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Objectives and Purpose

Development of near-real-time system for traffic light and reservoir engineering

* ML-based seismicity and ground motion forecasting

* data-driven approaches using various field and laboratory data

* near-real-time decision making for reservoir engineering and adaptive TLS methodology as part of
Best Practice guidelines

Development of ML algorithms for seismicity and ground motion forecasting

* hard or soft constraints with physical and empirical equations
* the ML algorithms specifically for spatio-temporal evolution of seismic phenomena

Wet (pore-pressure-driven) vs. Dry (elastic loading and stress changes)
earthquakes

* different physics may require different forecasting methods/parameters
* this condition can be related to fracture network, permeability and reservoir management

Items Not in our scope in this project
* Development of heavy data processing methods
* THMC modeling Mandatory- may utilize multiple slides
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Methods/Approach

Field data analysis and application of
ML-based R.T. forecasting

Lead: Nori Nakata

Nori Nakata Zhengfa Bi Ernest Majer

Spatio-temporal forecasting with
physical and statistical equations

Lead: Aditi Krishnapriyan
_ e

Aditi Krishnapriyan Yiheng Du
Mandatory- may utilize multiple slides

Laboratory experiment at
various P-T-H conditions

Lead: Matej Pec




Technical Accomplishments and Progress

* Development of Al-ready datasets of induced seismicity at various geothermal and oil/gas fields

* Laboratory granite experiments (>10k AEs/test) provide labeled wet/dry data to train ML and reveal
fluid—fracture interactions

 Development of a prototype ML forecasting models
— induced seismicity forecasting
— ground motion modeling

* Test the prototype models to geothermal data

Actual Milestone/Technical Accomplishment Date Completed

Compile seismicity and injection/production data at Geothermal and oil/gas fields (M1.1, M1.2) 12/2024, 3/2025

Development of an initial prototype of ML forecasting models and apply it to geothermal 6/2025
datasets (M3, M4)
Go/No-Go: Data compile & application of initial ML model Met (6/2025)

No major variances from what we proposed.

UTAHFORGE
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Technical Accomplishments and Progress
Al-ready data at geothermal and oil/gas fields.

Number of

Magnitude

Injection

Other available datasets,

Site Year & operation Type offield Data duration Number of wells
earthquakes range volume notes
Utah FORGE 2019 stimulation EGS 3days 500 -2--0.10 649 bbl 1
2022 stimulation EGS 8 days 2500 -2-0.52 10315 bbl 1 well log, velocity model,
2023 flow test EGS 3days 1000 -2-0.45 5400 bbl 2 wellhead pressure, tracer,
2024 stimulation EGS 15 days 3000 -2-2 18682 bbl 2 etc.
2024 flow test EGS 30days 1000s -2 15 bbl/ min 2
Geysers production Geothermal production S50years 360,000 0-5 10 G bbl 1153
EGS demonstration EGS 1.5years 0-2.87 758519 bbl 2
Salton Sea production Geothermal production 40years 60,000 0-5 2G bbl 10's Monthly injection data only
Coso production Geothermal production 40 years 170,000 0-5 3Gbbl 10's Monthly injection data only
Newberry 2012 stimulation EGS 4weeks 175 0-23  261,905bbl 1 welllog, velocity model,
wellhead pressure
2014 stimulation EGS 4 weeks 400 0-2.3 60,000 bbl 1 maximum 2850 psi
434 stages, LF-LP-LD
HFTS-1 2015 stimulation hydraulic fracturing 7weeks 128,405 -1.5-1.5 1.5M bbl 11 earthquakes
core, well log
HFTS-1 2016-2018 EOR  Enhanced Oil Recovery almost none N/A 28?;:;Sd
1833 bbl,
HFTS-2 2019-2020 hydraulic fracturing 4 months 30,000 -3-0 11,794 tons 12 52 stages
of proppant
Oklahoma 2009-2018 Wastewater disposal 20 years 10,000 2-5.8 600M bbl 147
Basalt rock 6tests, CO2 laboratory AE 100-300 hours ~1,000s small N/A N/A stress/strain, permeability
Granite rock ongoing laboratory AE

Mandatory- may utilize multiple slides
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Objectives and Purpose

* Can we distinguish between seismic events triggered by increases of pore fluid
pressure vs. events triggered by changing the reservoir stress state due to loading?

* Understanding the source of micro-seismicity is important for mitigating seismic risks.
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Methods/Approach

® Collect Acoustic Emissions (AEs) during well controlled laboratory experiments under varying
boundary conditions

® Basicidea:

UTAHFORGE
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Methods/Approach

High-pressure, high-temperature tri-axial rock
deformation experiments

NER Autolab 3000

— = 80 x 40 mm cores of thermally cracked Barré
granite

— T=80°C,P=(P.—P,)=10& 40 MPa
— P.=40&70, P,=30 MPa (=0.5 - 2.5 km depth)
De-noised triggered & continuous DAQ
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Mandatory- may utilize multiple slides

Data Acquisition System
(10 MS/s 4 channels)
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Technical Accomplishments and Progress

* Establishing testing protocol

— Testing several thermal cracking paths (300,450,550°C) to achieve optimal permeability for experiments.

