

Foulger Consulting

1025 Paradise Way Palo Alto, CA 943062637, USA Tel: 650/4932553 Cell: 650/9968886 FAX: 866/5326907 gillian@foulgerconsulting.com http://www.foulgerconsulting.com/

November 5, 2014

WEEKLY REPORT #5 TO ALTAROCK ENERGY INC.

PROCESSING OF INDUCED EARTHQUAKES ASSOCIATED WITH THE NEWBERRY EGS INJECTION STARTING SEPTEMBER 2014

GILLIAN R. FOULGER & BRUCE R. JULIAN

Brief summary

During the last week, additional results obtained for relative locations of the moment-tensor events, and and additonal 10 moment tensors have served to strengthen earlier results:

- 1. The earthquakes form a pair of clusters, one near the bottom of the well and the other ~ 200 m deeper. Both lie on the same planar structure that strikes approximately NW and dips steeply to the NE. The deeper cluster lies further to the SE than the shallower cluster.
- 2. Moment tensors show a strong clustering of T-axes (approximately the direction of σ_3) orientated sub-horizontally S±20° or so. The P-axes (approximately the direction of σ_1) are most strongly clustered approximately horizontally and in the NNE to ENE direction though there is more scatter than is the case for the T-axes.

The pattern of earthquake source types observed earlier remains constant with the addition of more results. The source types range from +Dipole to -Dipole with approximately equal numbers of earthquakes showing crack-opening and crack-closure.

1 Task 1 – Planning, conference calls, discussion of work, correspondence, followup

We continued to maintain light contact with team members. The work now runs on a fairly routine basis.

2 Task 2 – System Setup

System setup is complete for the present.

3 Task 3 – Quality control of prepicked MEQs and preparation for relocation and moment tensor calculation

We continued to derive moment tensors using the procedure described in our Weekly Report #1. We report here an additional 10 moment tensors. The entire list of earthquakes processed to date is given in

Table 1. We have provided the locations and moment tensor decomposition data of these new moment tensors to Trenton Cladouhos of AltaRock electronically, by email attachment.

278

278

280

282

284

284

285

285

10

10

10

10

10

10

10

10

5

5

7

9

11

11

12

12

16

23

10

6

3

10

10

16

7

22

47

24

29

53

12

37

32.904

16.638

21.079

33.517

5.813

26.568

29.727

43.42

43.7253

43.72368

43.72403

43.72232

43.72417

43.72493

43.7257

43.72515

-121.30967

-121.3116

-121.3095

-121.31203

-121.31338

-121.30897

-121.3135

-121.3151

1.205

1.055

1.136

0.735

0.409

1.292

0.783

0.49

0.819

0.931

0.822

0.769

0.852

0.824

0.863

1.482

jday	month	day	hour	minute	sec	lat	lon	depth	magnitude
273	9	30	9	23	48.799	43.71965	-121.30908	0.854	0.853
273	9	30	21	30	43.689	43.72667	-121.313	0.387	0.972
274	10	1	1	3	14.64	43.7239	-121.30957	0.714	0.987
274	10	1	8	8	58.215	43.72623	-121.31412	1.196	0.848
274	10	1	10	50	55.229	43.72275	-121.30868	1.051	0.787
274	10	1	12	3	16.881	43.72658	-121.3158	1.587	1.086
274	10	1	14	53	5.102	43.72545	-121.31355	0.613	1.381
274	10	1	15	1	55.056	43.72775	-121.31227	0.923	0.682
274	10	1	16	56	11.256	43.72232	-121.30712	1.65	0.901
274	10	1	19	5	16.377	43.72662	-121.31117	0.517	1.259
275	10	2	6	38	47.428	43.7243	-121.31328	1.153	0.951
275	10	2	6	47	52.916	43.72632	-121.31322	1.323	1.117
275	10	2	7	7	11.646	43.72488	-121.31192	0.708	1.378
275	10	2	11	1	48.042	43.72567	-121.31168	0.666	1.22
275	10	2	12	39	9.082	43.7264	-121.31438	1.332	0.852
275	10	2	18	53	48.447	43.72082	-121.31372	1.671	0.957
275	10	2	20	36	50.997	43.72377	-121.31323	1.499	0.991
276	10	3	6	6	22.727	43.72528	-121.31493	0.928	1.157
276	10	3	15	27	57.912	43.72257	-121.31562	1.054	0.919
276	10	3	18	54	54.199	43.72678	-121.31125	0.647	1.021
277	10	4	5	29	8.347	43.72578	-121.31068	0.946	0.922
277	10	4	17	32	52.716	43.72207	-121.31693	0.376	1.521
277	10	4	18	51	11.991	43.72295	-121.31227	0.496	1.97
278	10	5	2	6	17.079	43.7266	-121.31217	0.925	0.86
278	10	5	4	7	30.446	43.725	-121.31322	0.659	1.696
278	10	5	15	55	21.373	43.73483	-121.30918	0.702	0.695

