of milestone accomplishments is illustrated in 

Figures 18-21 demonstrating the key outcomes of the developed deep/machine learning models for in-situ 

vertical, minimum horizontal and maximum horizontal stresses.   

Milestone 2.3.2 – the task incorporates the development and implementation of deep/machine learning 

(DL/ML) models for predicting the in-situ vertical (Sv), minimum horizontal (Shmin) and maximum 

horizontal (Shmax) stresses in the well 16B(78)-32. The detailed description about the experimental work 

was documented in Milestone report 2.1.1 of the project. 

This Milestone task 2.3.2 follows the Milestone report 2.3.1 that elaborates the ML model development, 

validation and field implementation strategy comprehensively for the well 16A(78)-32. In this Milestone 

task, DL/ML predictive models were developed and implemented for the prediction of in-situ principal 

stresses i.e. Sv, Shmin, and Shmax in the well 16B(78)-32. The DL/ML predicted in-situ stresses were found 

to be in good agreement with stresses obtained from field-based elastic geomechanical model. The 

accomplishment of the Milestone task 2.3.2 is illustrated in figures 18-21 reflecting harmony between 

DL/ML-based and field-based estimation of in-situ stresses.    

Milestone task was accomplished in a sequence of several stages including performance of TUV 

experiments, exploratory data analyses (EDA), training and validation of DL/ML models, parametric 

analysis of models, and field implementation for the in-situ stress prediction. This report embark with a 

illustration of experimental procedure and DL/ML techniques employed for the development of predictive 

models of stresses. Then, an integrated DL/ML based workflow is presented. The major outcomes of EDA 

analysis are briefly discussed for the TUV experimental datasets. Then, a comprehensive illustration of 

DL/ML models building, optimization, and hyperparameter tuning is provided. Subsequently, comparison 

of evaluation metrics of five DL/ML predictive models is presented. The parametric/sensitivity analysis is 

presented to evaluate the generalization capabilities of the proposed DNN models. Then, the performance 

of DNN models is shown for different sizes of TUV datasets.  The last section demonstrates the 

implementation of DL/ML models on field sonic log data to predict the in-situ principal stresses in the well 

16B(78)-32. Finally, the key findings and important postulates are provided in conclusions.   

3. Deep/Machine Algorithms  

3.1. Deep Neural Network  

 The DNN, an artificial neural network (ANN) with multiple hidden layers, is extensively adopted in 

machine learning for various tasks such as approximation, data mining, pattern recognition, and prediction 

(Mozaffari and Azad, 2014). DNN leverages various learning algorithms, activation functions, and network 

architectures to address complex engineering challenges (Mohaghegh et al., 1995). By emulating the 

structure and functionality of the human nervous system, DNN tackles specific problems effectively. 

Artificial neurons, the fundamental units of architectural networks, are configured based on the 

requirements of the particular engineering task (Ali, 1994). DNN uses numerous techniques to adeptly make 

connections between nonlinear variables in order to generate robust and reliable predictions results. DNN 

use a broad spectrum of techniques to link nonlinear variables, producing predictions that are accurate, 

reliable, and consistent (Otchere, 2021). 

 The two predominant types of DNN are feedback neural networks (FBNN) and feedforward neural 

networks (FNN) (Chau, 2007). FNN consist of interconnected layers of perceptron that facilitate 

unidirectional information flow from input to output, without cycles or loops. This straightforward 

architecture enables the transformation of input features through hidden layers using activation functions, 

allowing the network to learn complex patterns and generate precise outputs. On the other hand, FBNN, 

which share a similar structural design with FFN, incorporate a feedback mechanism (Saggaf et al., 2003). 
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This mechanism loops back error information, enabling adjustments to neuron weights through an iterative 

process. The feedback loop continues until prediction errors are minimized, enhancing the predictive 

accuracy of the model’s target output (Saikia, 2020). 

3.2. Convolutional Neural Network (CNN)  

 Convolutional Neural Networks (CNN) were initially designed for computer vision tasks like image 

classification and object detection (LeCun et al., 1998). Over time, their application has extended to 

regression problems, particularly in domains where spatial or structural patterns in data play a crucial role. 

CNN excel in processing grid-like data structures, including not only images but also structured numerical 

or tabular data when reformulated appropriately (Goodfellow et al., 2016). The core architecture of CNN 

includes convolutional layers, pooling layers, and fully connected layers. The convolutional layers extract 

spatial and hierarchical features from input data using filters or kernels. This operation enables CNN to 

capture local patterns and aggregate them into higher-level abstractions. Pooling layers, such as max 

pooling, reduce the spatial dimensions of feature maps, improving computational efficiency and minimizing 

overfitting. Finally, fully connected layers integrate these features to make predictions (Goodfellow et al., 

2016).  

 For regression tasks, CNN utilize convolutional layers to extract features that capture underlying 

spatial relationships. These features are then fed into fully connected layers to map the high-dimensional 

representations to continuous output variables (Zhang et al., 2017). This ability makes CNN highly effective 

for tasks such as predicting physical properties, analyzing time-series data reformulated as matrices, and 

estimating real-world measurements like temperature or stress (Hosseini et al., 2021). CNN's ability to 

automatically learn spatial hierarchies makes them a robust alternative to traditional machine learning 

models for regression problems (Zhu et al., 2021; Guo et al., 2020). 

3.3. Gated Recurrent Units (GRU)  

 The Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) architecture introduced 

by Cho et al. (2014) as a simpler and computationally efficient alternative to the Long Short-Term Memory 

(LSTM) network. Like LSTM, GRU is designed to address the vanishing gradient problem in traditional 

RNNs, making it suitable for time series prediction and regression tasks. GRUs utilize two primary gates: 

the reset gate and the update gate. The reset gate determines how much of the previous information is 

forgotten, while the update gate controls the amount of new information added to the hidden state. Unlike 

LSTM, GRU does not have a separate memory cell; instead, it merges the memory and hidden states into a 

single vector. This simplified architecture of GRU is particularly well-suited for applications requiring less 

computational resources without compromising on accuracy (Cho et al., 2014). The dual-gate mechanism 

provides GRUs with the ability to improve the model's performance in tasks such as regression (Chung et 

al., 2014).  

 In regression tasks, particularly those involving sequential data, GRUs have been found to perform 

well by capturing temporal dependencies and providing accurate continuous predictions. Since GRUs are 

computationally more efficient and faster than their counterpart, LSTM networks, and are often preferred 

when the task involves less complex data or when computational resources are constrained (Yin et al., 

2017). Additionally, GRUs are widely used in domains like speech recognition, weather forecasting, and 

natural language processing for regression analysis, due to their ability to learn both long-range and short-

range dependencies efficiently (Chung et al., 2014). Thus, GRU represents a powerful tool for modeling 

tasks, offering a balance between simplicity, efficiency, and accuracy, which makes it a widely adopted 

model in machine learning research and applications (Zhou et al., 2016). 

3.4. Random Forest (RF)  

 Random Forest (RF) is a robust supervised machine learning algorithm that employs ensemble 

learning techniques to address both regression and classification tasks. Ensemble learning combines 

predictions from multiple machine learning algorithms to achieve superior predictive performance 

compared to individual models. In the case of RF, it constructs an ensemble of unpruned classification or 
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regression trees by using bootstrap samples of the training data and random feature selection during tree 

induction. RF derives its predictions by averaging the class outcomes from all these trees. This approach 

enhances the model's accuracy and robustness, making it a valuable tool in various predictive modeling 

applications (Palmer et al., 2007). For a comprehensive understanding of the RF methodology, refer to the 

work by Svetnik et al. (2003). 

3.5. Extreme Gradient Boosting (XGB)   

 The XGB is also an ensemble supervised ML technique designed for both classification and 

regression tasks. It represents an advanced and scalable implementation of the gradient boosting framework, 

initially developed by Friedman et al. (2000). Introduced by Chen et al. (2015), XGB aims to enhance the 

prediction and generalization capabilities of traditional boosting methods. Generally, gradient-based 

approaches rely solely on the first-order partial derivative of the loss function to determine error direction, 

however, XGB incorporates both first and second-order partial derivatives, providing a more 

comprehensive understanding of the gradient’s direction. This inclusion of second-order derivatives allows 

for more precise adjustments during the boosting process. Additionally, XGB integrates L1 (lasso) and L2 

(ridge) regularization techniques, which help in preventing overfitting and contribute to the development 

of a more generalized model.  

 The algorithm's efficiency is further enhanced by its ability to handle missing values inherently, 

streamlining the data preparation process. Moreover, XGB's architecture supports parallel and distributed 

computing, offering significant improvements in computational speed over other gradient-based 

algorithms. These features collectively contribute to XGB's exceptional predictive performance, as reported 

by several researchers (Wang et al., 2020; Yang et al., 2017; Zhao et al., 2018). 

3.6. K-Means Clustering (K-means)  

 In the 1950s and 1960s, an unsupervised ML method namely K-means clustering algorithm was 

introduced by various researchers (Steinhaus, 1956; MacQueen, 1967; Jancey, 1966). This algorithm 

partitions data into predetermined number of clusters. Normally, arbitrary clusters count is required as an 

input parameter which is used to select the centers of arbitrary clusters of the dataset (Jain, 2010).  

 The K-means clustering algorithm initiates by randomly selecting a predetermined number of 

centroids within the dataset. Each data point is then assigned to the nearest centroid based on calculated 

distances, typically using Euclidean distance. Following this assignment, centroids are recalculated as the 

mean of all data points within each cluster. This iterative process continues until cluster memberships 

stabilize, meaning that assignments no longer change between iterations. K-means is widely utilized across 

various fields due to its robustness and straightforward implementation (Jain, 2010). The primary objective 

of K-means is to minimize the sum of squared errors within clusters, enhancing intra-cluster similarity 

(Jain, 2010; Drineas et al., 1999). Notably, increasing the number of clusters generally leads to a decrease 

in the sum of squared errors, as each cluster can more precisely represent a subset of the data (Ahmad & 

Khan, 2019). 

4. Methodology 

4.1. Modelling Workflow 

 This report presents an integrated DL/ML-based approach that combines supervised and unsupervised 

DL/ML algorithms for estimating in-situ stresses in the subsurface rock formations in well 16B(78)-32. 

Four stages are involved in the accomplishment of this work. At the first stage, true triaxial ultrasonic 

velocity experiments (TUV) were performed in the laboratory on subsurface core samples, retrieved from 

five different locations of the well 16B(78)-32 drilled at Utah FORGE geothermal site. Subsurface cores 

represent the rock types including gneiss, granite, granodiorite, and quartz gneiss. A total of 465 TUV 

experiments were performed on five core samples with 93 experiments on each core. In each TUV 
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experiment, compressional (P) and two shear (Sfast and Sslow) wave velocities under various combinations 

of true triaxial stresses were measured along the wellbore axis.  

