

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America Available from
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road Springfield, Virginia 22161
NTIS Price Codes: Printed Copy A03 Microfiche A01

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

COMPLETION AND TESTING REPORT;
 INEL GEOTHERMAL EXPLORATORY WELL ONE (INEL-1)

S. M. Prestwich, DOE-ID
and
J. A. Bowman, et al., EG\&G Idaho, Inc.

February 1980
This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
$\begin{aligned} & \text { warranty. express or implied, or assumes any legal liability or responsibility for the accuracy. } \\ & \text { completeness, or usefulness of any information, apparatus, product, or process disclosed. of }\end{aligned}$
$\begin{aligned} & \text { completeness, or usefulness of any information, apparatus, product, of process disclosed. or } \\ & \text { represents that its use would not infringe privately owned rights. Reference herein to any specific }\end{aligned}$
commercial product. process, or service by trade name. trademark, manufacturer, or otherwise ores
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

> U.S. Department of Energy
> Idaho Operations Office
> 550 Second Street
> Idaho Falls, Idaho 83401

ABSTRACT

INEL Geothermal Exploratory Well One (INEL-1) was drilled in search of a geothermal resource beneath the Snake River Plain for use at the Chemical Processing Plant (CPP) on the Idaho National Engineering Laboratory site. The drilling site was selected as the most promising location within reasonable distance of the CPP. The resource was thought to be located at a depth near $7500 \mathrm{ft}(2300 \mathrm{~m})$. Neither significant production nor high temperatures were noted at that depth, and the well was then drilled to $10,333 \mathrm{ft}(3150 \mathrm{~m})$ with similar findings. Rock cores, geophysical logs, and hydrologic tests of the well to date indicate that no useful geothermal resource exists at this location. This report presents information on the drilling, completion, and testing of INEL-T.

ACKNOWLEDGMENTS

Acknowledgment is made of those who provided information and technical assistance in support of this project. Listed by organization, contributors were:

DOE-ID -- S. M. Prestwich and L. L. Mink
DOE-NV -- J. B. Cotter and J. N. Fiore
EG\&G Idaho, Inc. -- J. A. Bowman, S. Petty, D. Goldman, W. Niemi,
D. M. Callan, and R. E. McAtee

USGS -- J. T. Barraclough and D. J. Doherty

Although others helped, these persons made special contributions to this project and the preparation of this report.
ABSTRACT i
INTRODUCTION 1
SITE PREPARATION 1
DRILLING AND OPERATIONS SUMMARY 3
Drilling 3
Testing 3
SURFACE AND CONTAINMENT EQUIPMENT 5
Cellar 5
Blowout Prevention 5
Wellhead 9
Orilling Recorder 9
Deviation Survey 9
DOWNHOLE EQUIPMENT AND SERVICES 9
Conductor 9
Casing 9
Liner 11
Lithologic Logging 11
Drill Bit Summary 11
Drilling Fluids 13
Coring 13
Geophysical Logging 13
DRILLING PROBLEMS 13
HYDROGEOLOGY 14
Geology of the INEL-1 Region 14
Lithology of INEL-1 14
Geophysical Logging 17
TESTING OF INEL-I 19
Aquifer Test 1 19
Aquifer Test 2 20
Aquifer Test 3 21
Nitrogen-Lift Testing 22
Air-Lift Testing 22
Swab Testing 23
Pump Testing 24
CHEMICAL LOGGING 26
APPENDIX A--DAILY DRILLING REPORTS 28
APPENDIX B--BIT RECORD 38
APPENDIX C--COR ING SUMMARY 40
APPENDIX D--GEOPHYSICAL LOGGING SUMMARY 42
FIGURES

