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AbstrAct

High levels of CO2 are found in the Broadlands-Ohaaki geo-
thermal system in the Taupo Volcanic Zone of New Zealand. The 
system has been studied for over forty years, and over that time 
a significant body of information on rock-water-gas interaction 
in the system has been obtained. CO2-rich water flows up from 
fractures in the low permeability basement greywacke into the 
overlying reservoir, which is dominated by rhyolites, dacite, pyro-
clastics, and some lake sediment. It is an excellent natural analog 
for rock-water-gas interactions that would occur in an EGS system 
using CO2 as a heat extraction fluid. In terms of rock chemistry 
and mineralogy, this is a more “felsic” system (e.g., rhyolite, 
granite) that might be expected to yield less reaction with CO2 
than a more “mafic” system (e.g., basalt, gabbro). Nevertheless, a 
significant amount of reaction does occur. We are conducting new 
geochemical modeling studies, laboratory experiments, and a field 
experiment to develop an improved understanding of the water-
rock-gas interactions in this system as it relates to being a natural 
analog of an EGS-CO2 system. Here we review the most pertinent 
known aspects of what is known about the Broadlands-Ohaaki 
system and describe initial geochemical modeling studies of the 
deep fluid in the natural system using more recent and extensive 
thermodynamic data than used in earlier, published studies. At-
tention is focused on the role of sheet silicates (micas, chlorites, 
and clays) in stable mineral assemblages.

Introduction

EGS-CO2 refers to Enhanced Geothermal Systems in which 
supercritical CO2 is supplied as the heat transmission fluid replac-
ing water (Brown, 2000). This is a useful concept where there are 
reservoirs of hot rock lacking much native water. It would also 
provide some geologic sequestration of CO2. Pruess (2006) used 

numerical simulations to evaluate CO2 as a heat transmission fluid. 
He concluded that it was superior to water in this role, but that 
major uncertainties remained regarding fluid-rock interactions. 
There has been much recent interest in fluid-rock interactions in 
the context of both EGS-CO2 (maximum temperatures of 250°C 
or higher) and more “conventional” underground carbon seques-
tration (maximum temperatures generally < 120°C). Fluid-rock 
interactions in both contexts will depend on such factors as tem-
perature, pressure, abundance of CO2 and other acid gases (e.g., 
H2S and SO2), H2O abundance, fluid phase compositions, host 
rock type, and physical properties of the rock, including porosity 
and permeability. Common issues of concern include changes in 
porosity and permeability, and trapping of CO2 by dissolution in 
water and precipitation in carbonate minerals.

Xu et al. (2008) conducted numerical studies of fluid-rock 
interactions pertinent to EGS-CO2. They considered a general 
model for a fully developed system comprised of three zones: an 
inner zone (1) in which supercritical CO2 has displaced all aque-
ous phase, an intermediate zone (2) in which supercritical CO2 
coexists with a CO2-saturated aqueous phase, and an outer zone 
(3) in which an aqueous phase containing dissolved CO2 is pres-
ent. Xu et al. focused on rock-fluid interactions mediated by the 
aqueous phase in zones 2 and 3. They did not model a particular 
site, but did utilize mineralogical data from the European Hot Dry 
Rock research site at Soultz-sous-Forêts in northern France. The 
reservoir there is composed of granite with alteration products of 
clay and carbonate. The modeled system was one-dimensional 
and apparently isothermal at 200°C. Ambient water equilibrated 
with a CO2 partial pressure of 350 bar (resulting in a dissolved 
CO2 concentration of 1.07 molal) was flowed into the system, 
displacing normal ambient water. The low pH of the high CO2- 
water resulted in dissolution of primary calcite, K-feldspar, and 
chlorite, and precipitation of clays and secondary carbonates. 
Porosity significantly decreased near the inlet boundary.