 The second stage of the workflow comprised of exploratory data analysis (EDA), developing 

optimized DL/ML predictive models, and parametric study of the models using the TUV experimental data. 

For EDA, various visualization and numerical techniques were used to explore and present the data 

distribution, pattens, relation between the features, and relative importance of features. Further, TUV 

experimental data was used to construct (training and validation) predictive models for the vertical (σz) and 

two mutually orthogonal horizontal stresses (σx and σy) using five versatile DL/ML algorithms with three 

algorithms belong to DL class and two belong to ML class of AI. Algorithms include deep neural network 

(DNN), gated recurrent units (GRU), convolutional neural networks (CNN), random forest (RF), and 

extreme gradient boosting (XGB). Individual predictive models were constructed and optimized for each 

subsurface core-based TUV data. Extensive numerical experimentation was performed for tuning the 

hyperparameters of each DL/ML predictive models. A powerful computing tool namely Python was utilized 

for constructing the DL/ML models. 

 At the third stage, learning curve was evaluated to assess the performance of ML/DL models for 

different sizes of TUV dataset starting from low portion (20%) to the full range of dataset (100%). The 

purpose of learning curve evaluation is to identify the data adequacy (minimum size) of TUV dataset 

required for reliable and generalized ML/DL models. Further, models’ explainability and interpretability 

was evaluated in the fourth stage to comprehend the inner working of the complex ML/DL models.        

 At the fifth stage, petrophysical attributes obtained from well log data of the geothermal well 16B(78)-

32 were used to classify the subsurface rock formations into plurality of petrofacies through the 

unsupervised ML algorithm namely K-means clustering. Further, the representative petrofacies were 

recognized that correspond to the subsurface core locations for the entire continuous interval of the well 

with measured depth ‘MD’ ranging from 4835 to 10872 ft. Thus, this stage incorporates the steps of 

acquiring of petrophysical attributes from the well logs, classifying petrofacies, and recognizing the 

representative petrofacies.   

 Subsequently, in the last stage, in-situ horizontal and vertical stresses in the subsurface rock 

formations were predicted by employing the selected predictive DL/ML models with best evaluation 

metrics using the field-based acoustic log data (P- and S-wave velocities) of the same geothermal well 

(16B(78)-32). All stages of the workflow adopted in this study is presented in form of workflow diagram 

as illustrated in Figure 1. Experimental procedure and a quick overview of the DL/ML techniques used in 

this work is provided before the detailed discussion of these stages.     

 The workflow was completed using different libraries of open-source software Python (ver:3.12.1) 

(Python software foundation, 2023) and program codes were executed on two integrated development 

environments (IDE) including Spyder (ver:6.0.1) (Cerezo et al. 2023) and Visual Studio Code (ver:1.87) 

(Microsoft,2015). The Pandas (ver:2.2.3) library of Python (McKinney, 2022) was used to extract the 

Microsoft Excel data and generate data frame on Python software. The Seaborn (ver:0.13.2) library was 

employed for generating the heat maps, pair plots, histogram, KDE, and violin plots (Waskom and Seaborn, 

2023). All EDA plots were generated using the Matplotlib.pyplot module of Matplotlib (ver:3.10.1) library 

of Python (ver:3.12.1) software (Hunter and Droettboom, 2016). Statistical features and correlation 

coefficients (Pearson, Spearman, and Kendall) were determined using Scipy (ver:1.15.2) library (Jones et 

al. 2023). After EDA analysis, dataset is ready to be fed for ML modelling. Training and validation of 

DL/ML models were performed using scikit-learn (ver:24.10-1) (Pedregosa et al. 2011) library of Python 

software. All the Python libraries and IDE (Integrated Development Environment) collectively function 

under the Anaconda (ver:24.10-1) package (Anaconda Inc. 2023).  
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Figure 1: Workflow diagram of the tasks completed in this Milestone 2.3.2. 



13 

 

4.2. Laboratory Experiments – True Triaxial Ultrasonic Velocity (TUV) Experiments 

 A plurality of true triaxial ultrasonic velocity (TUV) experiments were performed on subsurface core 

samples in order to generate adequate dataset for each core sample to develop robust ML/DL predictive 

models for vertical and two horizontal principal stresses. Subsurface core samples were acquired from five 

different locations of the well 16B(78)-32 drilled at Utah FORGE geothermal site.   

 Laboratory experiments were completed in different steps such as sample preparation, saturation, and 

performance of TUV experiments. Core samples were carefully prepared through cutting and end-face 

grinding of core samples to finally prepare cube-shaped samples with dimensions of 2.6 inches cube. Final 

samples were prepared ensuring even and smooth sides with 0.001 inches tolerance and perpendicularity 

of sides. The core samples were then saturated with water under the vacuum pressure of -100 kPa for 24 

hours. Subsequently, TUV tests were performed on saturated core samples under to imitate the subsurface 

reservoir conditions. TUV experiments include the measurements of travel times of compressional (P-) and 

two orthogonally polarized shear (S-) waves under various configurations of true triaxial stresses. Travel 

times were recorded using acoustic transducers that were installed in steel platens on each side of the core 

samples for transmitting and receiving the ultrasonic pulses. P- and S-waves velocities were computed 

using the measured travel times and dimensions of each cube-shape sample.  

 The P- and S-waves velocities propagating in z-direction were utilized in this study. Three 

independently controlled triaxial compressive stresses (referred to as σz, σx and σy) were employed along 

three mutually orthogonal axes (i.e. z, x, and y directions) of cube-shaped samples, respectively. The σy, σz 

and σx represent three orthogonally oriented principal stresses in TUV experiments. Here, P-wave velocity 

is denoted by Vzz and two S-waves velocities are represented by Vzx and Vzy that are polarized in x and y 

orientations, all propagating in z-direction. Generally, velocities Vzx and Vzy are referred to fast and slow-

shear wave velocities. The triaxial stresses orientations in TUV experiments are shown in Figure 2. Further 

details about the experimental work was documented in Milestone report 2.1.1 of the project. 

 

Figure 2: Experimental setup for TUV test; a) Triaxial loading system; b) Rock sample installed in 

loading frame (after Bunger et al. (2024)) 

 Note that throughout this report, velocities ‘V’ are given two subscripts, where the first gives the 

propagation direction and the second gives the direction of particle motion. Hence Vzz, Vzy, and Vzx, all 

describe waves propagating in the z-direction and indicate the P-wave, the y-polarized S-wave, and the x-

polarized S-wave velocities, respectively. The illustration of waves propagation direction and particle 

movement is provided in Figure 3. 
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Figure 3: Example of waveforms from Lower Granitoid, x-direction. Waveforms result from two separate 

experiments with transducers oriented to capture the y-polarization (top) and z-polarization (bottom). 

Sketches show sample and transducer orientation to illustrate propagation direction and shear wave 

polarity for each of these cases. (Bunger et al. 2023). 

5. Data Description  

Two different kinds of datasets were utilized to complete this work such as laboratory-based 

experimental data and field-based log data. The experimental data was utilized to train and validate/test the 

DL/ML models. This data contains compressional (P-) and fast and slow shear (Sslow- and Sfast-) waves 

velocities i.e. Vzz, Vzx, and Vzy, respectively, measured on saturated subsurface core samples under true 

triaxial stress configurations. Experimental data was generated using five subsurface core samples collected 

from five depth locations of well 16B(78)-32 at the FORGE geothermal site. The core samples represent 

different rock formations such as Gneiss, Granite, Granodiorite, and Quartz gneiss. The measured depths 

of the core samples are provided in Table 1. A suite of data was generated from 465 TUV experiments 

performed on five core samples (93 on each core) which was used to develop (train and validate) DL/ML 

models.   

 In reference to field scenario, core samples are oriented in such a way that σy in TUV experiments 

represents vertical whereas σz and σx represent two orthogonal horizontal stresses. The DL/ML predictive 

models for stress σy were generated (trained and validated) using three input features including Vzz, Vzx, 

and Vzy. Whereas four input features such as Vzz, Vzx, Vzy, and σy were selected to train and validate DL/ML 

predictive models for horizontal stresses (σx and σz). It is important to notice that an additional input feature 

i.e. vertical stress σy was selected for the prediction of horizontal stress. The significance of selecting 

vertical stress (gravitational stress) as input feature for predicting horizontal stress is quite obvious because 

the gravitational stress (overburden) is one of the major contributors to generate horizontal stresses in 

subsurface rock formations. It is important to note that distinct ML models were generated for vertical and 

horizontal stresses of each core sample.  The experimental dataset of core-A used in this work is provided 
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in Figure 4. TUV datasets of core-B, -C, -D, and -E are provided in Appendix-A. 

Further, third and fourth stages of this study was completed using the field logging measurements acquired 

for the measured depth interval of 4835-10872 ft of the well 16B(78)-32. In third phase, formation and 

petrophysical attributes obtained from logging data such as bulk density (ρ), neutron porosity (ϕ), 

photoelectric factor (PEF), and gamma ray (GR) was used to classify the subsurface rocks into rock facies. 

Subsequently, field sonic and bulk density logs of the same well were utilized to ultimately execute the 

field implementation of the generated DL/ML models.         

Table 1: Depths and photos of subsurface core samples used for TUV experiments 

Rock Type 
Core 

ID 

Measured 

Depth 'ft' 

Density 

'g/cc’ 

Porosity 

‘%’ 

Dynamic 

Young’s 

Modulus  

‘GPa’ 

Dynamic 

Poisson’s 

ratio 

Photo cube 

sample 

Gneiss A 10,438 2.65 – 2.68 2.0 73.5 0.29 

 

Granite B 10,253 2.56 2.0 66.4 0.28 

 

Granodiorite C 10,264 2.55 – 2.57 3.0 66.3 0.27 

 

Quartz 

Gneiss 
D 9,839 2.68 2.0 79.7 0.30 

 

Quartz 

Gneiss 
E 9842.3 2.68 2.0 80.4 0.29 
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Figure 4: A suite of TUV data used for DL/ML models development. 

5.1. Exploratory Data Analysis (EDA)   

 A comprehensive exploratory data analysis (EDA) was performed on the dataset before constructing 

DL/ML models. EDA offered a thorough insight and intuition about the dataset in terms of statistical 

features, data distribution patterns and trends, inter-correlation between the features, and relative 

significance input features. Statistical parameters such as median, mode, mean, range, standard deviation, 

kurtosis, and skewness are illustrated in Table 2. Further, histogram plots of input and output features 

illustrating the data distribution and patterns of dataset of core-A are shown in Figure 5. Histogram plots 

of dataset of cores-B, -C, -D, and -E are provided in the Appendix-B. Additionally, violin plots are provided 

to visualize the data distribution in terms of kernel density estimation function in order to demonstrate the 

extreme values, inter-quartile range, arithmetic means, and distribution type (uni-, bi-, or multi-modal). 