1. INEL-1 well location on the Idaho National Engineering Laboratory site 2
2. INEL-1 well drilling and operations summary 4
3. Concrete cellar construction 6
4. INEL-1 well BOP wellhead equipment (2000 psi minimum rating) for drilling below the $20-\mathrm{in}$. ($51-\mathrm{cm}$) casing shoe 7
5. INEL-1 well BOP wellhead equipment for drilling below the 13-3/8-in. ($34-\mathrm{cm}$) casing shoe 8
6. INEL-1 well wellhead equipment installed on completed well 10
7. INEL-1 well subsurface status 12
8. Generalized lithologic log from INEL-1 well 16
TABLES
9. INEL-1 Well Perforated Zone Intervals and Anticipated Fluid Temperatures 25
10. Predicted INEL-1 Well Drawdowns 25
A-1. Daily Drilling Reports 29
B-1. Bit Record 39
C-1. Coring Surmary 41
D-1. Geophysical Logging Surmary 43

COMPLETION AND TESTING REPORT; INEL GEOTHERMAL EXPLORATORY
 WELL ONE (INEL-7)

INTRODUCTION

This report describes the drilling, completion, and testing of the INEL Geothermal Exploratory Well One (INEL-1). The well was drilled in search of a hydrothermal resource beneath the Idaho National Engineering Laboratory (INEL) for use at the Chemical Processing Plant (CPP). In order to be useful, the resource was expected to yield $500 \mathrm{gpm}(31.5 \mathrm{~L} / \mathrm{s})$ of water at $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$.

The site for INEL-1 was chosen by the U.S. Geological Survey (USGS) in the most favorable location within $6 \mathrm{mi}(10 \mathrm{~km})$ of the Chemical Processing Plant (CPP). The location is NE $1 / 4$, NW $1 / 4$, Sec. 1, T3N, R29E, in Butte County, Idaho, as seen in Figure 1.

The site was prepared by EG\&G Idaho, Inc. Brinkerhoff-Signal Drilling Company performed the drilling and completion under contract to the Department of Energy Idaho Operations Office (DOE-ID). Technical direction and drilling supervision were provided by Fenix And Scisson, an operating contractor of the Department of Energy Nevada Operations Office (DOE-NV), at the request of DOE-ID. DOE-ID funded the entire operation, and EG\&G provided logistic support, budgeting, and procurement administration. The USGS provided geological consultation and funded aquifer testing during the drilling operation.

SITE PREPARATION

The drill site was prepared by clearing and grading a $500-\mathrm{ft}$ ($152-\mathrm{m}$) square area, excavating a reserve pit and a water storage pit, constructing a cellar, drilling a $36-\mathrm{in}$. ($91-\mathrm{cm}$) hole, cementing $30-\mathrm{in}$. ($76-\mathrm{cm}$) conductor pipe to a depth of $40 \mathrm{ft}(12 \mathrm{~m})$, and building an access road from Lincoln Blvd. A water well was drilled, and power and telephone lines were installed. Trailers were provided for the USGS, DOE-ID, DOE-NV, Fenix and Scisson, and EG\&G.

Figure 1. INEL-1 well location on the Idaho National Engineering Laboratory site.

Drilling

Drilling commenced on February 15, 1979. A $26-$ in. ($66-\mathrm{cm}$) surface hole was dry-drilled to $1524 \mathrm{ft}(465 \mathrm{~m})$, various geophysical logs were obtained, and $20-i n .(51-\mathrm{cm})$ casing was set and cemented to surface. The blowout prevention equipment (BOPE) for the intermediate hole was installed and tested successfully. The $17-1 / 2-\mathrm{in}$. ($44-\mathrm{cm}$) intermediate hole was then drilled to $3560 \mathrm{ft}(1085 \mathrm{~m})$, cores and geophysical logs were obtained, the aquifer was tested, and $13-3 / 8-\mathrm{in}$. ($34-\mathrm{cm}$) casing was set and cemented to the surface. The BOPE for the main hole was installed and tested successfully.

The 12-1/4-in. (31-cm) main hole was also drilled with water to $10,333 \mathrm{ft}(3150 \mathrm{~m})$; periodic high-viscosity mud sweeps were made to keep the hole clean. Cores and geophysical logs were obtained and an aquifer test was attempted, using a nitrogen gas lift technique. After this test, a 9-5/8-in. ($24-\mathrm{cm}$) liner was hung from 3262 to 6796 ft (994 to 2071 m). The liner was cemented only at the top and bottom to provide later access to the intermediate aquifer. A bottom-hole core was obtained, increasing the depth of the open hole by $32 \mathrm{ft}(10 \mathrm{~m})$ at a reduced diameter of 8 in . $(20 \mathrm{~cm})$. The rig was released on May $27,1979$.