The reactivity of supercritical CO2 with minerals in zone 1 is 
not well established. Xu et al. (2008) considered that the dry fluid 
might be largely unreactive owing to the nonpolar nature of the 
CO2 molecule, but that porosity-permeability might be increased 
somewhat by removal of water of hydration from some minerals. 
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McGrail et al. (2009) have questioned this view in the context of 
lower-temperature CO2 sequestration, noting that displacing all 
aqueous solution from the rock may be difficult and pointing out 
that some H2O may be dissolved in the supercritical CO2 phase 
(H2O may be chemically reactive in such a phase). Furthermore, 
Regnault et al. (2005) reported experiments at 200°C in which 
minerals appreciably reacted with supercritical CO2 in “water-
free” systems (but we note these systems may not have been 
chemically free of H2O).

In general, CO2 and other fluid components are expected to 
react less strongly with rocks of a more felsic nature (e.g., gran-
ites, many sandstones) than rocks of a more mafic nature (e.g., 
andesite, basalt, peridotite), owing to the less reactive nature 
(thermodynamic, kinetic) of the dominant minerals. A consider-
able amount of chemical reaction could occur even in the more 
felsic systems, driven by fluid flow, temperature gradients, fluid 
mixing, and boiling. 

We are conducting a research program on fluid-rock interac-
tions pertinent to EGS-CO2. We are first drawing on relevant 
information from natural analog systems, which include the 
geothermal systems of the Taupo Volcanic Zone (TVZ) in New 
Zealand. The information obtained (insights, concepts, data, and 
models) will be used to design laboratory experiments and a future 
field experiment. Geochemical reaction-path and reactive transport 
calculations will be used to provide a framework for modeling the 
relevant fluid-rock interactions in natural geothermal systems and 
EGS-CO2 systems. The New Zealand TVZ geothermal systems 
offer insight into CO2-rich fluid interactions with felsic rocks 
(greywackes, rhyolites, and ignimbrites) at EGS-CO2 relevant 
temperatures (e.g., up to 300-400°C).

the broadlands-Ohaaki Geothermal system

The Broadlands-Ohaaki field is a CO2-rich system in the 
TVZ. Lee and Bacon (2000) give an operational history of the 
field. Exploitation began with the opening of the power station 
in 1989, following scientific and engineering studies going to the 
1960s. The field has been impacted by changes going back to the 
1968-1971 period. In 1993, the station energy production began 
declining and compensatory measures began. Colder, shallower 
water was observed entering the reservoir, and pressures and 
temperatures dropped. Boiling conditions remained in most of the 
production zone. Temperatures held in the deepest wells. In recent 
years, part of the system has rebounded somewhat (Mroczek, 2010, 
private communication).

Geologically, the reservoir consists of rhyolites, dacite, ignim-
brites, and related pyroclastics and reworked material, plus some 
lacustrine sediment (cf. Hedenquist, 1990; Lee and Bacon, 2000). 
The reservoir rests on a basement of faulted greywacke (Torlesse 
Formation), which is thought to be largely impermeable except for 
fractures related to the faults. The basement depth varies between 
about 1000m and 2500m, and the temperature at the top of the 
basement is about 300±25°C (Hedenquist, 1990, Figure 3).

The literature on the geology and geochemistry of the Ohaaki 
geothermal system and related systems in the TVZ is extensive. 
Some notable papers summarizing information and previous lit-
erature pertaining to the geochemistry of Ohaaki include Browne 
and Ellis (1970), Giggenbach (1989), Hedenquist (1990), Lonker 

et al. (1990), Simmons and Browne (2000), and Christenson et 
al. (2002).