Figure 6 presents the violin plots of core-A. Violin plots of cores-B, -C, -D, and -E are provided in the 

Appendix-C. The heat maps are presented to exhibit the collinearity between each pair of the features of 

dataset of core-A as shown in Figure 7. Violin plots of the datasets of cores-B, -C, -D, and -E are provided 

in the Appendix-D. Heat maps were produced using three different criteria such as Kendall, Pearson, and 

Spearman. Most of the features exhibited positive correlation with each other. Mathematical expressions 

of Kendall, Pearson, and Spearman criteria are provided as  

ρ𝑝𝑒𝑎𝑟𝑠𝑜𝑛 =
k∑xy− (∑x)(∑y)

√k(∑x2)−(∑y)2 √k(∑y2)−(∑y)2
  (Eq. 1) 

ρ𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = ρ𝑝𝑒𝑎𝑟𝑠𝑜𝑛
cov(𝑥,𝑦)

𝛾𝑥𝛾𝑦
   (Eq. 2) 

τ𝑘𝑒𝑛𝑑𝑎𝑙𝑙 =
𝑛𝑐−𝑛𝑑
𝑛(𝑛−1)

2⁄
    (Eq. 3) 

Here, x and y represents the respective variables, and the number of samples is shown by k. Standard 

deviations of the x and y variables are denoted as γx and γy, and covariance as cov(𝑥, 𝑦). Numbers of 

discordant and concordant pairs of variables are denoted by 𝑛𝑑 and 𝑛𝑐, number of data samples as n, 

respectively. 

 

 1 

 2 

 3 

Core - A 
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Table 2: Statistical measures of the dataset of core - A 

Statistical 

Indicators 

σx 
(MPa) 

σy 
(MPa) 

σz 
(MPa) 

Vzz 
(m/s) 

Vzx 
(m/s) 

Vzy 
(m/s) 

Maximum 22.5 22.5 20.0 5708.6 3132.8 2958.1 

Minimum 67.5 89.4 55.0 6282.9 3352.5 3139.5 

Median 47.0 54.4 43.0 6046.7 3264.8 3059.4 

Mode 50.0 50.0 45.0 6207.7 3250.3 3133.9 

Mean  44.9 57.8 39.3 6046.1 3258.0 3050.6 

St. Dev. 11.8 16.5 9.6 143.5 52.0 47.7 

Kurtosis -1.0 -0.9 -0.9 -0.9 -0.6 -0.7 

Skewness -0.1 0.2 -0.5 -0.2 -0.5 -0.1 

 

 

Figure 5: Histogram along with mean and median of input and output features of TUV data of core-A 

showing the data distribution. 

 

 

Figure 6: Violin plots for input and output data representation of core-A. 
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Figure 7: Heat maps showing collinearity between the features of dataset of core-A using Kendall, 

Spearman and Pearson criteria. 

The weights of relative importance of input features with respect to output features for the σz, σx, and 

σy models of core-A are presented in Figure 8. Relative importance weights of input features in the datasets 

of cores-B, -C, -D, and -E are provided in the Appendix-E. The criteria for determining relative importance 

are provided in Eqs. 1-3. The performance of ML models’ prediction is greatly affected by the score of 

relative importance. The input features Vzz, Vzx, and Vzy, were observed to be positively correlated with σy 

stress for Core-D. The features Vzz and Vzx exhibited a relatively stronger positive correlation with σy stress 

as compared to Vzy. Likewise, feature Vzy also showed a relatively weaker positive correlation with σx and 

σz stresses compared to Vzz and Vzx velocities. Further, feature σy were found to have very strong correlation 

with σz and σx stresses. Features Vzx and σy exhibited stronger correlation with both σz and σx stresses 

compared to other two features Vzz and Vzy. It is important to note that the direct positive correlation of 

ultrasonic wave velocities with stresses applied in the directions of wave propagation is well-known fact.  

 Subsequently, cross plots between each pair of input and output features are presented in a single plot 

termed as pair plot. Cross plots reflect that the Vzz, Vzx, and Vzy velocities are substantially influenced by 

the applied stresses. Cross plots between the features are shown in the lower triangle whereas KDE 

distribution of features is demonstrated along the diagonal of the pair plot as shown in Figure 9.    

 

Core - A 
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Figure 8: Relative importance of input features from the correlation between input and output features. 

 

Figure 9: Pair plots exhibiting relationship between each pair of input and output features. 

Core - A 
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6. Evaluation Metrics   

Graphical and statistical metrics were used to evaluate the ML prediction performance. Evaluation 

metrics include coefficient of determination (R2), residual error (RE), root mean squared error (RMSE), 

and average absolute percentage error (AAPE) were employed for assessing the models’ performances. 

Evaluation metrics can be demonstrated as    

𝑅2 = [
k∑ab− (∑a)(∑b)

√(k(∑a2)−(∑a)2) √k(∑b2)−(∑b)2
]
2

   (Eq. 4) 

Here, total number of samples are denoted by k, and variables by a and b, respectively.  

Residual Error = (σmeasured − σpredicted)  (Eq. 5) 

AAPE (%)  =  
∑|(σmeasured−σpredicted)/

100

σmeasured
|

total number of data points
  (Eq. 6) 

RMSE = √
∑(𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
   (Eq. 7) 

Here, predicted and experimental values of stress are represented by σmeasured and σpredicted, 

respectively. 

Further, performance of clustering model was evaluated by the Silhouette Index (SI), a widely used 

metric that quantifies how well each data point fits within its assigned cluster compared to other clusters 

(Rousseeuw in 1987). The SI considers both intra-cluster compactness (cohesion) and inter-cluster 

separation to determine the appropriateness of the clustering configuration. Mathematically, SI can be 

expressed as 

SI = s(𝑗) =
(𝑎(𝑖) − 𝑏(𝑖))

𝑀𝑎𝑥 {𝑏(𝑖),𝑎(𝑖)}
  (Eq. 8) 

 Here, a(i) represents the mean separation distance between a data point 'j' and the other points within its 

own cluster 'Xi'. Whereas b(i) shows the shortest mean distance between point 'j' and any point in a different 

cluster 'Xk' is denoted by 'b(i)'. The mathematical definitions of the evaluation metrics are provided by Eqs. 

4-8. 

7. DL/ML Models Training, Validation/Testing and Optimization    

The DL/ML predictive models were trained and validated for vertical (σy) and two orthogonal horizontal 

stresses (σx and σz) using the TUV experimental dataset of corresponding core samples. It is important to 

note that individual DL/ML model was developed for each stress of all core samples. As mentioned earlier, 

three input features including Vzz, Vzx, and Vzy were used for the training and validation of the σy stress 

predictive model. Whereas four input features such as Vzz, Vzx, Vzy, and σy were used for the development 

(train and validate) of DL/ML predictive models for σx and σz. Initially, pre-processing of the dataset was 

performed through the Min-Max scalar to bring the features on the same scale. The pre-processed data was 

then divided into two subsets i.e. training and validation subsets. A stratified random sampling technique 

was implemented for splitting the data into two halves in order to minimize the variability and reduce the 

risk of biased performance of models. A train-test split feature of scikit-learn library in Python software 

was employed to generate the training and validation subsets of data. The data splitting was done in such a 

way that validation and training subsets contain 30% and 70% of the total dataset, respectively. Graphical 

plots were drawn for each feature against experiment number and set of numerical values of all features 

against experiment number is the representation of one TUV experiment.  
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 The Grid search cross-validation strategy was adopted for tuning the hyperparameters of DL/ML 

models. Further explanation of Grid search cross-validation strategy can be found in Liashchynskyi and 

Liashchynskyi (2019). DL/ML prediction performance was optimized during the tuning process of 

hyperparameters through numerous training executions on the data. The reproducibility of the same 

prediction results for the optimized hyperparameters was ensured using the seed function. For avoiding the 

overfitting/underfitting during the process of model training and for further improvement in the prediction 

performance of the DL/ML models, k-fold cross validation technique was employed. In CV technique, 

training dataset was further randomly partitioned into ‘k’ portions or subsets termed as k-folds. Belyadi 

and Haghighat (2021), observed that best results are obtained for the folds values between 5 and 10. In this 

study, training dataset was further divided into eight random equal sized portions (folds) i.e. k=8. Seven 

out of eight folds were allocated for training, and one leftover fold is used for validation of the models 

during the training process. Each of the eight folds underwent through validation process. Then, average 

of prediction errors from all folds was computed for the training process.   

 In DNN deep learning models, foundation of the neural network is built on two fundamental blocks 

such as number of hidden layers of neurons, and neurons count in each layer of neurons. A typical neurons 

framework employed in this study is illustrated in Figure 10. Further, an important element of neural 

network is the activation function. Subsequently, it is imperative to implement and elaborate the sensitivity 

scheme to determine the optimum combination of hyperparameters. Then, the tuning of hyperparameters 

were performed in an order of stages to organize a logical sequence of events in the formation process of 

DNN model. In this work, the neuron sensitivity scheme for hidden layers was carried out with a range 

from 5 to 40 neurons in order to choose optimized value of neuron count. The respective RMSE and R2 of 

training and validation with different number of neurons for all three DNN models of stress σy, σz and σx 

for core-A are presented in Figure 11. The most favorable neurons count was observed to be 21, 5, and 7 

with least prediction RMSE and R2. The RMSE and R2 of validation phases with optimum number of 

neurons were observed to be 2.88. and 0.980 for stress σy, 2.01 and 0.973 for σz, and 1.89 and 0.977 for σx, 

respectively. Neuron sensitivity analysis of DNN models of stress σy, σz and σx for core-B, -C, -D, and -E 

are provided in the Appendix-F. 

 The optimization of hidden layers count, assessment of neurons count, and evaluation of activation 

function were performed at the model building stage at which input, hidden and output layers are defined. 

An additional dropout layer was embedded in between input and hidden layers. Then, the compilation of 

the DNN model was performed by carefully selecting the suitable optimizers, learning rate, loss function 

and accuracy metric for optimization and performance evaluation of the DNN models. Subsequently, 

models training were simulated with a different set of hyperparameters for numerous epochs and different 

batch sizes. Ultimately, optimum sets of hyperparameters were selected for training of DNN models as 

illustrated in Table 3. Further, to avoid the performance degradation on validation dataset during the 

training process, early stopping function was applied.   

 Additionally, a crucial phase in the construction of optimized models is to run several realizations in 

order to select best seeding functions that shows a distinctive identity affiliated to the DNN code of this 

study. A total of 100 realizations were performed for the DNN models of stresses σy, σx and σz. Integration 

of optimum values of hyperparameters complemented with the best realizations ultimately led to the 

construction of fully optimized DNN models of stresses σy, σx and σz. The mismatch between the 

experimental and DNN predicted stresses was reflected by the selected loss function i.e. mean squared 

error.   