Appendix A contains excerpts from the Daily Drilling Reports. Figure 2 summarizes drilling and operations. Drilling depths are referenced in the kelly bushing (KB), which was $20 \mathrm{ft}(6.1 \mathrm{~m})$ above ground level (GL).

Testing

After the rig moved away, several tests of the aquifer were attempted. In early June, air-lift testing was performed, followed by sampling of the fluid near the bottom of the borehole. On the second trip out, the sampler stuck at the bottom of the liner. It was decided to call in a workover rig, which performed the fishing job and a swab test. After the swab test, the hole was circulated from $10,000 \mathrm{ft}(3050 \mathrm{~m})$ in an attempt to clean remaining wall cake with water.

Figure 2. INEL-1 well drilling and operations summary.

Information derived from these operations led to the decision to augment production from the intermediate aquifer behind the 9-5/8-in. ($24-\mathrm{cm}$) liner where tests and previous logs had indicated the possibility of production at temperatures between 150 and $200^{\circ} \mathrm{F}$ (66 and $93^{\circ} \mathrm{C}$). The 9-5/8-in. ($24-\mathrm{cm}$) liner was perforated with 730 holes between 4200 and 6300 ft (1280 and 1920 m). These perforations provided access to the intermediate aquifer during the subsequent pump test.

The final test of INEL-1 was made with a submersible pump set at $1300 \mathrm{ft}(396 \mathrm{~m})$. The results of the tests performed on INEL-1 are discussed in a later section of this report.

SURFACE AND CONTAINMENT EQUIPMENT

Cellar

A reinforced concrete cellar (Figure 3) 8 by 10 by $8 \mathrm{ft}(2.4$ by 3 by 2.4 m) deep contains the wellhead. The casing head is welded to the $20-\mathrm{in}$. ($51-\mathrm{cm}$) casing.

Blowout Prevention

For drilling below the $20-i n .(51-\mathrm{cm})$ casing, the BOPE (Figure 4) included: a 20-in. spoolpiece, a 20-in. drilling spool, a 20-in. single gate blowout preventer, a 20-in. Hydril type GK blowout preventer, and a 20-in. Grant rotating head.

For drilling the main hole, the BOPE (Figure 5) included a 20 - by 12-in. (51-by $30-\mathrm{cm}$) WKM expansion spool bolted to the casing head, above which were: a $12-i n .(30-\mathrm{cm})$ WKM Master gate valve, a $12-\mathrm{in}$. drilling spool, a 12-in. double-gate blowout preventer, a 12-in. Hydril type GK blowout preventer, and a 12-in. Grant rotating head.

Figure 3. Concrete cellar construction.

Figure 4. INEL-1 well BOP wellhead equipment (2000 psi minimum rating) for drilling below the $20-\mathrm{in}$. ($51-\mathrm{cm}$) casing shoe.

Figure 5. INEL-1 well BOP wellhead equipment for drilling below the 13-3/8-in. (34-cm) casing shoe.

Wellhead

After completion of the hole, the BOPE was removed, leaving only the expansion spool and the Master gate valve (Figure 6). The Master gate valve is equipped with API 3000 (ANSI 900) flanges.

Drilling Recorder

A drilling recorder, used during all drilling operations, indicated depth, weight on bit, rotary rate, penetration rate, and pump pressure.

> Deviation Survey

Deviation surveys were made periodically. Deviations recorded were usually less than one degree, with a maximum of three degrees at 9294 ft $(2833 \mathrm{~m})$. The directional \log indicates that the bottom of the hole is located $83 \mathrm{ft}(25 \mathrm{~m})$ south and $5 \mathrm{ft}(1.5 \mathrm{~m})$ east of the surface hole.
downhole equipment and services

Conductor

Two joints of butt-welded $30-\mathrm{in}$. ($76-\mathrm{cm}$) conductor pipe were set to a depth of $40 \mathrm{ft}(12 \mathrm{~m})$ and cemented to the surface.