Hedenquist (1990) provides a detailed summary of the system 
in its earlier, less altered state. The fluid chemistry is affected by 
mixing of shallower dilute water with “chloride-rich” (in fact only 
the equivalent of ~ 0.05m NaCl) high-CO2 deep water, which rises 
from the basement. Pressures and temperatures in the deeper and 
interior parts of the reservoir tend to approximate boiling condi-
tions. The principal hydrothermal mineral assemblage at 260C° 
(600-800m depth) is quartz-albite-illite-adularia-calcite-chlorite-
pyrite. Adularia is simply secondary K-feldspar. “Illite” may refer 
to illite or K-mica (muscovite). Quartz and calcite are common 
and abundant. Calcite is known to form due to boiling (2 HCO3

- + 
Ca2+ = CaCO3↓ + CO2↑ + H2O). In the cooler, marginal parts of the 
system, alteration minerals include kaolinite, Ca-montmorillonite, 
illite-smectite, siderite, leucoxene, and mordenite. The high tem-
perature assemblage is quoted to be stable to about 305°C, based 
on a study by Browne and Ellis (1970), relying in turn on ther-
modynamic data and stability diagrams taken from Hemley and 
Jones (1964). Following others (e.g., Browne, 1978), Hedenquist 
notes that the sheet silicates are semi-quantitative indicators of 
temperature and fluid composition. Montmorillonite forms mainly 
below about 140°C, illite is usually restricted to temperatures 
above 230°C, and interstratified illite-smectite forms at interme-
diate temperatures. Kaolinite occurs where acid conditions have 
developed due to sulfide oxidation.

Analyses of water samples typically reflect degassing (low 
CO2, moderate to elevated pH; cf. Hedenquist, 1990, Table 3). 
The CO2 content of the deep fluid is inferred from multiple lines 
of evidence. The most direct comes from analysis of HCO3 in 
downhole samples that were collected into caustic (NaOH), thus 
chemically trapping the CO2 (cf. Hedenquist, 1990, Table 5). One 
is the high CO2 content of recovered gas samples (cf. Hedenquist, 
1990, Table 4). A problem is that gas samples might or might not 
be coeval with water samples. One approach has been to use the 
excess enthalpy of total discharge to estimate the reservoir steam 
fraction and to use that as a basis for reconstructing the in situ 
fluid. Another has been to assume in situ vapor-liquid equilibrium. 
Yet another approach is to use boiling curve deviation for deep 
water samples to estimate CO2 content. Using this approach, 
Hedenquist (1990) estimates 2.7 wt% CO2 or 0.6 mol/kg for well 
BR15.  He prefers the BR15 composition as best approximating 
the parent fluid composition based on its position on an enthalpy-
chloride mixing diagram (his Figure 8). This is one of the deeper 
wells (1067m at the time). He also estimates a corresponding H2S 
content of 0.015 wt% or 0.0044 mol/kg. We note that estimates 
of the CO2 content of the deep fluid vary. The water samples 
collected in caustic and reported by Hedenquist (1990, Table 5) 
range from 0.02 -0.48 mol/kg CO2. A value “from caustic” is not 
available for BR15.

Christenson et al. (2002) provided an updated analysis of the 
Ohaaki reservoir chemistry including data from the 1997-1999 
time period (when the field was altered to a greater extent by ex-
ploitation). They give a more extensive analysis of fluid mixing, 
using additional chemical and isotopic data. Interestingly, they 
also present the results of some reaction path calculations of the 
reaction of inferred magmatic gas condensates with the basement 
greywacke, illustrating the role of sulfur species in controlling 
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redox and pH. We note that Christenson et al. (Table 3) pres-
ent analyses of gas samples from the Ohaaki field that include 
examples that are more CO2-rich than those in an earlier data set 
presented by Hedenquist (1990, Table 4). This would seem to 
imply that deep parent waters might contain higher concentra-
tions of dissolved CO2 than would be inferred from the earlier 
gas phase data.