 In addition to DNN, four predictive models including two DL models i.e. GRU and CNN and two ML 

models i.e. RF and XGB were also trained and validated on the same TUV dataset. The optimum values of 

associated hyperparameters were achieved during the training of the predictive models. Optimization of 

hyperparameters of each DL/ML model was conducted by Grid Search CV technique.  

 The GRU architecture was also constructed through a systematic procedure. After the data pre-
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processing and data splitting, GRU architecture was devised, initiating with a first GRU layer (input layer), 

followed by another GRU layer, then by a dropout layer to avoid overfitting of data and finally the output 

layer to generate the predictions. Further, model compilation, training and validation process is more or 

less similar to DNN model. For optimization of hyperparameters, a range of values was explored such as 

GRU units (10-200), dropout rate (0.1-0.5), batch size (32-64), and learning rates (0.001-0.1) through grid 

search CV approach. After selecting the optimum combination of hyperparameters based on minimum loss 

function, resulting in a final architecture. Subsequently, optimized model was employed to predict the 

validation/test subset of data. The optimized values of hyperparameters are illustrated in Table 3.   

 In this work, the design of CNN architecture was developed to explore its effectiveness in resolving 

regression problems using tabular dataset. The architecture is composed of input layer, followed by the two 

1D convolution layers (Conv1D) with number of filters, kernel size, and ReLU activation function. The 

output of Conv1D layers passed through the flatten layer, and then fully connected (dense) layer with ReLU 

activation function. Subsequently, the final output layer with single neuron and linear activation function 

was applied to obtain the continuous predictions. The optimum values of hyperparameters was obtained 

after exploring the range of values such as kernel sizes (2-10), number of filters (8-64), dense units (8-64), 

learning rate (0.001-0.01), batch sizes (8-64), optimizer (adam, nadam, sgd) through grid search CV 

approach. The optimum values are selected based on minimum loss function. The optimized CNN model 

was then employed for predicting validation dataset reflecting its generalization capabilities on unseen 

dataset.   

 Further, two ML predictive models such as RF and XGB were developed. Likewise, grid search CV 

strategy was applied to optimize the hyperparameters for each of the ML models. The prediction 

performances of all five DL/ML models were then compared to choose the best predictive model for field 

implementation. The optimized values of hyperparameters of all DL/ML models are presented in Table 3. 

 

Figure 10: DNN topology showing neurons structure. 
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Figure 11: Neurons sensitivity analysis and selection of best realization using evaluation metrics of σz, σx, 

σy models. 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

Table 3: Optimum values of hyperparameters of the proposed DL/ML models for Core-A. 

Model 

Type 
Hyperparameter Tested Values 

Selected value for 

‘σz’ 

Selected value for 

‘σx’ 

Selected value for 

‘σx’ 

DNN 

Number of hidden layers 1-3 2 2 2 

Number of neurons 5-40 21 5 7 

Number of realizations 1-100 50 58 24 

Optimizer Adam, nadam, sgd Adam Adam Adam 

Activation function ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Learning rate 1x10-4 – 1x10-1   1x10-3 1x10-3 1x10-3 

Batch size 8, 16, 32, 64 16 16 16 

Dropout Rate 0.1-0.5 0.2 0.2 0.2 

Loss Function MSE MSE MSE MSE 

GRU 

GRU Units 10-200 50 70 60 

Activation Function ReLU, LeakyReLU, Tanh Tanh Tanh Tanh 

Dropout rate 0.1-0.5 0.2 0.2 0.2 

Batch Size 8, 16, 32, 64 32 32 32 

Learning rate 1x10-3 – 1x10-1   1x10-2 1x10-2 1x10-2 

Optimizer Adam, nadam, sgd Adam Adam Adam 

Loss Function MSE MSE MSE MSE 

CNN 

Number of Filters  8-64 8 16 16 

Kernel Size  2-10 3 3 3 

Activation Function for 

Convolution layer 
ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Dense Units 8-64 32 32 32 

Batch Size 8, 16, 32, 64 16 16 32 

Optimizer Adam, nadam, sgd nadam nadam nadam 

Loss Function MSE MSE MSE MSE 

RF 

Sample count necessary to split 

the internal node 
2-20 10 12 10 

Maximum depth of the trees 3-10 7 6 7 

Total count of trees in the forest 50-2500 1200 1100 1400 

Sample count at the leaf node 1-5 2 2 2 

XGB 

Criterion - friedman mse friedman mse friedman mse 

Count of boosting stages to be 

performed 
100-1000 200 220 200 

Learning rate 0.001-0.1 0.01 0.01 0.01 

Alpha - 0.03 0.03 0.02 

Minimum sample split 1-5 2 2 2 

Max. depth 3-10 7 8 7 

Minimum sample leaf 1-5 2 2 2 

Loss  MSE, RMSE MSE MSE MSE 
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8. Predictive Modelling Results  

 All five proposed models DNN, GRU, CNN, RF, and XGB demonstrated excellent prediction 

performances with low errors and high R2 values. However, comparison of accuracy measures revealed 

that DNN models outperformed other four predictive models for stresses σz, σx, and σy.   

 The DNN model for stress σy exhibited the AAPE and RMSE of 3.43% and 2.05 MPa for training and 

4.93% and 2.88 MPa for validation subsets of data. The predictions of validation and training phases 

reflected the R2 of 0.98 and 0.984. For the DNN model of σx, validation and training results demonstrated 

the AAPE of 3.66% and 3.08%, RMSE of 1.89 and 1.73 MPa, and R2 of 0.977 and 0.979, respectively. 

Further, DNN  model performance was observed to be superior for σz stress with RMSE of 1.83 and 2.01, 

and AAPE of 4.13, and 4.97, for the training ad validation phases, respectively. The cross plots between 

the predicted and experimental values of stresses demonstrated the prediction performances of training and 

validation phases of the proposed DL/ML models of stresses σz, σx, and σy as illustrated in Figure 12. 

Evaluation metrics of the DL/ML models are also illustrated and compared on the cross plots. The predicted 

values of stresses values were also compared with experimental values as expressed in Figure 13-15. A 

good harmony was observed between the experimental and predicted values of stresses σz, σx, and σy. The 

histograms and KDE of the corresponding RE of the proposed DNN models demonstrated excellent 

prediction capabilities of the proposed DNN models as presented in Figure 16. The bell-shaped histogram 

and KDEs showed that lowest RE of the DL/ML models correspond to the highest frequencies in 

histograms plots that reflected their outstanding prediction performance.   

 A comparison of evaluation metrics of proposed DL/ML models of stress σy revealed the superior 

prediction performance of DNN with lowest AAPE (4.93%) and RMSE (2.88 MPa) and highest R2 (0.98) 

values observed for validation phase. The prediction performances of other DL/ML models such as GRU, 

CNN, XGB, and RF are also excellent on validation dataset that reflected their generation capabilities on 

unseen dataset. However, metrics of GRU, CNN, XGB, and RF are slightly lower compared to DNN 

models. For the σx and σz stress models, the best validation performances were observed for DNN model 

with minimum RMSE (1.89 and 2.01 MPa) and AAPE (3.66 and 4.97%) and highest R2 (0.977 and 0.973), 

respectively.  Although all predictive models exhibited good performance during the training phase with 

marginal differences in the evaluation metrics. Hence, the overall performance of DNN was outstanding 

and slightly better than other DL/ML models. The relatively higher prediction errors RMSE (4.17, 2.63, 

and 3.78 MPa) and AAPE (4.17, 5.42, and 6.29%) were observed for XGB models of stresses σy, σz, and 

σx.  

 Consequently, the proposed predictive models are quite reliable with robust prediction performances. 

Table 4 summarizes the evaluation metrics of the proposed models. A comparison of validation and training 

prediction errors of the σz, σx, and σy stress models are presented in Figure 17. 
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Core - A  

            

        

        

   Figure 12: Cross plots between predicted and experimental stresses for the proposed DNN, GRU, CNN, 

RF, XGB models of σz, σx, and σy, stresses for Core-A.   
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Figure 13: Comparison between predicted and experimental values of σy stress for the DNN, GRU, CNN, 

RF, XGB models developed for Core-A. Bottom two plots demonstrated the RE for the training and 

testing/validation phases.  
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Figure 14: Comparison between predicted and experimental values of σz stress for the DNN, GRU, CNN, 

RF, XGB models developed for Core-A. Bottom two plots demonstrated the RE for training and 

validation/testing phases. 
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Figure 15: Comparison between predicted and experimental values of σx stress for the DNN, GRU, CNN, 

RF, XGB models developed for Core-A. Bottom two plots demonstrated the RE for training and 

testing/validation phases. 
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Figure 16: Residual errors of the stresses σz, σx, and σy, predicted by DNN, DT, KNN, RF, ADB, XGB 

models for training and testing/validation phases.   
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Table 4: Evaluation metrics for the training and testing/validation phases of the proposed DT, DNN, 

KNN, RF, ADB, XGB models for ‘σz’, ‘σy’, and ‘σx’ stresses.  

Parameter 
Evaluation 

Metrics 

Data 

Category 

ML Models 

DNN GRU CNN RF XGB 

σy 

RMSE 

(MPa) 

Training 2.05 2.21 2.44 2.31 3.16 

Test. & Val. 2.88 2.97 3.73 3.12 4.17 

AAPE (%) 

Training 3.43 3.47 3.91 3.69 4.02 

Test. & Val. 4.93 5.09 6.40 5.19 7.11 

R2  
Training 0.984 0.981 0.976 0.975 0.901 

Test. & Val. 0.980 0.978 0.958 0.962 0.948 

σz 

RMSE 

(MPa) 
Training 1.83 1.99 2.16 1.94 2.13 

 Test. & Val. 2.01 2.14 2.75 2.54 2.63 

AAPE (%) Training 4.13 4.46 5.14 4.16 4.72 

 Test. & Val. 4.97 5.05 7.45 5.30 5.42 

R2  Training 0.971 0.966 0.945 0.964 0.959 

  Test. & Val. 0.973 0.956 0.931 0.943 0.938 

σx 

RMSE 

(MPa) 
Training 1.73 1.81 1.84 1.91 1.93 

 Test/Val. 1.89 2.17 2.70 3.21 3.78 

AAPE (%) Training 3.08 3.22 3.45 3.70 3.96 

 Test/Val. 3.66 4.09 4.68 4.84 6.29 

R2  Training 0.979 0.978 0.975 0.974 0.969 

 Test/Val. 0.977 0.972 0.953 0.934 0.910 
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Figure 17: Comparison of prediction RMSE and AAPE for the proposed DNN, GRU, CNN, RF, XGB 

models of σy, σz, and σx stresses for Core-A. 