Casing

Twenty-four joints of $20-\mathrm{in}$. ($51-\mathrm{cm}$) K-55 133\# ST\&C casing and 14 joints of $\mathrm{H}-4094 \#$ ST\&C casing were set to a depth of $1511 \mathrm{ft}(460 \mathrm{~m})$ and cemented to the surface with $8696 \mathrm{ft}^{3}\left(246 \mathrm{~m}^{3}\right)$ of Class G cement with 20% silica flour, 25 sacks Kolite, and 8% Gypseal.

Eighty-seven joints of $13-3 / 8-\mathrm{in}$. ($34-\mathrm{cm}$) P-110 72\# ST\&C casing were set to a depth of $3559 \mathrm{ft}(1085 \mathrm{~m})$ and cemented to the surface with $4781 \mathrm{ft}^{3}\left(135 \mathrm{~m}^{3}\right.$) of the same cement formulation.

INEL-A-16 252
Figure 6. INEL-1 well wellhead equipment installed on completed well.

Eighty-four joints of 9-5/8-in. (24-cm) S-95 special drifted 40\# LT\&C casing liner were hung from a liner hanger set at $3262 \mathrm{ft}(994 \mathrm{~m})$. The casing liner extended to a depth of $6976 \mathrm{ft}(2126 \mathrm{~m})$. The liner was cemented with $434 \mathrm{ft}^{3}\left(12 \mathrm{~m}^{3}\right)$ of $\mathrm{Class} G$ cement in two stages, one at the bottom and one at the top, with the intention of keeping the midsection free of cement. Subsequently, this liner was perforated with 730 quarter-inch ($6-\mathrm{mm}$) holes between 4200 and 6266 ft (1280 and 1910 m) in seeking production from the intermediate aquifer. Figure 7 shows the subsurface well status.

Lithologic Logging

A service company provided mud logging services, sampled cuttings, and monitored drilling fluid temperature and hydrogen sulfide content. Lithologic characteristics were determined by periodically analyzing drill cuttings and cores when they were acquired. A discussion of INEL-1 lithology is presented in the Hydrogeology section of this report.

Drill Bit Summary

A dry hole digger drilled $40 \mathrm{ft}(12 \mathrm{~m})$ of $36-\mathrm{in}$. ($91-\mathrm{cm}$) hole and set the $30-\mathrm{in}$. $(76-\mathrm{cm})$ conductor pipe.

For the surface hole, five $26-\mathrm{in}$. $(66-\mathrm{cm})$ bits were used. Three were mill tooth bits, and were used to drill to a depth of $610 \mathrm{ft}(186 \mathrm{~m})$. The other two were journal-bearing bits used to drill to a depth of 1526 ft (465 m).

The intermediate hole was drilled with three $17-1 / 2-\mathrm{in}$. ($44-\mathrm{cm}$) journal-bearing bits to a depth of 3563 ft (1086 m).

The main hole was drilled with six $12-1 / 4-i n .(31-\mathrm{cm})$ bits to a total depth of $10,333 \mathrm{ft}(3150 \mathrm{~m})$.

Appendix B presents the drill bit record taken from the Daily Drilling Report.

Figure 7. INEL-1 well subsurface status.

Drilling Fluids

The $26-i n .(66-\mathrm{cm})$ hole was drilled with gel until returns were lost at $136 \mathrm{ft}(41 \mathrm{~m})$. From there to the first casing point, a wide range of lost circulation material was tried with no success, and the surface hole was essentially dry drilled with water.

The intermediate hole was drilled with conventional gel/lime drilling fluid. The main hole was drilled with water. At least once each tour, a high-viscosity sweep with drilling fluid was made to remove the cuttings and keep the borehole clean.

Coring

Cores were acquired at selected intervals during drilling. Seven cores were cut, analyzed, and sent to the core library at the University of Utah Research Institute. The coring summary is presented in Appendix C.

Geophysical Logging

Various geophysical logs were obtained of INEL-1 to determine the condition of the hole at certain stages of the drilling operation (Appendix D). The Hydrogeology section of this report discusses the information derived from the logs.