Simmons and Browne (2000) addressed hydrothermal minerals 
and precious metals in the Ohaaki-Broadlands system. As part of 
their study, they used the codes SOLVEQ and CHILLER (e.g., 
Reed, 1982; Reed and Spycher, 1985) to construct a model of 
the deep parent water and then model the effects of boiling and 
mixing in the geothermal reservoir. The parent water was based 
on an analysis of BR25 water as reported by Hedenquist (1990). 
This was equilibrated with quartz, pyrite, chalcopyrite, albite, 
muscovite, and two chlorites, clinochlore and daphnite. The equili-
brated water was found to be slightly undersaturated with calcite 
and K-feldspar. Such an equilibration process is in part necessary 
because the chemical analysis of the well water does not include 
data for some dissolved components, such as aluminum and cop-
per. The BR25 analysis pertains to a degassed sample containing 
300 mg/kg HCO3 (about 0.005 molal). Hedenquist (1990, Table 
5) does not include a “from caustic” result for BR25. Simmons 
and Browne do not discuss how they corrected for the degassing, 
and the input for the computer run to create the deep parent water 
is not included in their appendix. The appendix does include the 
inputs for the reaction path runs. These inputs suggest addition of 
about 0.28 mol/kg CO2. H2O (steam) may also have been added, 
as the chloride in the inputs seems low compared with the cited 
source. Small concentrations of gold, silver, zinc, and lead also 
appear in the water on these inputs, but it is not clear how these 
were originally specified (proxy concentration or assumption of 
additional mineral equilibria).

The Ohaaki geothermal system appears to be an excellent 
natural analog for zone 3 (and possibly zone 2) of an EGS-CO2 
system in similar (felsic) rocks (e.g., greywackes, rhyolites, 
equivalent pyroclastics). The most relevant part of the system is 
in the basement and deeper, inner parts of the reservoir. We note 
that the inferred CO2 content of the deep parent water (0.6 mol/
kg, with a plausible range of 0.3-0.9 mol/kg) is about half the 1.07 
mol/kg used in the modeling study of Xu et al. (2008).

New Geochemical calculations

We begin our study with new geochemical modeling calcu-
lations. We do this because we want to (a) compare modeling 
results with existing geochemical data and previous modeling 
and (b) to look for any new insights into Ohaaki geochemistry. 
For these calculations, we use EQ3/6 (e.g., Wolery and Jarek, 
2003) and a thermodynamic database (Wolery and Jove-Colon, 
2007) originally developed for use on the Yucca Mountain Proj-
ect. A significant part of this database is based on SUPCRT92 
(cf. Johnson et al., 1992, and sources cited therein). This part is 
likely consistent with the databases used in the previously cited 
modeling by Simmons and Browne (2000) and Christenson et al. 
(2002). However, we note two differences. First, for the database 
used here, the SUPCRT92 data were corrected for consistency 
with a revised standard Gibbs energy of formation for SiO2(aq), 

following the lead of Rimstidt (1997). This change implies that 
quartz is more soluble than implied by the older data. Second, this 
database includes new estimates of data for a wide variety of sheet 
silicates including various clays, using a slightly revised predictive 
methodology similar to that used earlier by Wolery (1978).

To model the deep parent water, we follow Hedenquist (1990) 
and base it on the BR15 well water analysis. The calculation takes 
1 kg of the model water to 300°C adds Hedenquist’s recommended 
0.6 mole CO2 and 0.0044 mole H2S. This model is sufficient to 
describe the major features of the water chemistry, although as 
noted above, it is necessary to assume in addition certain mineral 
equilibria to obtain concentrations for trace components such as 
aluminum.

Figure 1 shows the effect on pH of adding the gases. Here the 
calculation is run out to 4 moles of CO2 (and proportionate H2S). 
Note that at 4 mol/kg CO2, the pH is decreasing to about neutral 
(5.65 at 300°C), while at 0.6 mol/kg, the pH is definitely on the 
alkaline side. This result is not sensitive to whether or not miner-
als are allowed to precipitate. If they are, very minor carbonate is 
present over most of the range shown, and some quartz is present 
throughout. For comparison, Figure 1 shows the effect of adding 
the same gases to 0.05m NaCl solution (which has about the same 
ionic strength as the BR15 water).  The pH curve for this case is 
substantially lower. In the case of the BR15 water, the presence 
of the initial 310 mg/kg HCO3 acts to oppose the formation of 
hydrogen ions (per the law of mass action) according to the reac-
tion CO2(aq) + H2O = H+ + HCO3