9. Parametric/Sensitivity Analysis (Model Generalization)  

 Generalization capabilities of the proposed DNN predictive models were evaluated through the 

performance of parametric or sensitivity analysis. Parametric analysis illustrates the significance of input 

features for the target output variable. The parametric analysis was conducted on a synthetic dataset to 

evaluate the impact of each input feature on the target variable illustrating the underlying physics of the 

predictive models. Synthetic datasets are generated in a fashion that only one feature is kept changing while 

values of all other input features are constant. Thus, a distinct dataset is generated for each input feature 

and prediction was obtained using that generated dataset. In this work, parametric analysis is demonstrated 

for three models of σy, σz, and σx stresses developed. The influence of three input features i.e. Vzz, Vzx, and 

Vzy was examined for the target output σy. The impact of Vzz on σy was evaluated by changing the values 

of Vzx and keeping the values of Vzx and Vzy constant. Similarly, the impact of other input features Vzx and 

Vzy on σy was also evaluated by following the same strategy. Further, parametric analysis was performed 

for the other two predictive models of σx and σz as well using similar schemes. The parametric analysis 

demonstrated a specific pattern between each input feature and predicted output demonstrating their 

physical relationship. A unique pattern of curve was observed for each of the input features with output 

feature revealing good generalizability of the proposed DL/ML models of σy, σz and σx and σz stresses. The 

results obtained from the parametric analysis of σy, σz, and σx models are presented in Figures 18-20, 

respectively. 

 In this work, a unique pattern of curves represents the constitutive relation between each input feature 

and predicted output. Parametric analysis revealed that the relationship between the ultrasonic wave 

velocities (Vzz, Vzx, and Vzy) and stress (σy, σz, and σx) is not straightforward rather following a non-

monotonic pattern which may not be the reflection of intuition. The non-monotonic patterns of constitutive 

relationships of velocities with vertical and horizontal principal stresses were previously observed and 

reported by Bunger et al. (2023), and Mustafa et al. 2024. It is inferred that vertical and horizontal stresses 

significantly influence the compressional and shear wave velocities (Vzz, Vzx, and Vzy) with rollover(s) after 

a certain level of stress developing a unique pattern of increasing and decreasing velocities. 
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Figure 18: Parametric/Sensitivity study exhibiting impact of each input feature on predicted σy stress. 
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Figure 19: Parametric/Sensitivity study exhibiting impact of each input feature on predicted σz stress. 

    

          

Figure 20: Parametric/Sensitivity study exhibiting impact of each input feature on predicted σx stress. 

10. Dataset Size Effectiveness   

 To evaluate the effectiveness of TUV dataset sizes, learning curves of the proposed DNN, CNN, GRU, 

RF, and XGB models were analyzed for different sizes of TUV dataset. The purpose of evaluating the 

models’ performances on different portions of datasets is to determine the minimum number of TUV 

experiments to be performed that are sufficient to develop reliable prediction models of three principal 

stresses. Additionally, ML/DL algorithms with the best and consistent predictive performance on all 

portions of datasets could be identified. Initially, the predictive performance of training and validation 

phases of the proposed models including DNN, CNN, GRU, RF, and XGB for three principal stresses (σy, 

σz, and σx) was evaluated for different sizes of dataset, ranging from a small portion (20%) to the full dataset 

(100%) with an interval of 20%. A comparison of RMSE and R2 of training and validation phases of the 
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proposed predictive models confirmed the superior and consistent performance of the DNN models on all 

sizes of dataset sizes of three principal stresses. The comparison of predictive performances of the proposed 

models is presented in Figure 21. 

     

   

    

 

Figure 21: A comparison of RMSE and R2 of the training and validation phases of DNN, CNN, GRU, 

RF, and XGB predictive models for σz, σx, and σy stress models. 
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 For further analysis, DNN models are selected due to consistency, robustness and generalization 

capability. The analysis allows us to obtain the minimum size of TUV dataset that can be utilized to develop 

reliable prediction models of principal stresses in order to reduce the experimental time, labor and resources 

to ultimately improve the overall efficiency of the process. The learning curves were developed for all three 

principal stresses (σy, σz, and σx) by evaluating DNN models multiple times for even smaller sizes of TUV 

datasets, ranging from a small portion (20%) to the full dataset (100%) with an interval of 10%. Each of 

the dataset portions was split into training and testing subsets. For each selected portion, training and 

validation of DNN models were performed and corresponding evaluation metrics (R2 and RMSE) were 

recorded. The iterative execution of models resulted in identifying the minimum TUV dataset size yielding 

no further significant improvement in R2 and RMSE of predictive models with additional TUV data points. 

An optimal TUV dataset yields a balance between each model’s prediction accuracy and experimental 

efficiency (time and labor, and other resources). Therefore, experimental resources, time and labor could 

be minimized without compromising the model accuracy. 

 The evolution of the model’s performance with increasing size of TUV dataset is illustrated in Figure 

22. For smaller TUV datasets, training performance (low RMSE and high R2) is excellent, however 

validation performance is poor with high RMSE and low R2 that indicates the overfitting of the model with 

poor generalization capability. With the increase in dataset size, training RMSE slightly increases and 

validation RMSE reduces significantly, leading to improved generalization. Out of the total data points, 

optimal performances (RMSE and R2) for models’ training and validation were achieved with 80% (75 

data points) of the TUV dataset, confirming a balance between performance and generalization. Hence, 

reliable and generalized ML/DL models can be constructed for three principal stresses (σy, σz, and σx) using 

the dataset rendered from 75 TUV experiments per core sample, as long as velocities are measured precisely 

and the degree of nonlinearity in the relationships between the velocities and stresses are similar to the 

rocks considered in this study. Beyond this point, no significant improvements in model’s accuracy was 

observed by further increasing the size of dataset, ensuring optimal size of TUV dataset is achieved. The 

corresponding RMSE and R2 of the training and validation phases for different sizes of TUV dataset are 

demonstrated in Figure 23. 

  

Figure 22: Learning curves of DNN models demonstrating the training and validation RMSE scores as a 

function of dataset size for σz, σx, and σy stress models. 

 

 

 

 



37 

 

 

    

   

Figure 23: RMSE and R2 scores of training and validation/testing of the DNN models as a function of 

dataset size for σz, σx, and σy stress models. 

11.  Interpretability of DNN Models - Global and Local Explanation   

In this scientific application, the interpretability of the proposed DNN models is of high interest, which 

demonstrates the degree to which humans can comprehend the rationale behind the prediction and decisions 

of DNN models. Although DNN models demonstrated reliable and robust prediction outcomes, however 

black-box nature of these models results in a lack of interpretability and explainability. To overcome this 

limitation, SHapley Additive exPlanations (SHAP) analysis was applied for interpreting the global and 

local behavior of DNN models by explaining their inner workings to obtain specific predictions. In SHAP 

analysis, a specific Shapley value is assigned to each input feature for a specific target prediction, 

demonstrating an quantitative measure of average contribution of each input feature value towards the target 

prediction. Thus, in this work, different SHAP plots were employed to obtain insights about the behavior 

of individual input feature across different instances.  

The SHAP summary plots provide a global perspective of SHAP values observing the contribution of 

each input feature to stress prediction compared to average prediction of models by integrating feature 

importance with feature impacts as illustrated in Figure 24A. Each point (dot) on the plot represents the 

Shapley value of a feature for a single instance in the dataset. Input features are ordered with respect to their 

importance, leading to the inference of the association between features’ values and their influence on the 

model’s predictions. For instance, for Vzy and Vzx features, higher values correspond to lower SHAP values, 

reflecting higher values of Vzy and Vzx lead to lower predicted stress values than the average model 
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prediction. Further, SHAP plots analysis can help infer the relationship between the features as well. The 

SHAP summary plots of σz and σx models are provided in Appendix-L. The average of absolute SHAP 

values across all instances (data points) are illustrated in the mean SHAP plot (Figure 24B), reflecting the 

impact of corresponding input features on model’s prediction.  

The SHAP waterfall plot provides the visual demonstration of SHAP values of input features 

illustrating the degree to which each input feature has impacted the model’s prediction in comparison with 

mean prediction, thereby either decreasing or increasing the predicted stresses (σy, σz, and σx) for a specific 

instance in the dataset. The SHAP waterfall plot of σz model is presented in Figure 24C and plots of σz and 

σx models are provided in Appendix-L. The bottoms of the waterfall plots show the base values starting at 

E[f(x)] = 54.84 MPa for σy, 35.93 MPa for σz, and 44.5 MPa for σx, respectively, reflecting the average 

predicted stresses (σy, σz, and σx) across all the data points. Each value corresponding to specific features 

illustrates either negative (blue) or positive (red) contribution in shifting the expected output of the model 

(base value) to the predicted stress output of the model for that specific data point or instance. In these 

examples of the given specific instances, the model predicted stresses came out to be f(x) = 50.575 MPa, 

38.475 MPa, and 50.107 MPa for σy, σz, and σx, respectively. The waterfall plots of specific instances (Table 

5) show that the feature Vzz contributes negatively to the predicted stress σy and σz, thereby reducing the σy 

stresses by 11 MPa and σz stresses by 3.43 MPa, while contributing positively for stress σx, thereby boosting 

the σx by 7.27 MPa, respectively. The features Vzx and Vzy contribute positively to increasing the σy by 3.71 

MPa and 3.02 MPa, respectively. The results obtained from SHAP waterfall plots outcomes are aligned 

with the findings of SHAP summary.   

The SHAP force plot is utilized to visualize the SHAP values of each data point in the dataset, providing 

almost similar information as waterfall plot. The plot illustrates how the contribution of each feature leads 

to decrease or increase the model predicted stress values, resulting in the ultimate prediction of 50.575 MPa, 

38.48 MPa, and 50.11 MPa, respectively. The SHAP force plot of σz model is presented in Figure 24D and 

plots of σz and σx models are provided in Appendix-L. 

Another important plot namely SHAP decision plots are generated to obtain valuable insights into how 

the stress predictions are generated from DNN model of stress σy as shown in Figure 25A and 11B. The 

model’s base value is illustrated by the line positioned at the bottom of the plot. The path of each line 

demonstrates the influence of SHAP value of each input feature on prediction, resulting ultimate predicted 

stresses of models at the end of line (on top of the plot). Each line corresponds to one data instance 

(observation). It is vital to note that results obtained from SHAP decision plots for a single instance (data 

point) are in agreement with the results obtained from SHAP summary, waterfall and force plots. The zig-

zag pattern of SHAP decision plot (Figure 25B) indicates that feature Vzz have negative impact (negative 

SHAP values) whereas features Vzy and Vzx contribute positively to σy model prediction for the given 

instance. The decision plots of σz and σx models are provided in Appendix-L. 