DRILLING PROBLEMS

The driller encountered lost circulation at $136 \mathrm{ft}(41 \mathrm{~m})$. The problem was severe, and no lost-circulation drilling fluid additives alleviated the condition, although many were tried. The hole was essentially "dry drilled" with water to the first casing point below $1500 \mathrm{ft}(457 \mathrm{~m})$. A considerable amount of time was spent reaming the surface hole before casing could be set. The subsequent cementing operation took eight stages; the top of the first stage was indicated at 180 ft (55 m).

At a depth of $698 \mathrm{ft}(213 \mathrm{~m})$ the drilling jars twisted off, leaving a 200-ft ($61-\mathrm{m}$) fish in the hole. An overshot was employed and the fish was landed on the first attempt.

HYDROGEOLOGY

Geology of the INEL-1 Region

Basaltic lava flows interbedded with silty to sandy alluvial and lacustrine sediments, rhyolitic air-fall ash deposits, and ash-flow tuffs constitute the upper $3000 \mathrm{ft}(900 \mathrm{~m})$, approximately, of the eastern Snake River Plain in the vicinity of the INEL. Rocks below this depth had been identified by deduction from geological models and limited geological data, and had not been drilled until INEL-1. Drilling data from INEL-1 support the hypothesis that upper crustal rocks beneath the basalt-sediment layer of the eastern Snake River Plain are chiefly rhyolitic tuffs and ash-flows that formed collapsed calderas. Precambrian, Paleozoic, and Mesozoic sedimentary rocks found in mountain ranges north and south of the eastern Snake River Plain may also be present locally below the volcanic cover of the Plain. (From USGS Open File Report 79-1248.)

Lithology of INEL-1

The surface formation at INEL-l was fresh basalt with abundant fractures, causing extreme lost circulation problems and slow drilling until casing was set at $1511 \mathrm{ft}(461 \mathrm{~m})$. Circulation was first lost at $137 \mathrm{ft}(42 \mathrm{~m})$ and not regained until pipe was set. After several days of mixing mud additives in an attempt to regain circulation, it was decided to drill ahead with water until a casing point was reached. While drilling ahead, crews were pumping nearly a half-million gallons of water ($1890 \mathrm{~m}^{3}$) a day into the formation, indicating the extensive nature of the fracture network. After the surface casing was set, no other major problems were encountered in drilling to T.D. at $10,333 \mathrm{ft}(3150 \mathrm{~m})$.

Although few samples were available from the surface hole, geophysical log data and correlation from nearby core holes indicate that basalt flows
with occasional interbedded lacustrine sediments are located in this zone (Figure 8). The basalts encountered upon drilling out from surface casing were very fresh olivine-rich tholeites, with abundant plagioclase. They exhibited a diktytaxitic texture, and were occasionally glomeroporphyritic with clusters of olivine phenocrysts. Small amounts of pyroxene were seen, and the opaque minerals were generally illmenite or magnetite. These basalts are believed to be upper Quaternary in age. Similar basalts found at Craters of the Moon, $35 \mathrm{mi}(56 \mathrm{~km})$ to the southwest, have been dated at less than 2000 years ago.

At approximately $1650 \mathrm{ft}(503 \mathrm{~m})$ the samples showed a subtle change to an older, intensely altered and mineralized basalt. The rocks were serpentinized to an almost greasy luster, and were highly mineralized with zeolite, chlorite, hematite, calcite, and silica. These basalts are the oldest found in this area, probably middle Pliocene-Pleistocene in age. It should be noted that no firm age dates were available for this report and ages are given on a correlative basis. The USGS will age date cores taken, and this information will be available in a later USGS report.