-. 
Figure 2 shows the log K values (from the thermodynamic 

database cited above) as a function of temperature for the reactions 
CO2(aq) + H2O = H+ + HCO3

- and H2O = H+ + OH-. As temperature 
increases, CO2 becomes a weaker acid. Also, water dissociates 
less into hydrogen and hydroxide ions. Because pH(neutral) = -½ 
log K for this reaction, the value of neutral pH becomes smaller 
(Figure 3). These factors need to be kept in mind in comparing 
higher temperature EGS with generally lower temperature carbon 
sequestration scenarios.
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The CO2 content of the deep hot zone water is high but less 
than would be expected if supercritical CO2 were present. Figure 4 
shows the calculated CO2 partial pressure associated with adding 
the gas. For comparison, the critical pressure of CO2 is 73.8 bar 
(Span and Wagner, 1996). The partial pressure of pure water at 
300°C is 85.8 bar (from the above cited thermodynamic database). 
Ambient total pressure at the top of the basement is presumably 
in the range 100-250 bars (normal hydrostatic), depending on 
location. It could be somewhat lower than normal hydrostatic 
due to the presence of boiling zones. To achieve saturation with a 
supercritical CO2 phase, the CO2 partial pressure would first have 
to match the total ambient pressure (to make the formation of a 
CO2-dominated fluid phase possible). It would have to exceed the 
critical pressure of CO2 for such a fluid to be considered supercriti-
cal. Lastly, this fluid couldn’t have too much steam dissolved in 
it. The high partial pressures of H2O at the top of the basement 

mean that any non-aqueous CO2 here will be a guest component 
of subcritical steam.

To fully model the deep parent water, it is necessary to consider 
mineral equilibria. This is necessary for two reasons. First, the 
reported water analyses do not include certain trace components, 
such as aluminum and iron. Assuming that the water is saturated 
with minerals bearing such components is a reasonable means of 
completing the model. Second, it is desirable to determine if a 
given mineral assemblage is actually stable or not. There is a range 
of possible starting points here. Several deep well compositions 
are possible starting points (we prefer BR15 as recommended 
by Hedenquist, 1990). There is also a range of potential mineral 
assemblages to consider.

Following Simmons and Browne (2000), we attempted to 
equilibrate BR15 water (which is very similar to the BR25 water 
they used) by reacting 0.6 moles each of pyrite (FeS2), albite 
(NaAlSi3O8), muscovite (K-mica: KAl3Si3O10(OH)2), clinochlore 
(an Mg-chlorite: Mg5Al2Si3O10(OH)8), and daphnite (an Fe(II)-
chlorite: Fe5Al2Si3O10(OH)8) and  of 6 moles of quartz with 1 kg 
of water and 0.6 moles of CO2 and 0.0044 moles of H2S. These 
mineral mole numbers should be much more than sufficient to 
saturate the solution. We use a greater mole number for quartz 
for reasons that will be apparent below. Again following Sim-
mons and Browne, we would then expect the resulting aqueous 
solution to be close to saturation with K-feldspar (KAlSi3O8) and 
calcite (CaCO3).