To comprehend the impact of a specific feature on model’s prediction along with interaction impact of 

other features, SHAP dependence plots are generated and analysed. The impact of changes in input features 

(Vzz, Vzx and Vzy) and SHAP values on model predicted stresses σy is illustrated in Figure 25C. The 

dependence plots of σz and σx models are provided in Appendix-L. It is quite evident from dependence plot 

that the larger values of features Vzz tend to have positive SHAP values thus, lead to the higher predicted 

σy stress and vice versa. On the contrary, lower values of features Vzx and Vzy with positive SHAP values 

causing the predicted σy stress to increase and vice versa. While the interacting feature exhibited alternately 

increasing and decreasing trends specifically in the vicinity of the central values of feature (Figures 25C).  
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Figure 24: SHAP analysis of σy model; (A) SHAP summary plots, (B) Corresponding feature 

importance scores, (C) SHAP waterfall plot for a specific instance representing impact of individual feature 

on prediction of stress; (D) SHAP force plots representing individual feature contribution to get the final 

prediction of stress.   

 

Table 5: Specific data points in the dataset of σy, σz, and σx models. 

Models Vzz Vzx Vzy σy 

σy Model 5847.5 3172.75 2885.07 ---- 

σz Model 6207.74 3117.13 3303.13 79.625 

σx Model 6207.74 3117.13 3303.13 79.625 
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Figure 25: SHAP decision and dependence plots for σy model; (A) decision plot for few instances, (B) 

decision plot for a specific instance, (C) dependence plots for features Vzz, Vzx, and Vzy. 
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12.  Petrofacies Analysis   

 At this stage, an unsupervised K-means algorithm was implemented to classify the subsurface rock 

formations into a number of clusters. Each cluster/group is the representative of a distinct petrofacies (PF) 

that encapsulates a set of petrophysical and formations characteristics. The clustering analysis was 

performed using the petrophysical well log data such as bulk density (ρ), neutron porosity (NPHI), 

photoelectric factor (PEF), and gamma ray (GR), obtained from the measured depth interval from 4835 - 

10872 ft of the same well 16B(78)-32. The objective of subsurface rock classification is to recognize the 

representative PF which are located at the same depth of subsurface core samples used in this work. 

The K-means algorithm was iteratively executed for different plurality of clusters in order to obtain the 

optimum numbers of clusters/petrofacies. For the execution of each run, sum of the squared distances of 

all the data points to the nearest cluster’s centroid is computed, also termed as ‘inertia’. Based on inertia 

values, elbow plot was generated and evaluated in order to determine the optimum number of 

clusters/petrofacies as shown in Figure 26.    

Optimally, a total of six (06) PF were identified for the selected rock characteristics and depth interval 

indicated heterogeneity in the properties of subsurface geological formations. The identified PF along with 

the cross plots between the selected rock characteristics are demonstrated in Figure 26. It is worth to 

mention that a total of five core samples depths are represented by three PF .e. PF-1, PF-5, and PF-6. The 

PF-1 (sky blue) is the representative PF for core-A, PF-5 (blue) is representative of core-D and -E, whereas 

PF-6 (purple) is the representation of core-B and C. The representative PFs demonstrate petrophysical and 

formation characteristics that is similar to the subsurface core samples, thus lead to similar constitutive 

behavior. The representative PF were also marked/located above and below the sampling locations along 

the well. The identified PFs for the entire section of well along with well log suite are illustrated in Figure 

27.  

Further, good performance of clustering models was reflected by the SI score of 0.70 for the identified PFs 

indicating compactness and fitness of data points to specified cluster (PF). The data points of PF-1, 4, 5, 

and 6 are observed to be compacted leading to distinct PFs. It is important to note that the primary focus 

of this work is on PF-1, 5, and 6 which are the most relevant PFs and representative of core samples’ 

characteristics. on the other hand, data points of PF-2, and 3 seems to be less compacted leading to less 

distinctive clusters. One of the prominent reason for this is the geological complexity with transitional or 

mixed facies. The gradual transition in the geological characteristics might lead to less compacted clusters. 
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Figure 26: K-means clusters results; (A) Elbow plot, (B) GR vs NPHI, (C) GR vs ρ, (D) NPHI vs 

ρ for the depth 5000-6000 ft of well 16B(78)-32.  
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Figure 27: The well log suite and petrophysical clusters for the well 16B(78)-32 

13.  In-situ Stress in Well 16B(78)-32 using Trained DL/ML Models  

 At this stage, the DNN were applied for estimating near-field in-situ stresses in the subsurface rock 

formations using to field sonic log data acquired from the measured depth interval ranging from 4835 to 

10872 ft of well 16B(78)-32. It is important to mention that the respective DNN models of three principal 

stresses i.e. σy (vertical), σx (maximum horizontal) and σz (minimum horizontal) stresses were employed 

to predict corresponding in-situ principal stresses, namely vertical (Sv), maximum horizontal (Shmax), and 

minimum horizontal (Shmin) in the subsurface rock formations, respectively.  

The DNN models for principal stresses were applied corresponding to specific stress orientations relative 

to the well axis: the normal stresses parallel to well axis (σy
′

) and the two mutually orthogonal principal 

stresses within the plane perpendicular to the well (σx
′

and σy
′

). The input features used for these respective 

stress predictions, namely Vp, Vs-slow, Vs-fast, and bulk density gradient, were acquired from field logs along 

variously oriented sections of well 16B(78)-32.  The entire well 16B(78)-32 is comprised of a vertical and 

a deviated section as illustrated in Figure 29E. For the vertical section, predicted near-field stresses (Shv, 

Shmin, and Shmax) are aligned with the in-situ principal stresses. However, predicted stresses in the deviated 

section (inclined at 65˚ from vertical) need to be aligned with principal stress orientation through three-

dimensional (3-D) stress transformation. The normal and shear stress components in a global coordinate 

system, aligned with three in-situ principal stresses (vertical, minimum horizontal and maximum 

horizontal), can be computed from the local (deviated wellbore) coordinate system (σx
′

, σy
′

, and σz
′

) by 
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computing the rotation matrix (Qij) for stress tensor which is simply the direction cosines (li, mi, and ni 

where i=1,2,3) between the major axes in the global and local coordinate and can be expressed as 

{
 
 

 
 σz
′

σx
′

σy
′
}
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   ] {

Shmin
Shmax
Sv

}  =  [
cos2 25˚    cos2 90˚  cos2 65˚
cos2 90˚   cos2 0˚   cos2 90˚
cos2 65˚   cos2 90˚   cos2 155˚

   ] {

Shmin
Shmax
Sv

} (Eq. 9) 

 A comparison was made between the field-based elastic geomechanical model (FB-EGM) and DNN 

prediction of in-situ stresses. It is important to note that field logs including density and sonic logs were 

measured in the near wellbore region where thermo-poro-elastic stress disturbance (Tao and Ghassemi, 

2010; Lu et al., 2024) and near-wellbore stress concentration (Kirsh, 1998) may be expected. Therefore, 

DNN predicted in-situ principal stresses may be influenced by near-wellbore alterations and therefore 

require translation to far-field stresses through coupled thermo-poro-mechanical simulations (Lu et al, 

2024). Nevertheless, DNN predicted in-situ stresses are in good agreement with FB-EGM horizontal 

stresses and bulk-density-based vertical stress specifically for the representative PFs (PF-1, 5, and 6). Thus, 

the performance of DNN models was observed to be optimum only for the representative PFs (PF-1, 5, and 

6) as they are illustrative of constitutive behavior of subsurface core samples. The zones/layers of 

representative PF were also recognized at several locations along the wellbore. In contrast, the 

performances of DNN models for non-representative PFs (PF-2, 3, and 4) were examined not to be as good 

as for representative PFs due to attributes different from the subsurface core locations/depths. Thus, DNN 

predicted stresses were observed to be deviated from the FB-EGM stresses estimation for the non-

representative PF.  

 A cross plot between the DNN predicted and FB-EGM based Shmin and Sv stresses demonstrated 

excellent prediction performance of DNN models with R2 score of 0.813 and 0.865 for the representative 

PF (PF-1, 5, and 6) and 0.024 and 0.288 for the non-representative PF (PF-2, 3, and 4) respectively, as 

illustrated in Figure 28. The comparison between DNN predicted and FB-EGM stresses for the 

representative and non-representative PF are illustrated in two separate plots as shown in Figures 29. The 

DNN predicted in-situ stresses at the core depths of well 16B are shown in Table 6. Hence, this study 

analysis revealed that the developed DL/ML models were able to efficiently capture the constitutive 

relationship between acoustic velocities and three principal in-situ stresses in the subsurface core samples 

and successfully predicted the in-situ stresses in the subsurface core locations and zones of representative 

PFs. Further, the results revealed that the constitutive behavior of geological formations is strongly 

influenced by their petrophysical and formation characteristics, thus might lead to impact the distribution 

of in-situ stress and variation in sonic velocities. Hence, this work demonstrated the stress-velocity 

relationship that leads to the inference that variation in compression and shear wave velocities is strongly 

impacted by the in-situ stress variations in the subsurface rock formations.    

 Although, this approach offers an effective method to predict sin-situ stresses by capturing and implying 

stress-velocity relations but with certain limitations. Firstly, the stress-velocity relationship explored by the 

DL/ML models are applicable only to the representative PFs that contains geological and petrophysical 

characteristics similar to core sample locations. Therefore, to extend stress interpretation to other PF 

encountered within the well log interval, subsurface cores need to be acquired from at least one of the 

zones/layers of each PF. Additionally, accurate estimation of in-situ stress can be possible only if the 

oriented subsurface cores are available. Further, DNN models were generated on TUV data performed on 

intact or unfractured core samples, therefore, predicted in-situ stresses may have uncertainty in highly 

fractured or fault shear zones due to the localized stress changes.  

 In spite of certain limitations, this approach can provide reliable estimation of in-situ stresses in 

subsurface rock formations if applied under favorable environment/conditions. Consequently, this study 

leads to the cost-effective, time-saving solution of estimating in-situ stresses without the performance of 

costly field injection tests such as mini-frac or micro-frac tests in the wellbore.   
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Figure 28: Cross plot between the DNN prediction and FB-EGM based Shmin (left) and Sv (right) for the 

representative and non-representative PF in well 16B(78)-32.  
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Figure 29: A comparison between in-situ stresses in well 16B(78)-32 obtained from ML prediction and FB-EGM; 

(A) shows a comparison of Shmin for non-representative PF, (B) shows a comparison of Shmin for the representative 

PF, (C) shows a comparison of Sv for non-representative PF, (D) shows a comparison of Sv for representative PF. 