— Ultrasound sample characterization
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Technical Accomplishments and Progress
* Failure envelope consistent with Byerlee’s rule for frictional sliding

T=~80°C
fluid = H,0

. 7 Barré?2 .
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Technical Accomplishments and Progress

First series of
experiments

1000s of AEs in
triggered
recording,
>10,000 in
continuous
recording

Ultrasound,
mechanical and
permeability
data
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Technical Accomplishments and Progress

* Characterization of triggered AEs using unsupervised learning (DTW + Hierarchical
Clustering)

Pp-driven (Barré 4) Ao-driven (Barré 2)

w1 AHFORGE
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HOME

Technological Advancement and Data Dissemination

ABOUT

9STRABOSPO

ACCOUNT API SOFTWARE

STRABOEXPERIMENTAL

HARDWARE SEARCH

Start New Project

Search Database

Apparatus Repository

HELP

TEACHING

* Developing laboratory capabilities for testing
hot rocks (higher T (>300°C) under

development)

®* Submitted an AGU Fall meeting abstract and
will present the first results there

®* Experimental data is being input into
”StraboExperimental” community-driven
database for open access upon project

completion

lize multiple slides
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Technical Accomplishments and Progress
Data (Utah FORGE 2024 simulation (10 stages, 5 days))
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Known Future

Methods/Approach

Temporal Fusion Transformer (TFT) Network Architecture for seismicity forecasting
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Technical Accomplishments and Progress
Seismicity forecasting (Utah FORGE 2024 simulation)
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Technical Accomplishments and Progress
Seismicity forecasting (Utah FORGE 2024 simulation)

Input data interpretability: e.g., feature importance

Category Feature Dataset
Geysers FORGE

Injection Rate 8.0 42.6

Past Inputs Injection Gradient 45.5 11.9
Treating Pressure - 30.0
Pressure Gradient — 6.7
Past Seismicity Rate 46.5 8.8
Injection Rate 15.0 46.7

Future Inputs Injection Gradient 85.0 13.0
Treating Pressure — 32.9
Pressure Gradient — 7.4

UTAHFORGE
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Technical Accomplishments and Progress
Seismicity forecasting (Laboratory experiment: Barre #2)

Experimental data

Forecasting results
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Technical Accomplishments and Progress

Ongoing effort: Forecasting seismicity
magnitude probability and
spatiotemporal evolution

Magnitude probability
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Spatiotemporal forecasting
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Latitude (Deg)

g

Technical Accomplishments and Progress
Ground motion modeling (Example at the Geysers Geothermal Field)
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Blue: both sources and receivers are excluded from training
=> generating wavefields at arbitrary source and receiver locations
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Technological Advancement and Data Dissemination

®* Prototype ML models for induced seismicity forecasting and ground motion

Al-ready datasets compiled from geothermal & oil/gas fields

Laboratory AE experiments start for generating labeled wet/dry datasets and for deeper mechanical
understanding

The laboratory data will be uploaded to GDR and ”StraboExperimental”.

Publications

— Bi, Z., N. Nakata, R. Nakata, P. Ren, X. Wu and M. W. Mahoney (2025) Advancing data-driven broadband seismic wavefield
simulation with multi-conditional diffusion model, IEEE TGRS (in press)

— Bi, Z. and N. Nakata, Forecasting induced seismicity rate in geothermal field with interpretable deep learning, (submitted).

— Nori Nakata and Zhengfa Bi; 2025, Forecasting Induced Seismicity Using Temporal Fusion Transformer: A Case Study in the
Geysers Geothermal Field, Proceedings of Geothermal Reservoir Engineering, SGP-TR-229

— Nori Nakata and Zhengfa Bi; 2025, Interpretable Deep Learning Framework for Forecasting Induced Seismicity in Geothermal
Fields, SSA annual meeting, April 14-18 (invited)

— Nori Nakata, Rie Nakata, Pu Ren, Zhengfa Bi, Maxime Lacour, Benjamin Erichson, Michael W. Mahoney; 2025, Simulating
Seismic Wavefields using Generative Artificial Intelligence, SSA annual meeting, April 14-18

UTAHFORGE
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Future Directions

* Revise ML models
® improve performance, robustness, and generalization
® spatiotemporal evolution with magnitudes
® adapt for near-real-time use at Utah FORGE
®* Integrate lab AE data
finish pore fluid pressure-driven failure experiments
train ML with wet/dry benchmarks
link AE features to stress & pore pressure with data analysis and microstructural sample characterization
explore new / more complex loading paths to better mimic natural operations
* Advance ATLS & reservoir engineering
® build accurate, efficient, and physically interpretable ML frameworks
® toward Best Practices

Milestones Status and Expected Completion Date

Use various field datasets to develop the seismicity & ground- We have applied the current ML models to multiple
motion forecasting methods. Measure the accuracy of the datasets and will revise the models and understand the
models. robustness vs accuracy. Year 2 Q2

Compile experimental datasets and report a method to classify  The first series of experiments was completed, and we will
and/or signal differences between wet and dry events in the finish pore fluid pressure-driven failure experiments.
laboratory setting Year 2 Q4




Summary

* Built Al -ready datasets from geothermaland oil/gas fields,plus ongoing effort for >10k
AE lab experiments for wet/dry event calibration.

* Developed experimental protocols  fortesting pore-fluid pressure-driven and stress-
driven failure

* Developed prototype ML models forinduced seismicity forecasting and generative Al
ground-motion prediction.

* Laid foundation for near -real-time ATLS and advanced reservoirengineering with
interpretable,physics-linked ML frameworks.

UTAHFORGE
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