Figure 5 shows the results for the minerals. The blue col-
umns represent the mole numbers of the mineral reactants at the 
start of the run. The red columns depict the mole numbers of 
the minerals present at the end of the run. It is apparent that the 
starting mineral assemblage is not stable. Almost all the quartz is 
consumed during the run. A higher amount of quartz was reacted 
than for other minerals in order to maintain the presence of some. 
This is reasonable, as quartz is highly abundant in the basement 
greywacke. The muscovite, clinochlore, and daphnite are gone. 
Five new minerals have appeared. There are significant amounts 
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of ripidolite (a mixed Mg-Fe-chlorite: Mg3Fe2Al2Si3O10(OH)8), 
montmorillonite (a common smectite: (Na,K,H,Ca0.5,Mg0.5)0.33M
g0.33Al1.67Si4O10(OH)2), and FeAl-celadonite (ferroaluminocela-
donite: KFeAlSi4O10(OH)2). There are also very small amounts 
of nontronite (an Fe(III)-rich smectite: (Na,K,H,Ca0.5,Mg0.5)0.165
Fe(III)2Al0.33Si3.67O10(OH)2)) and minnesotaite (a sheet silicate 
similar to talc, with Fe replacing Mg: Fe3Si4O10(OH)2). Ripidolite 
lies on the clinochlore-daphnite join. Therefore, most (but not all) 
of the “chlorite” in the system is retained. The FeAl-celadonite 
has some affinity to illite (represented in our thermodynamic 
database by the composition: K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2), 
which is a mineral commonly reported in the higher temperature 
zone at Ohaaki. Celadonites generally occur as alteration prod-
ucts of basalts and intermediate volcanics. The presence of the 
montmorillonite is more unexpected, as smectite is generally not 
reported in the higher temperature zone, as is the disappearance 
of the muscovite.

The pH at the end of this calculation is 6.49. This is slightly 
higher than the 6.41 that is obtained by reacting BR15 water with 
only the gases. The saturation index (SI = log Q/K, where Q is 
activity product and K is equilibrium constant) for calcite is -0.701, 
while that for K-feldspar is -0.436. The solution is somewhat more 
undersaturated with these minerals than would be expected.

Simmons and Browne (2000) did not note any changes to the 
mineral assemblage. This may have been because in their usage 
of SOLVEQ/CHILLER, they specified which minerals were al-
lowed to form, and restricted this to the minerals they chose as 
reactants. We were substantially able to duplicate their calculation 
using an older database thought to better approximate the one they 
used, and disallowing the formation of non-reactant minerals. 
We used BR25 well water, adding gases in the proportion they 
apparently used.

Re-running the problem as we originally posed it, substitut-
ing 1.2 moles of ripidolite for 0.6 moles each of clinochlore and 
daphnite, we obtained results much as expected. The change in 
the mineral assemblage is shown in Figure 6. Accounting for the 

change in treatment of “chlorite,” the results are much as expected. 
The muscovite is still eliminated and montmorillonite and Fe-Al 
celadonite still form in about the same proportions. However, 
much less quartz is destroyed. Also, a small amount of saponite 
(an Mg-rich smectite: (Na,K,H, Ca0.5,Mg0.5)0.33Mg3Al0.33Si3.67
O10(OH)2) now forms instead of a small amount of minnesotaite. 
We note that the chlorite mineral substitution has slightly shifted 
the overall chemistry of the system, because ripidolite is not at the 
50:50 position on the clinochlore-daphnite joint, but rather closer 
to the clinochlore end (60:40). Thus, Mg replaces some Fe.

The pH is shifted to a slightly higher 6.55. K-feldspar is 
somewhat closer to saturation (SI = -0.180). However, calcite is 
more undersaturated (SI = -0.867).

Taking a different approach, we backed off on the number of 
reacted minerals and started with only quartz, pyrite, and albite. 
The result of this was that nearly negligible amounts of the pri-
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mary reactants were destroyed. Very small amounts of K-feldspar, 
calcite, and beidellite (an Al-rich smectite: (Na,K,H,Ca0.5,Mg0.5)
0.33Al2.33Si3.67O10(OH)2) formed. This implies that a run in which 
K-feldspar were also added would produce the same result, except 
that more K-feldspar would be present. The results of a run in 
which this was done is shown in Figure 7.