A relatively thick bed of Tertiary lacustrine sediment was encountered at $2160 \mathrm{ft}(658 \mathrm{~m})$. Core no. 1 showed a gray-green claystone, calcareous and occasionally silty. Below this sediment at 2440 ft (744 m), Tertiary rhyolite was found. Core no. 2 showed it to be a welded ash flow tuff, with abundant flattened pumice fragments, rich in quartz and potassium feldspar. This tuff continued to 5750 ft (1753 m) showing sporadic zones of highly fractured, intensely propylitized and mineralized rock. At this depth, interbeds of nonwelded tuffs, reworked tuffs, air-fall ash, and volcanic breccia along with more welded tuffs: were encountered. This lithology continued to $9000 \mathrm{ft}(2743 \mathrm{~m})$ where the welded tuffs began a gradual change to dacite, showing an increasing amount of plagioclase. The actual top of the dacite was picked from the density log at 9460 ft (2883 m), with no further changes encountered to a total depth of $10,333 \mathrm{ft}$ (3150 m).

Figure 8. Generalized lithologic log from INEL-1 well.

Geophysical Logging

Geophysical logging was performed at various stages in the construction of INEL-1. Logs run in the top 1511 ft (461 m) of the hole may be unreliable due to incompatiblity of the logging tools with the large diameter of the borehole. The lithology of this portion of the hole was determined from drilling speed, some return of cuttings, and correlation with nearby wells. Correlation was made between lithology found from cuttings and cores, and compensated neutron density, dual induction, natural gamma, caliper, and temperature logs.

At $1558 \mathrm{ft}(475 \mathrm{~m})$ a sharp lithologic change in both the natural gamma and sonic logs indicates the end of a section of sediments, altered basalt, or ash, the top of which occurs at approximately $1470 \mathrm{ft}(448 \mathrm{~m})$ as indicated by drilling speed. All geophysical logs show interbedded dense and more porous rocks, probably basalt with weathered interbeds or ash-fall tuff from 1562 to 2170 ft (476 to 661 m). There, the logs show a typical clay-type response on natural gamma corresponding with clay and siltstone in the cuttings record. Below $2480 \mathrm{ft}(756 \mathrm{~m})$, denser, less porous materials alternate with more porous rocks. This marks the start of the section of rhyolitic, welded tuffs with softer reworked ash beds, air-fall and less consolidated tuffs. Between 3465 and 4160 ft (1056 and 1268 m) occurs a section of tight, low porosity rock with possible fractures near 3650 ft (1113 m).

Below this dense zone are sections of washed-out borehole with indications of higher porosity. These washouts could be attributed to nonwelded tuffs, reworked tuffaceous sand, or cinder. They correspond to temperature anomalies seen in the May 1 temperature log made prior to emplacement of the liner. This region is also included in the region of highest productivity found from pump testing on April 14 and 15. Temperatures in this region reach a maximum of $150^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$. Similar washed-out areas occur at $6000 \mathrm{ft}(1829 \mathrm{~m})$ and $6250 \mathrm{ft}(1905 \mathrm{~m})$ with small temperature anomalies. As determined from cuttings, this section is largely welded tuffs to 5751 ft (1753 m) where, in general, the ash units are reworked or air-fall deposits with less competence than the overlying welded tuffs.

From 7070 to 7231 ft (2155 to 2204 m) a zone of interbedded porous and dense rock is indicated on sonic, neutron, and resistivity surveys. The caliper log shows washing-out of the borehole. This region coincides, in general, with a temperature anomaly at $7280 \mathrm{ft}(2219 \mathrm{~m})$ seen in the June 13 temperature log run immediately after nitrogen-lifting the well. Nitrogen-lifting would remove water from the borehole and induce movement of water into the well to replace it, emphasizing thermal anomalies. Corresponding anomalies in the neutron \log and borehole compensated sonic log are also apparent. Areas of higher porosity coinciding with temperature anomalies also occur at $7500 \mathrm{ft}(2286 \mathrm{~m})$ and $7110 \mathrm{ft}(2167 \mathrm{~m})$. Temperature in this region reaches $190^{\circ} \mathrm{F}\left(88^{\circ} \mathrm{C}\right)$. At $8081 \mathrm{ft}(2463 \mathrm{~m}) \mathrm{a}$ region of slightly different signature on the sonic and neutron logs may indicate a change in lithology. This does not show on the natural gamma or in any of the temperature surveys, and so may not correspond to any hydrologic change.