Table 1: The 44 earthquakes for which moment tensors have been obtained to date. Locations given below are from the webpage http://fracture.lbl.gov/Newberry/locations.txt.

	Foulge	r Consulting							4	
285	10	12	18	33	4.878	43.72363	-121.30787	0.359	0.743	
285	10	12	21	10	18.995	43.72783	-121.31002	0.653	0.792	
286	10	13	0	57	6.873	43.72382	-121.3175	0.242	1.197	
286	10	13	4	12	29.232	43.72657	-121.30698	0.882	1.179	
286	10	13	10	22	29.146	43.7302	-121.3153	0.831	0.907	
287	10	14	5	46	14.161	43.71765	-121.31087	0.161	0.904	
288	10	15	15	3	44.691	43.72658	-121.30768	0.897	0.781	
288	10	15	15	37	26.034	43.72713	-121.30915	0.934	0.883	
291	10	18	23	57	3.867	43.72965	-121.31732	0.116	0.781	
292	10	19	9	7	50.375	43.73525	-121.3113	0.837	0.776	

4 Task 4 – Improved locations and relative locations

4.1 Absolute locations

~

Only a few earthquakes have occurred since our last report and the pattern of absolute locations is not significantly different from what we reported 29 October. We have thus not updated our relocation maps.

We have updated our map of events for which moment tensors were derived and the full 44-event dataset is shown in Figure 1.

Figure 1: High quality estimated hypocenters of 44 microearthquakes that occurred between Sept. 30 and Oct. 19, 2014, and for which moment tensors were derived. These locations are computed using arrival times measured carefully in connection with the moment-tensor analysis. Well NWD 55-29 is shown in blue.

Figure 2: Expanded view of the locations of the earthquakes for which moment tensors were derived.

4.2 *Relative locations*

We continued with the relative loction work, applying the method to the 44 earthquakes for which moment tensors have been derived. These events are the best-located set currently available. We used the same procedure as described in our report of 29 October.

In order to fix the absolute location of the moment-tensor cluster, we pinned it to the earthquake that occurred 2014 10 01 08 08 57.998 at a latitude of 43.725528, longitude of -121.308941 and depth of 1.21 km b.s.l.

We performed a number of relative location inversions and finally settled on the following run-time parameters:

- o *minclust*-the minimum number of earthquakes to define a cluster (a value of 10 was used);
- \circ *maxit*-the maximum allowed number of relocation iterations (optimal value identified = 5);
- \circ *maxsep*-the maximum separation allowed between linked pairs of earthquakes (optimal value identified = 0.2 km);
- *minlinks*-the minimum number of "links" (i.e., measured station/phases in common between pairs of earthquakes) needed for an earthquake to be passed to the final relocated set (optimal values identified = 18);

The results are shown in Figure 3, Figure 4 and Figure 5. The original input dataset comprised 44 earthquakes, totalling 1135 arrival times. 36 earthquakes passed the stringent quality control parameters and were relocated as one cluster.

Figure 3: Map of relative locations of 36 moment-tensor earthquakes that occurred in the time period 30 September - 19 October, 2014. Runtime parameters used were *minclust* = 5, *maxit* = 5, *maxsep* = 0.2 km, *minlinks* = 18.

Figure 4: Same as Figure 3 except in cross section looking north.

Figure 5: Same as Figure 3 except in cross section looking northwesterly, along the strike of the planar structure.