Core sampling locations/depths of different PF is shown by stars. (E) Well trajectory shown in vertical plane 

(modified from Lu et al., (2023)). 
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Table 6: DNN predicted in-situ stresses at core locations of well 16B(78)-32. 

Core 

ID 

Measured 

Depth ‘ft’ 

True 

Vertical 

Depth ‘ft’ 

Shmin 

‘MPa’ 

Shmin 

Gradient 

‘psi/ft’ 

Sv 

‘MPa’ 

Sv 

Gradient 

‘psi/ft’ 

Shmax 

‘MPa’ 

Shmax 

Gradient 

‘psi/ft’ 

D 9,839 7,925.10 38.100 0.697 64.949 1.189 49.577 0.907 

E 9,842 7,926.30 39.139 0.716 65.013 1.190 49.642 0.908 

B 10,253 8,090.10 39.802 0.714 66.143 1.186 48.938 0.877 

C 10,264 8,094.79 39.754 0.712 65.335 1.171 49.210 0.882 

A 10,438 8,170.35 38.412 0.682 66.136 1.174 49.515 0.879 

 

14. Conclusions 

The project Milestone covered the workflow of DL/ML models development using TUV dataset and 

implementation of DL/ML models for predicting in-situ stresses in well 16B(78)-32 at the Utah FORGE 

geothermal site. To complete the milestone, extensive TUV experiments were conducted to generate TUV 

dataset in order to train and validate the DL/ML predictive models for three principal stresses i.e. σx, σy, 

and σz for each of the five subsurface cores. The milestone presents the analysis of DL/ML models 

performance for different sizes of TUV datasets in order to determine the minimum number of TUV 

experiments required to generate reliable and robust predictive models. The milestone presents the 

optimized DL/ML predictive models with excellent generalization capabilities capturing the underlying 

physics of the models as reflected by parametric analysis. The major outcome of the entire workflow is that 

stress-velocity relationships-based DL/ML models are capable to predict the in-situ vertical stress using 

sonic logs (Vp, Vslow, and Vfast) as input data and two principal horizontal stresses using sonic logs and 

density-based vertical stresses in the subsurface rock formations in well 16B(78)-32. The evaluation of 

learning curve revealed that 75 TUV experiments will be sufficient for generating reliable and generalized 

ML/DL models. Adding more data points does not significantly improve the models performance and 

prediction accuracy. Further, SHAP analysis provided how the input features work and interact to obtain 

the final prediction of models making the complex ML/DL models a white box approach. Intuitive 

explanation of models working enhanced the trust and scientific validation of the ML/DL models.  

The conclusion is drawn based on high accuracy and reliability of the predicted in-situ stresses in the 

field demonstrating robustness of DL/ML models in terms of low prediction errors, AAPE and RMSE, and 

high R2. Further, the generalization capabilities of the models captured the velocity-stress constitutive 

relationship that actually resulted in successful implementation of DL/ML models for the in-situ stress 

prediction, especially in the zones/layers of representative PF. The promising results of this work are quite 

evident from a close match between the DL/ML predicted and FB-EGM-based stresses for the zones/layers 

of representative PF. Representative PF are the illustrative of the constitutive behavior of the subsurface 

core sampling locations/depths. Exceptions are possible for the non-representative PF as their petrophysical 

and formation attributes are different from the subsurface cores, thus, demonstrate different velocity-stress 

constitutive behavior. Nonetheless, DL/ML models based prediction of in-situ stresses in subsurface rock 

formations are of acceptable quality and provide a promising path forward for providing the economical, 

quick and robust solution for estimating in-situ stresses.   
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Appendices 

Appendix A: Graphical representation of TUV Datasets of five cores used for DL/ML 

models. 

 

Figure A-1: The suite of TUV dataset for core-A 

 

 

Figure A-2: The suite of TUV dataset for core-B 
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Figure A-3: The suite of TUV dataset for core-C 

 

 

 

Figure A-4: The suite of TUV dataset for core-D 
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Figure A-5: The suite of TUV dataset for core-E 
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Appendix B: Histograms of datasets for cores-B, -C, -D, and -E.  

 

Figure B-1: Histograms of TUV dataset for core-B 

 

Figure B-2: Histograms of TUV dataset for core-C 

 

Figure B-3: Histograms of TUV dataset for core-D 
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Figure B-4: Histograms of TUV dataset for core-E 
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Appendix C: Violin Plots of datasets for cores-B, C, D, and E 

 

Figure C-1: Violin plots of TUV dataset for core-B 

 

Figure C-2: Violin plots of TUV dataset for core-C 

 

 

Figure C-3: Violin plots of TUV dataset for core-D 
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Figure C-4: Violin plots of TUV dataset for core-E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

Appendix D: Heatmaps shows collinearity between each pair of input and output features.  

 

       

 

Figure D-1: Heatmaps showing collinearity between each pair of input and output features for core-B. 
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Figure D-2: Heatmaps showing collinearity between each pair of input and output features for core-C. 
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Figure D-3: Heatmaps showing collinearity between each pair of input and output features for core-D. 
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Figure D-4: Heatmaps showing collinearity between each pair of input and output features for core-E. 
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Appendix E: Relative importance of input features for σy, σz, and σx stress models.  

 

 

Figure E-1: Radar chart illustrates relative importance of input features for σy, σz, and σx stress models 

of core-B. 

 

 

Figure E-2: Radar chart illustrates relative importance of input features for σy, σz, and σx stress models 

of core-C. 
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Figure E-3: Radar chart illustrates relative importance of input features for σy, σz, and σx stress models 

of core-D. 

 

 

Figure E-4: Radar chart illustrates relative importance of input features for σy, σz, and σx stress models 

of core-E. 
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Appendix F: Neurons sensitivity analysis using evaluation metrics (RMSE and R2) of σz, 

σx, σy models for Core-B, -C, -D, and -E. 

Core - B  

  

 

Figure F-1: Neurons sensitivity analysis by comparing evaluation metrics of σz, σx, σy models for core-B. 
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Core - C  

    

 

Figure F-2: Neurons sensitivity analysis by comparing evaluation metrics of σz, σx, σy models for core-C. 
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Core - D 

   

 

Figure F-3: Neurons sensitivity analysis by comparing evaluation metrics of σz, σx, σy models for core-D. 
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Core - E  

     

 

Figure F-4: Neurons sensitivity analysis by comparing evaluation metrics of σz, σx, σy models for core-E. 
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Appendix G: Optimum values of hyperparameters of the proposed DL/ML models  

Table G-1: Optimum values of hyperparameters used for σz, σx, σy models of Core-B. 

Model 

Type 
Hyperparameter Tested Values 

Selected value 

for ‘σy’ 

Selected value 

for ‘σz’ 

Selected value 

for ‘σx’ 

DNN 

Number of hidden layers 1-3 2 2 2 

Number of neurons 5-40 8 19 12 

Number of realizations 1-100 82 76 48 

Optimizer Adam, nadam, sgd Adam Adam nadam 

Activation function ReLU, LeakyReLU, Tanh ReLU ReLU LeakyReLU 

Learning rate 1x10-4 – 1x10-1   1x10-3 1x10-4 1x10-4 

Batch size 8, 16, 32, 64 32 32 32 

Dropout Rate 0.1-0.5 0.2 0.2 0.2 

Loss Function MSE MSE MSE MSE 

GRU 

GRU Units 10-200 80 75 80 

Activation Function ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Dropout rate 0.1-0.5 0.2 0.2 0.2 

Batch Size 8, 16, 32, 64 32 32 32 

Learning rate 1x10-4 – 1x10-1   1x10-3 1x10-3 1x10-3 

Optimizer Adam, nadam, sgd Adam nadam nadam 

Loss Function MSE MSE MSE MSE 

CNN 

Number of Filters  8-64 16 32 32 

Kernel Size  2-5 4 4 4 

Activation Function for Conv1D 

layer 
ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Dense Units 8-64 32 64 64 

Batch Size 8, 16, 32, 64 32 32 32 

Optimizer Adam, nadam, sgd Adam Adam Adam 

Loss Function MSE MSE MSE MSE 

RF 

Sample count necessary to split 

the internal node 
2-20 12 15 15 

Maximum depth of the trees 3-10 8 9 8 

Total count of trees in the forest 50-2500 1000 1200 1200 

Sample count at the leaf node 1-5 2 2 2 

XGB 

Criterion - friedman mse friedman mse friedman mse 

Count of boosting stages  100-1000 250 300 300 

Learning rate 0.001-0.1 0.005 0.005 0.005 

Alpha - 0.03 0.03 0.02 

Minimum sample split 1-5 3 3 3 

Max. depth 3-10 8 8 10 

Minimum sample leaf 1-5 2 2 2 

Loss  MSE, RMSE MSE MSE MSE 
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Table G-2: Optimum values of hyperparameters used for σz, σx, σy models of Core-C. 

Model 

Type 
Hyperparameter Tested Values 

Selected value 

for ‘σy’ 

Selected value 

for ‘σz’ 

Selected value 

for ‘σx’ 

DNN 

Number of hidden layers 1-3 2 2 2 

Number of neurons 5-40 9 6 24 

Number of realizations 1-100 100 92 50 

Optimizer Adam, nadam, sgd nadam nadam nadam 

Activation function ReLU, LeakyReLU, Tanh ReLU LeakyReLU LeakyReLU 

Learning rate 1x10-4 – 1x10-1   1x10-4 1x10-4 1x10-4 

Batch size 8, 16, 32, 64 16 32 32 

Dropout Rate 0.1-0.5 0.2 0.2 0.2 

Loss Function MSE MSE MSE MSE 

GRU 

GRU Units 10-200 80 85 85 

Activation Function ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Dropout rate 0.1-0.5 0.2 0.2 0.2 

Batch Size 8, 16, 32, 64 32 32 32 

Learning rate 1x10-4 – 1x10-1   1x10-3 1x10-3 1x10-3 

Optimizer Adam, nadam, sgd Adam Adam Adam 

Loss Function MSE MSE MSE MSE 

CNN 

Number of Filters  8-64 32 32 32 

Kernel Size  2-5 4 4 4 

Activation Function for Conv1D 

layer 
ReLU, LeakyReLU, Tanh LeakyReLU LeakyReLU LeakyReLU 

Dense Units 8-64 32 32 32 

Batch Size 8, 16, 32, 64 16 16 32 

Optimizer Adam, nadam, sgd sgd sgd sgd 

Loss Function MSE MSE MSE MSE 

RF 

Sample count necessary to split 

the internal node 
2-20 12 14 15 

Maximum depth of the trees 3-10 8 8 9 

Total count of trees in the forest 50-2500 1100 1000 1000 

Sample count at the leaf node 1-5 2 2 2 

XGB 

Criterion - friedman mse friedman mse friedman mse 

Count of boosting stages  100-1000 300 400 400 

Learning rate 0.001-0.1 0.005 0.001 0.01 

Alpha - 0.02 0.03 0.03 

Minimum sample split 1-5 2 2 2 

Max. depth 3-10 8 9 8 

Minimum sample leaf 1-5 2 2 2 

Loss  MSE, RMSE MSE MSE MSE 
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Table G-3: Optimum values of hyperparameters used for σz, σx, σy models of Core-D. 