Because K-feldspar is one of the known important secondary 
minerals in the deep system at Ohaaki, we adopted the above 
system as a tentative base case and then examined the effect of 
adding one of a series of mica and chlorite minerals. In none of 
these cases was the reactant phase assemblage preserved. Only 
two of the cases (muscovite and ripidolite) will be described here. 
These exemplify the kinds of results obtained from the larger set. 
In the case of muscovite (Figure 8), the muscovite itself was de-
stroyed. Some of the quartz and albite was consumed, the amount 
of K-feldspar increased, and a significant amount of beidellite 
was formed. The pH was 6.35, slightly lower than the values 

noted in the previous cases. Calcite was strongly undersaturated 
(SI = -1.718). In the case of ripidolite (Figure 9), the ripidolite 
was partially consumed, along with some quartz and some albite. 
However, all of the K-feldspar is destroyed. Significant amounts 
of FeAl-celadonite, montmorillonite, and saponite are formed. The 
pH is again higher, about 6.54. K-feldspar, though destroyed, is 
not much undersaturated (SI = -0.180), and calcite is again more 
undersaturated (SI = -0.867).

These results raise some questions about the stability of re-
ported secondary mineral assemblages. The problem involving the 
combination albite-K-feldspar-muscovite is not hard to explain, as 
on activity diagrams (cf. Simmons and Browne, 2000, Figure 11A) 
it is apparent that equilibrium among all three (in the presence 
of quartz) requires, at a given temperature, falling on a specific 
point where three stability fields meet. The muscovite field forms a 
wedge between the two feldspars extending up to the three-mineral 
equilibrium point. Apart from that point, one would expect to see at 
most only two of these three minerals in a stable assemblage. The 
same applies if muscovite is replaced by illite of composition K0

.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2. The problem regarding ripidolite 
(chlorite) and K-feldspar is more difficult to explain. The calcula-
tions suggest that they do not stably exist together at 300°C in the 
presence of other expected secondary phases.

Hedenquist (1990) made reference to the assemblage quartz-
albite-illite-adularia-calcite-chlorite-pyrite as “the principal 
mineral assemblage” at 260°C. While the exact temperature could 
be a factor in thermodynamic stability, the larger point is that this 
assemblage is not necessarily stable at any specific temperature. It 
is more likely that it is a composite of smaller stable assemblages 
representing not only a range of temperature but also a range of 
local chemistries within a larger volume. Kinetically controlled 
disequilibrium might also be a factor. We already expect this given 
the constraints on the stability relations among the two feldspars 
with either muscovite or illite. Thus, it might be that K-feldspar and 
chlorite are not both part of a local stable assemblage. Browne and 
Ellis (1970), Lonker et al. (1990), Browne and Simmons (2000), 
and Yang et al. (2001) provide detailed studies of the alteration 
mineralogy in the Ohaaki system. Browne and Ellis (1970) note 
that in the deep hot zones, there is some evidence that secondary 
chlorite forms later than secondary K-feldspar. There appears to 
be little evidence that secondary chlorite and K-feldspar form 
together at the same place and time.

The estimated deep water composition for various reactant 
mineral assemblages does not show much variation, despite the 
extensive reaction that occurs in the calculations. Table 1 shows 
the water composition based on (a) reaction with gas only, (b) 
reaction with gas, quartz, pyrite, albite, and K-feldspar and (c) 
reaction with gas, quartz, pyrite, albite, K-feldspar and ripidol-
ite. Some components such as Li+ and Rb+ are invariant, as the 
modeling does not include them in the minerals considered. In 
reality, they would be affected particularly by the formation of 
many clay minerals. The Al3+ and Fe2+ concentrations for the gas 
only case are arbitrary small values. No matter what the mineral 
assemblage, the solution remains close to the equivalent of 0.05 
m NaCl with 0.6 m dissolved CO2.

This initial modeling will serve as the foundation of additional 
modeling extending to the cooler parts of the system, laboratory 
experimentation, and a field test. The natural CO2 levels deep 
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Figure 8. Equilibration of BR15 water plus added gas with quartz, pyrite, 
albite, K-feldspar, and muscovite. Blue: minerals added. Red: minerals 
present after equilibration.