The relative location results described in our last report are confirmed when only the moment-tensor events are used. A clear linear zone is delineated that strikes at \sim N 45°W. In map view it looks more diffuse than it actually is because the events lie on a steeply dipping planar structure. The observation of two groups of earthquakes, on near the bottom of well NWD 55-29 and the other \sim 200 m deeper, is confirmed.

Numerical data for these interim results have been provided to AltaRock by email attachment to Trenton Cladouhos.

5 Task 5 Moment tensor calculations

Moment tensors were derived for an additional 10 earthquakes using the same procedure as described in Weekly Report #1. The numerical results of the catalog to date are given in

Table 2. Graphical results for the additional events are shown in Appendix 1.

The source types for the entire 44-event set are shown in source-type space in Figure 6. The distribution remains similar to that reported earlier.

Figure 7 shows a plot of the P-, T- and I-axes, approximately corresponding to the directions of σ_1 , σ_3 and σ_2 . The addition of more earthquakes has strengthened the distribution seen earlier whereby most T axes cluster systematically subhorizontally and to the S \pm 20° or so. The orientations of the P-axes are showing some clustering in a sub-horizontal orientation to the NNE-ENE directions. The I-axes are more scattered.

NN	NE	EE	ND	ED	DD	Yea r	M O	Da Y	H r	mi n	Sec	Quality
6.49E-02	-9.50E- 02	-2.84E- 01	6.74E-02	1.45E-01	-3.58E- 02	201 4	9	30	9	23	48.62 6	good
-2.67E- 01	1.32E-01	-6.40E- 02	6.06E-02	1.03E-01	7.79E-02	201 4	9	30	2 1	30	43.50 3	excellen t
-1.78E- 01	-1.05E- 01	-1.51E- 01	7.11E-02	1.06E-01	1.06E-01	201 4	1 0	1	1	3	14.49	excellen t
1.48E-01	-1.18E- 01	-1.49E- 01	1.58E-01	-3.13E- 02	9.55E-02	201 4	1 0	1	8	8	57.99 8	excellen t
-3.26E- 02	2.22E-01	-3.37E- 01	1.64E-02	7.16E-02	9.88E-03	201 4	1 0	1	1 0	50	55.10 7	excellen t
2.00E-01	-1.41E- 01	-1.46E- 01	1.40E-01	-8.71E- 03	7.41E-02	201 4	1 0	1	1 2	3	16.94	good
1.58E-01	3.47E-02	6.67E-02	2.48E-01	6.32E-02	8.34E-02	201 4	1 0	1	1 4	53	5.23	excellen t
-1.04E- 01	1.46E-01	-2.54E- 01	1.25E-01	-1.33E- 02	7.34E-02	201 4	1 0	1	1 5	1	54.95	excellen t
-2.21E- 01	-8.13E- 02	-2.19E- 02	-1.52E- 01	3.52E-02	2.20E-01	201 4	1 0	1	1 6	56	11.34 3	good
2.17E-01	-3.67E- 02	-6.42E- 02	2.35E-01	7.20E-02	3.18E-02	201 4	1 0	1	1 9	5	16.54	excellen t
1.62E-01	4.20E-02	-2.04E- 01	2.16E-01	-2.04E- 02	7.76E-02	201 4	1 0	2	6	39	2.998	excellen t
-1.46E- 02	9.64E-02	-3.98E- 01	2.60E-02	1.69E-01	-4.69E- 03	201 4	1 0	2	6	47	52.94	excellen t
-1.17E- 01	1.71E-01	-1.99E- 01	1.39E-01	-2.43E- 02	1.64E-02	201 4	1 0	2	7	7	4.16	excellen t
2.41E-01	-7.30E- 02	-9.79E- 02	1.73E-01	4.30E-02	8.35E-02	201 4	1 0	2	1 1	1	42.38	excellen t
-6.57E- 02	-1.85E- 01	-1.14E- 01	1.69E-01	4.18E-02	2.83E-02	201 4	1 0	2	1 2	39	24.31 7	good
2.31E-03	-1.80E- 01	-9.21E- 02	2.20E-01	-4.35E- 03	9.59E-02	201 4	1 0	2	1 8	54	3.152	good
1.42E-01	-1.37E-	-1.64E-	1.72E-01	1.08E-02	5.38E-02	201	1	2	2	37	6.043	good

Table 2: Numerical moment tensor results for the 44 MEQs studied to date. N=North, E=East, D=Down.