Model 

Type 
Hyperparameter Tested Values 

Selected value 

for ‘σy’ 

Selected value 

for ‘σz’ 

Selected value 

for ‘σx’ 

DNN 

Number of hidden layers 1-3 2 2 2 

Number of neurons 5-40 20 6 8 

Number of realizations 1-100 7 94 34 

Optimizer Adam, nadam, sgd Sgd Sgd Sgd 

Activation function ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Learning rate 1x10-4 – 1x10-1   1x10-4 1x10-3 1x10-3 

Batch size 8, 16, 32, 64 16 32 16 

Dropout Rate 0.1-0.5 0.2 0.2 0.2 

Loss Function MSE MSE MSE MSE 

GRU 

GRU Units 10-200 100 90 100 

Activation Function ReLU, LeakyReLU, Tanh ReLU Tanh ReLU 

Dropout rate 0.1-0.5 0.2 0.2 0.2 

Batch Size 8, 16, 32, 64 32 16 16 

Learning rate 1x10-4 – 1x10-1   1x10-3 1x10-4 1x10-4 

Optimizer Adam, nadam, sgd Adam nadam nadam 

Loss Function MSE MSE MSE MSE 

CNN 

Number of Filters  8-64 32 16 16 

Kernel Size  2-5 2 3 3 

Activation Function for Conv1D 

layer 
ReLU, LeakyReLU, Tanh ReLU ReLU ReLU 

Dense Units 8-64 64 64 64 

Batch Size 8, 16, 32, 64 32 32 16 

Optimizer Adam, nadam, sgd nadam Adam Adam 

Loss Function MSE MSE MSE MSE 

RF 

Sample count necessary to split 

the internal node 
2-20 11 10 15 

Maximum depth of the trees 3-10 6 8 8 

Total count of trees in the forest 50-2500 1400 1500 1300 

Sample count at the leaf node 1-5 2 2 2 

XGB 

Criterion - friedman mse friedman mse friedman mse 

Count of boosting stages  100-1000 350 300 300 

Learning rate 0.001-0.1 0.05 0.05 0.001 

Alpha - 0.03 0.02 0.03 

Minimum sample split 1-5 3 3 2 

Max. depth 3-10 8 7 7 

Minimum sample leaf 1-5 2 2 2 

Loss  MSE, RMSE MSE MSE MSE 
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 Table G-4: Optimum values of hyperparameters used for σz, σx, σy models of Core-E. 

Model 

Type 
Hyperparameter Tested Values 

Selected value 

for ‘σy’ 

Selected value 

for ‘σz’ 

Selected value 

for ‘σx’ 

DNN 

Number of hidden layers 1-3 2 2 2 

Number of neurons 5-40 17 14 9 

Number of realizations 1-100 100 52 8 

Optimizer Adam, nadam, sgd Adam nadam nadam 

Activation function ReLU, LeakyReLU, Tanh LeakyReLU LeakyReLU LeakyReLU 

Learning rate 1x10-4 – 1x10-1   1x10-2 1x10-2 1x10-2 

Batch size 8, 16, 32, 64 16 32 32 

Dropout Rate 0.1-0.5 0.2 0.2 0.2 

Loss Function MSE MSE MSE MSE 

GRU 

GRU Units 10-200 70 80 100 

Activation Function ReLU, LeakyReLU, Tanh ReLU ReLU Tanh 

Dropout rate 0.1-0.5 0.2 0.2 0.2 

Batch Size 8, 16, 32, 64 32 16 16 

Learning rate 1x10-4 – 1x10-1   1x10-3 1x10-3 1x10-2 

Optimizer Adam, nadam, sgd nadam nadam Adam 

Loss Function MSE MSE MSE MSE 

CNN 

Number of Filters  8-64 16 16 16 

Kernel Size  2-5 3 3 3 

Activation Function for Conv1D 

layer 
ReLU, LeakyReLU, Tanh ReLU LeakyReLU LeakyReLU 

Dense Units 8-64 64 64 64 

Batch Size 8, 16, 32, 64 32 32 16 

Optimizer Adam, nadam, sgd Adam Sgd Adam 

Loss Function MSE MSE MSE MSE 

RF 

Sample count necessary to split 

the internal node 
2-20 15 14 12 

Maximum depth of the trees 3-10 5 7 6 

Total count of trees in the forest 50-2500 1000 900 1100 

Sample count at the leaf node 1-5 2 2 2 

XGB 

Criterion - friedman mse friedman mse friedman mse 

Count of boosting stages  100-1000 250 200 200 

Learning rate 0.001-0.1 0.01 0.01 0.01 

Alpha - 0.02 0.02 0.02 

Minimum sample split 1-5 3 3 2 

Max. depth 3-10 5 6 6 

Minimum sample leaf 1-5 3 3 2 

Loss  MSE, RMSE MSE MSE MSE 
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Appendix H: Cross plots between predicted and experimental stresses for the proposed 

DNN, RF, XGB, CNN, GRU models of σz, σx, σy stresses Core-B, -C, -D, and -E. 

Core – B 

       

         

        

Figure H-1: Cross plots between predicted and experimental stresses for the proposed DNN, GRU, CNN, 

RF, XGB models of σz, σx, and σy, stresses for Core-B. 
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Core – C 

       

         

          

Figure H-2: Cross plots between predicted and experimental stresses for the proposed DNN, GRU, CNN, 

RF, XGB models of σz, σx, and σy, stresses for Core-C. 
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Core – D 

       

         

          

Figure H-3: Cross plots between predicted and experimental stresses for the proposed DNN, GRU, CNN, 

RF, XGB models of σz, σx, and σy, stresses for Core-D. 
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Core – E   

       

         

          

Figure H-4: Cross plots between predicted and experimental stresses for the proposed DNN, GRU, CNN, 

RF, XGB models of σz, σx, and σy, stresses for Core-E. 
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Appendix I: Comparison between predicted and experimental stresses for the proposed 

DNN, RF, XGB, CNN, GRU models of σz, σx, σy stresses for Core-B, -C, -D, and -E. 

 Core - B (σy Model)  
 

        

         

         

Figure I-1: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σy stress for Core-B. 
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   Core - B (σz Model)  
 

        

 

      

Figure I-2: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σz stress for Core-B. 
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   Core - B (σx Model)  
 

  

   

      

Figure I-3: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σx stress for Core-B. 
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   Core - C (σy Model)  
 

  

   

      

Figure I-4: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σy stress for Core-C. 

 

 

 

 

 

 

 



80 

 

 

   Core - C (σz Model)  
 

  

    

      

Figure I-5: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σz stress for Core-C. 
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   Core - C (σx Model)  
 

  

    

      

Figure I-6: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σx stress for Core-C. 
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   Core - D (σy Model)  
 

  

    

      

Figure I-7: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σy stress for Core-D. 
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   Core - D (σz Model)  
 

  

    

 

Figure I-8: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σz stress for Core-D. 
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   Core - D (σx Model)  
 

  

    

 

Figure I-9: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σx stress for Core-D. 
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   Core - E (σy Model)  
 

  

    

 

Figure I-10: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σy stress for Core-E. 
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   Core - E (σz Model)  
 

  

    

 

Figure I-11: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σz stress for Core-E. 
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   Core - E (σx Model)  
 

  

    

 

Figure I-12: Comparison between predicted and experimental stresses for the proposed DNN, RF, XGB, 

CNN, GRU models of σx stress for Core-E. 
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Appendix J: Residual errors for the training and testing/validation phases of the proposed 

DNN, RF, XGB, GRU, CNN models of σz, σx, σy stresses.  

Core - B  

σy Model 
 

   

σz Model 
 

         

σx Model 

        

Figure J-1: Residual errors for the training and validation/testing phases of the proposed 

DNN, RF, XGB, GRU, CNN models of σz, σx, σy stresses Core-B. 
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Core - C  

σy Model 
 

   

σz Model 
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Figure J-2: Residual errors for the training and validation/testing phases of the proposed 

DNN, RF, XGB, GRU, CNN models of σz, σx, σy stresses Core-C. 
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Figure J-3: Residual errors for the training and validation/testing phases of the proposed 

DNN, RF, XGB, GRU, CNN models of σz, σx, σy stresses Core-D. 
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σy Model 
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Figure J-4: Residual errors for the training and validation/testing phases of the proposed 

DNN, RF, XGB, GRU, CNN models of σz, σx, σy stresses Core-E. 
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Appendix K: Comparison of prediction RMSE and AAPE for the proposed DNN, RF, 

XGB, GRU, CNN models of σz, σx, σy stresses.  

Core - B 

  

  

Figure K-1: Comparison of prediction RMSE and AAPE of the proposed DNN, RF, XGB, GRU, 

CNN models of σz, σx, σy stresses for Core-B. 

Core - C 

  

  

Figure K-2: Comparison of prediction RMSE and AAPE of the proposed DNN, RF, XGB, GRU, 

CNN models of σz, σx, σy stresses for Core-C. 
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Core – D 

  

  

Figure K-3: Comparison of prediction RMSE and AAPE of the proposed DNN, RF, XGB, GRU, 

CNN models of σz, σx, σy stresses for Core-D. 

 

Core – E 

  

Figure K-4: Comparison of prediction RMSE and AAPE of the proposed DNN, RF, XGB, 

GRU, CNN models of σz, σx, σy stresses for Core-E. 

 

 

 

 



94 

 

Appendix L: Results of SHAP analysis of DNN models of σz and σx stresses.   

 

       

     

Figure L-1: SHAP summary plots (left column) and corresponding feature importance scores (right 

column) of σz and σx stress models. 
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Figure L-2: SHAP waterfall plots for a specific instance representing impact of individual feature on 

prediction of stresses; (A) σz, (B) σx. 

 

 

 

Figure L-3: SHAP force plots for a specific instance representing individual feature contribution to 

get the final prediction of stresses; (A) σz, and (B) σx. 
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Figure L-4: SHAP decision and dependence plots for σz model; (A) decision plot for a few instances, 

(B) decision plot for a specific instance, (C) dependence plots for features Vzz, Vzx, and Vzy. 
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Figure L-5: SHAP decision and dependence plots for σx model; (A) decision plot for a few instances, 

(B) decision plot for a specific instance, (C) dependence plots for features Vzz, Vzx, and Vzy. 

 