Figure 9. Equilibration of BR15 water plus added gas with quartz, pyrite, 
albite, K-feldspar, and ripidolite. Blue: minerals added. Red: minerals pres-
ent after equilibration
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in the Ohaaki geothermal system provide an excellent natural 
analog for rock-water-gas interactions in an EGS-CO2 system 
having similar (felsic) rock type. Modeling, experimentation, 
and field testing will allow us to extend the upper limit of CO2 
concentration studied, although the natural values in this system 
are already relatively high. In future work we plan to elucidate 
in greater detail the thermodynamics and kinetics that pertain to 
both the Ohaaki geothermal system and an EGS-CO2 system. 
Some of the questions to be answered are: Can K-feldspar and 
chlorite form simultaneously, or is the presence of one antitheti-
cal to the other? What is the role of kinetics and disequilibrium 
in controlling the relevant water-rock-gas interactions? Are some 
of the clay minerals produced in our calculations presented above 
really as stable as indicated? Are celadonites reasonable alteration 
products at Ohaaki, or are they reasonable proxies for the “illites” 
found there?

conclusions

We have reviewed the status of knowledge of the Broadlands-
Ohaaki geothermal system and concluded that it will serve as 
an excellent natural analog for rock-water-gas interactions in an 
EGS-CO2 system. The range of rock types present in this system 
represent the more felsic side of silicate rocks, with the major 
rock types including greywacke, rhyolites, dacite, and equivalent 
pyroclastics. We have begun new geochemical modeling studies 
using a newer thermodynamic database and compared results 
with previous modeling studies. The principal secondary mineral 
assemblage described for the deep hot zone is not a stable mineral 

table 1. Ohaaki deep water composition based on BR15 and reaction 
with gas and minerals for three cases. Concentrations are given in molal-
ity, oxygen fugacity in bars.

Gas only, 
no minerals

Gas + quartz + 
pyrite +  albite 
+ K-feldspar

Gas + quartz + 
pyrite +  albite 
+ K-feldspar + 

ripidolite
Na+ 4.63 x 10-2 4.82 x 10-2 5.13 x 10-2

K+ 5.32 x 10-3 4.57 x 10-3 3.22 x 10-3

Li+ 1.66 x 10-3 1.66 x 10-3 1.66 x 10-3

Rb+ 2.11 x 10-5 2.11 x 10-5 2.11 x 10-5

Cs+ 1.17 x 10-5 1.17 x 10-5 1.17 x 10-5

Ca2+ 3.82 x 10-5 3.32 x 10-5 2.70 x 10-11

Mg2+ 1.80 x 10-7 4.88 x 10-9 1.00 x 10-7

SiO2(aq) 1.04 x 10-2 1.04 x 10-2 1.04 x 10-2

B(OH) 3(aq) 3.49 x 10-3 3.49 x 10-3 3.49 x 10-3

NH3(aq) 1.18 x 10-4 1.18 x 10-4 1.18 x 10-4

CO2(aq) 0.598 0.597 0.595
H2S (aq) 3.94 x 10-3 3.88 x 10-3 3.05 x 10-3

Cl- 4.53 x 10-2 4.53 x 10-2 4.53 x 10-2

SO4
2- 7.78 x 10-5 8.91 x 10-5 1.86 x 10-6

HCO3
- 7.41 x 10-3 8.44 x 10-3 1.03 x 10-2

HS- 4.45 x 10-4 5.00 x 10-4 4.81 x 10-4

Al3+ 3.72 x 10-8 1.26 x 10-5 1.19 x 10-5

Fe2+ 1.54 x 10-10 2.14 x 10-8 8.76 x 10-8

pH 6.41 6.46 6.55
O2 fugacity 1.20 x 10-32 1.07 x 10-32 1.54 x 10-33

assemblage, and this raises questions about the stabilities of vari-
ous sheet silicate minerals in the natural system and in an EGS-CO2 
system. We will address these questions in additional modeling 
calculations, laboratory experiments, and a field study.
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