	01	01				4	0		0			
6.07E-03	-2.23E- 01	-9.16E- 02	1.94E-01	3.37E-02	-6.18E- 04	201 4	1 0	3	6	6	22.76	excellen t
2.45E-01	-8.11E- 02	-1.97E- 01	1.74E-01	1.62E-02	1.51E-02	201 4	1 0	3	1 5	27	57.66 1	good
-5.77E- 02	-1.66E- 01	-1.43E- 01	1.46E-01	7.81E-02	-1.95E- 02	201 4	1 0	3	1 8	54	53.93	fair
1.68E-01	-3.35E- 02	-9.83E- 03	2.95E-01	3.54E-02	9.35E-02	201 4	1 0	4	5	29	8.258	fair
-1.03E- 01	1.33E-01	-1.19E- 01	1.48E-01	5.51E-02	1.07E-01	201 4	1 0	4	1 7	32	52.76	excellen t
8.71E-02	1.26E-01	-4.19E- 02	1.81E-01	8.43E-02	8.72E-02	201 4	1 0	4	1 8	51	12	excellen t
-1.37E- 01	-1.84E- 01	-5.91E- 02	1.61E-01	-1.12E- 02	9.22E-02	201 4	1 0	5	2	6	16.96 7	excellen t
5.30E-02	6.78E-02	-1.18E- 01	1.62E-01	7.51E-02	2.21E-01	201 4	1 0	5	4	7	20	excellen t
-2.29E- 01	1.61E-01	-7.21E- 02	-9.28E- 02	8.01E-02	-3.22E- 02	201 4	1 0	5	1 5	55	21.00 7	good
2.87E-01	-3.71E- 02	-1.79E- 01	9.26E-02	1.26E-01	2.27E-02	201 4	1 0	5	1 6	7	32.77 7	excellen t
-1.87E- 01	9.00E-02	-9.47E- 02	-1.45E- 01	-2.49E- 02	1.99E-01	201 4	1 0	5	2 3	22	16.49 9	good
4.38E-02	2.44E-01	-1.80E- 01	4.37E-02	9.99E-02	-2.18E- 05	201 4	1 0	7	1 0	47	20.91 6	good
2.44E-02	7.10E-02	-2.43E- 02	-8.64E- 02	-1.62E- 01	3.13E-01	201 4	1 0	9	6	24	33.41 8	excellen t
-1.43E- 01	-1.36E- 01	3.35E-03	1.56E-01	-5.83E- 02	1.55E-01	201 4	1 0	11	3	29	5.667	good
3.71E-03	3.87E-02	-3.57E- 01	5.61E-02	2.09E-01	2.16E-02	201 4	1 0	11	1 0	53	26.50 2	good
-1.35E- 01	-1.17E- 01	-4.10E- 02	2.00E-01	-5.35E- 02	8.30E-02	201 4	1 0	12	1 0	12	29	good
-4.88E- 01	-1.02E- 01	5.62E-02	5.97E-02	-1.84E- 03	1.29E-01	201 4	1 0	12	1 6	37	43.28 7	excellen t
2.03E-01	-2.42E- 02	-3.05E- 01	1.71E-01	-4.33E- 02	1.58E-02	201 4	1 0	12	1 8	33	4.693	moderate
-2.21E- 01	1.54E-01	4.96E-02	9.04E-02	8.19E-02	7.60E-02	201 4	1 0	12	2 1	10	23.31 1	good
-5.87E- 02	-1.25E- 01	-2.80E- 01	6.12E-02	1.41E-01	6.33E-03	201 4	1 0	13	0	57	6.717	good
2.61E-02	-1.18E- 01	-2.89E- 01	8.03E-02	1.23E-01	4.15E-02	201 4	1 0	13	4	12	29.12 6	excellen t
-1.16E- 01	-1.39E- 01	-1.17E- 01	1.51E-01	5.54E-02	7.56E-02	201 4	1 0	13	1 0	22	29.08 4	excellen t
-1.13E- 01	-2.73E- 02	-2.41E- 01	5.66E-02	5.18E-02	3.75E-01	201 4	1 0	14	5	46	13.91 4	exellent
-1.27E- 01	-1.70E- 01	3.34E-02	1.57E-01	-5.42E- 02	7.86E-02	201 4	1 0	15	1 5	3	44.60 2	excellen t
-5.10E- 02	-1.76E- 01	-8.51E- 02	1.95E-01	1.28E-03	1.20E-01	201 4	1 0	15	1 5	37	25.94 5	excellen t
-4.20E- 02	-1.46E- 01	-3.20E- 01	-5.38E- 04	1.43E-01	5.83E-02	201 4	1 0	18	2 3	57	3.695	good
-1.86E- 01	8.58E-02	-2.76E- 01	1.40E-01	-1.35E- 02	6.01E-02	201 4	1 0	19	9	7	50.32 5	good

Figure 6: Source-type plot showing the 44 earthquakes for which moment tensors have been derived to date.

Figure 7: Plot of pressure (P ~ σ_1) and tension (T ~ σ_3) and intermediate (I ~ σ_2) axes for the 44 earthquakes for which moment tensors have been derived to date.

6 Brief summary statement

During the last week, additional results obtained for relative locations of the moment-tensor events, and additional 10 moment tensors have served to strengthen earlier results:

- 3. The earthquakes form a pair of clusters, one near the bottom of the well and the other ~ 200 m deeper. Both lie on the same planar structure that strikes approximately NW and dips steeply to the NE. The deeper cluster lies further to the SE than the shallower cluster.
- 4. Moment tensors show a strong clustering of T-axes (approximately the direction of σ_3) orientated sub-horizontally S±20° or so. The P-axes (approximately the direction of σ_1) are most strongly clustered approximately horizontally and in the NNE to ENE direction though there is more scatter than is the case for the T-axes.
- 5. The pattern of earthquake source types observed earlier remains constant with the addition of more results. The source types range from +Dipole to -Dipole with approximately equal numbers of earthquakes showing crack-opening and crack-closure.

								/User	s/foulger/Seisn	nicProcessing	g/Newberry/Data/2014/10/12/20	141012183304.or	
6] 🎍	ķ?											
2014 Oct Lat: 43.72	12 18:33: 56 Lon:	4.693 -121	UTC .309	Depth:	0.849				Salva		North East North 2.03e-01 -2.42e-02	Down 1.71e-01	**
43:43	.533 N	121:	18.541	12 W					Solve		East -2.42e-02 -3.05e-01 Down 1.71e-01 -4.33e-02	-4.33e-02	+Crack +Dipol
												1.570 02	+CLV
				-							Scalar M0 = 3.143e-01 T = -0.322 k = -0.079		Cipole
Sta	Dist 3.68	Az 41	111	Chan	Phase	Resid 0.004	Polarity	Penalty	Amp	Freq			
1 NM42	3.68	41	111	EHD	P SV	0.070	<u> </u>		-1.310+02	1.170+01	Total Penalty = 0.181		
2 NN07	3.16	336	114	EHU	P	0.005	<u> </u>		-2.490+02	1.950+01	-		
3 NN07	3.16	336	114	EHT	SH	-0.008	• -		-7.739+01	2.540+01	-	POLARITIES	
s NN09	2.08	294	129	EHU	P	0.011	J -		✓ -1.08e+00	2.040101			
6 NN09	2.08	294	129	EHR	SV	0.000	√ +		✓ 1.03e+02	3.21e+01	P T	SH	sv
7 NN09	2.08	294	129	EHT	SH	0.029	√ +		✓ 9.50e+01	3.09e+01	1000		
8 NN17	1.58	250	139	EHU	P	-0.002	√ +	0.086	9.71e+00	2.58e+01			
9 NN17	1.58	250	139	EHR	SV	0.022	1 +		✓ 1.71e+02	1.51e+01		F. 7	+ • + +
10 NN17	1.58	250	139	EHT	SH	0.009	<u>-</u>		-2.88e+02	1.89e+01	• \/ • \/		
11 NN18	1.45	23	142	EHU	Ρ	-0.004	I -		✓ -3.26e+01	1.72e+01			
12 NN18	1.45	23	142	EHR	SV	0.004	I -		✓ -3.18e+02	1.91e+01			$\mathbf{\Psi}$
13 NN19	0.82	168	157	EHU	Р	0.010	1 +		🗹 8.13e+01	1.79e+01			65 (
14 NN19	0.82	168	157	EHT	SH	0.032	1 +		✓ 5.28e+01	2.11e+01		SN	SE
10 NN21	1.76	61	136	FHU	P	0.001	J -		✓ -1 13e+01	1 83e+01			
Sta	Тур	e	Penalty									┝ + -	
1 NM42	✓ P:	sv		_									
2 NN07	P:	SH		_									
3 NN09	P:	sv		_									
4 NN09	P:	5H		-									
5 NN09	V S	7.5H		-								AMPLITUDE RATIOS	
5 NN17		54		-									
e NN17	 √S\	/:SH		-							B GLI STR	RBR	
9 NN18	P:	sv		-							P:SH	P.SV	SV:SH
10 NN19	I P:	SH		-								AS & BARRAN	
11 NN21	P:	SH		-									ALL STATE
12 NN24	P:	SV		1								Net and State	
13 NN24	P:	SH		1									
	V SV	/:SH		1								×2152	
14 NN24				-									

201 Lat:	4 Oct 15 43.725 43:43.	5 15:37:2 4 Lon: 5264 N	5.94 -121 12	5 UTC .31 D 1:18.57	epth: 784 W	0.687				Solve		North East North -5.10e-02 -1.76e-0 East -1.76e-01 -8.50e-0 Down 1.95e-01 1.28e-0	Down 11.95e-01 21.28e-03 31.20e-01	+Crate +Dipos
												Scalar M0 = 2.847e-01		+CLV2 Dipole
	Sta	Dist	Az	1	Chan	Phase	Resid	Polarity	Penalty	Amp	Freq	T = 0.039 k = -0.019		Crack
1	VM40	2.55	108	121	EHT	SH	0.020	√ +		✓ 9.44e+01	1.97e+01	Total Penalty - 0.144		<u> </u>
2	NM41	2.22	138	125	EHT	SH	-0.043	V +		✓ 3.63e+02	1.54e+01	Total Penalty = 0.144		
3	NM42	3.72	41	107	EHU	P	0.045			✓ 2.73e+02	1.25e+01			
4	N07	3.15	337	110	EHU	P	-0.007	X -		✓ -5.18e+01	1.51e+01		FULANITES	
5	N07	3.15	337	110	EHT	SH	0.005	I -		✓ -1.25e+02	2.04e+01			
5	N09	2.04	295	125	EHU	P	0.015	1		✓ 4.62e+00	2.08e+01	P	SH	SV
7		2.04	295	125	EHB	SV	0.006			2 620+00	2.450+01			
-		2.04	295	125	EHT	SH	0.042			✓ 1.660±02	2.520+01	↓ ° ° °)		
0	UN17	1.53	250	136	EHII	D	-0.001			1.000+02	2.020+01	+ $+$ $+$	+ $+$ $+$	$F \to A$
9	JN17	1.53	250	136	EUD	SV	0.016			▼ 1.040+01	1.4901.01		$\langle \rangle^{\circ} \langle \langle \cdot \rangle^{\circ} \rangle$	
10		1.53	250	136	EUT	0V	0.023	•••		4.200+02	1.400401		∀ ∘ , ∨	
11		1.48	24	138	EHI	р	-0.006	<u> </u>		-4.820+02	1.610+01			
12		1.48	24	138	CHD	F OV	0.020	• -		• -6.35e+01	1.01e+01			
13	NIN 10	0.82	165	155	CUIL	SV D	0.012	<u> </u>		▼ -5.57e+02	1.210+01			SE
14	NIN 19	0.82	165	155	EHU	P	0.073			2.31e+02	1./90+01			
15	1119	1 0 1	- 00	100	EUI	эп	0.015	• -		V -7.460+02	1.420+01			
	Sta	Type	_	Panalty									$\left(+ + - \right)$	(+ + -)
1	NN07	D P:S	н	renarcy										
2	NN09	✓ PS	v											
2	N09	I P:S	н		-									
4	N09	I sv	SH		-									
4	N17	J P.S	v	0 004	-								AMPLITUDE RATIOS	
5	JN17	J P-9	• H	0.028	-									
0	JN17	- 1.0 - 1.0	 SH	0.113	-									
/	UNI19	- P-0	v	0.110	-							P:SH	P:SV	SV:SH
8	10	0.00	×		-							Carlos & A	The states	
9	NIN19	- P:S			-									A CONTRACT
10	NN21	P:S	н		-									
11	NN24	✓ P:S	v									A DE REAL PART	AS STREET	CARE AND F
12	NN24	✓ P:S	н											C & 82239
13	NN24	✓ sv	SH									PB BEE	A States	
14	NN32	P:S	н											

									/Usei	s/foulger/Seisn	nicProcessin	/Newberr	y/Data/2014/09/30/2	20140930092338.or	
Ø	3 🔲	2	₩?												
			•												
20	14.6 24	0.22.		UTC									North East	Down	
La	: 43.726	5 9:23: 51 Lon	+8.020	.309	Depth:	1.305				Calua		North	1 6.49e-02 -9.50e-0	2 6.74e-02	×
	43:43.	5642 N	12	1:18.50	634 W					20146		East	-9.50e-02 -2.84e-0	1 1.45e-01	+Crack
												Dowi	0.740-02 1.430-0	1-3.386-02	+CLV
												Scala	r M0 = 2.789e-01		Dipole
	Sta	Dist	Az	i	Chan	Phase	Resid	Polarity	Penalty	Amp	Freq	I = C	1.744 K = -0.223		
1	NM03	2.97	102	127	EHU	P	0.014	₫ -		-		Total	Penalty = 0.148		-v
2	NM06	0.76	103	163	EHU	P	0.023	+		✓ 1.52e+01	1.70e+01				
3	NM06	0.76	103	163	EHR	SV	0.070	⊻ +		▼ 8.82e+01	1.32e+01			POLARITIES	
4	NM22	0.10	159	178	EHB	SV	0.037		0.015	▼ -7.000+02	1.200+01				
5	NM22	0.10	159	178	EHT	SH	0.074	•••	0.015	✓ 0.170+02	1.346+01	D		CH /	sv 🔨
7	NM42	3.66	42	120	EHU	P	0.018	X -		✓ -1.13e+02	1.47e+01	r	$\bigwedge \circ \land \circ \land$		34
8	NM42	3.66	42	120	EHT	SH	0.084	1 -		✓ -3.16e+02	1.61e+01	1			
9	NN07	3.09	336	123	EHU	Р	0.013	I -		✓ -3.00e+01	1.57e+01	H	-1.4 -1	E F T	$ \left[+ \right] + \left[+ \right] $
10	NN09	2.03	293	137	EHU	Р	0.006	√ +		✓ 1.49e+01	1.09e+01	`			
11	NN09	2.03	293	137	EHR	SV	-0.013	√ +		2.52e+02	2.34e+01				
12	NN09	2.03	293	137	EHT	SH	0.025	🗹 +		✓ 1.73e+02	3.30e+01		<u> </u>	U	Ŷ
13	NN17	1.58	248	146	EHU	Р	-0.001	⊻ +		✓ 7.60e+00	2.17e+01				
14	NN17	1.58	248	146	EHT	SH	0.024	✓ +	0.036	2.60e+02	8.34e+00			SN I	SE
10	NN18	1.41	25	149	FHU	P	-0.014	J –		J -2 68e±01	161e+01				
	Sta	Тур	e	Penalty	r									(+ ' + ')	(+'+')
1	NM06	P:	sv		_										
2	NM06	P:	SH		_										
3	NM42	J P	7.5H		_										\cup
4	NN09	I I P	sv		-										
5	NN09	✓ P	SH		-									AMPLITUDE RATIOS	
7	NN09	√ s	/:SH		-										
8	NN17	✓ P:	ѕн	0.035	-							в	CLI CLI	DICU	CV/CL
9	NN18	- P:	sv		-							F		r.sy	30.30
10	NN19	P:	SH		-							/	Contraction of the second second		
11	NN24	🗹 P:	sv	0.058								ł			HAR LAND
12	NN24	P:	SH									2		AND A LEAN	Cher Cher Star
13	NN24	S	/:SH									Ċ	XXX IF		
14	NN32	✓ P:	sv	0.001	_								- 20		
10	NN32	J P	ян												