The lower section of the borehole is fairly uniform from 8081 ft (2463 m) down. Cuttings indicate a transition from rhyolite to dacite starting at $9050 \mathrm{ft}(2758 \mathrm{~m})$. Temperature anomalies are apparent from 9600 to 9750 ft (2926 to 2972 m), possibly in regions of fractured rock which do not show up on geophysical logs. An isothermal condition at the bottom of the borehole indicates a zone of stagnant water, possibly drilling fluid.

In general, the geophysical logs indicate only a slight possibility for water production below the liner with the possible exception of the zone between 7070 and $7231 \mathrm{ft}(2155$ and 2204 m$)$. This could be either a fractured and altered zone, or a zone of reworked tuff with higher porosity and less competence than surrounding tuffs as indicated by washing out of the borehole. There are no other indications of higher porosity in the lower section of the borehole except for the temperature anomalies near 9700 ft (2957 m) .

Bottom hole temperature as high as $302^{\circ} \mathrm{F}\left(150^{\circ} \mathrm{C}\right)$ was recorded during temperature logging on May 24, 1979. However, this temperature was not repeated in later surveys and a maximum-reading thermometer showed a bottom hole temperature of $288^{\circ} \mathrm{F}\left(142^{\circ} \mathrm{C}\right)$ at the time of this log. Later logs showed the same bottom hole temperature of $288^{\circ} \mathrm{F}\left(142^{\circ} \mathrm{C}\right)$.

TESTING OF INEL-1

Prior to the drilling of the INEL-l well, very little information on the geology and hydrology of the eastern Snake River Plain was available for the rock units below a depth of $1500 \mathrm{ft}(457 \mathrm{~m})$. The well, located in the west-central part of the INEL, was instrumental in gaining hydrologic information about these lower units. Several attempts were made during and after drilling of INEL-l to evaluate the hydraulic characteristics of the borehole. These attempts include nitrogen-lifting, air-lifting, swabbing, and pump testing.

Aquifer Test 1

From March 23 to March 24, 1979, an aquifer test was run on a 695-ft (212-m) section of the INEL-1 well. The test interval consisted of strata between 1511 and 2206 ft (460 and 672 m) below GL. At the time of the test, the well was cased with $20-\mathrm{in}$. ($51-\mathrm{cm}$) $0 . D$. casing from the surface to a depth of $1511 \mathrm{ft}(460 \mathrm{~m})$ and originally continued as a 17-1/2-in. $(44-\mathrm{cm})$ open hole from 1511 to $2518 \mathrm{ft}(460$ to 767 m).

The borehole penetrated a repetitive sequence of basalt and sediment from the surface to a depth of $2445 \mathrm{ft}(745 \mathrm{~m})$. A thick, predominantly sediment section was traversed from 1220 to $1530 \mathrm{ft}(372$ to 466 m). This section probably acts as a confining layer and separates the Snake River Plain aquifer into two distinct zones. A thick section of rhyolitic welded tuff was encountered below $2445 \mathrm{ft}(745 \mathrm{~m})$ and had not been breached when drilling was terminated for Test 1 . Upon removal of highly viscous drilling mud from the borehole, caving sediments filled the hole from 2518 to $2206 \mathrm{ft}(767$ to 672 m$)$. The rhyolites were then temporarily sealed and probably did not contribute water to the aquifer test. Therefore, the test interval consisted of strata present in the now-designated lower basalt zone of the Snake River Plain aquifer.

A $30-h p$ submersible pump was installed at a depth of $802 \mathrm{ft}(244 \mathrm{~m})$ below GL. A l-in. ($2.5-\mathrm{cm}$) diameter measuring line was installed to 828 ft (252 m) below GL to facilitate water-level measurements. The static water level
was about $330 \mathrm{ft}(100 \mathrm{~m})$ below GL. Pumping started at 0814 on March 23, 1979. The average pumping rate was about $125 \mathrm{gpm}(8 \mathrm{~L} / \mathrm{s})$. The test terminated at 0814 on March 24,1979 . The maximum drawdown from the test was $218 \mathrm{ft}(66 \mathrm{~m})$. The calculated $14-1 / 2-\mathrm{hr}$ specific capacity is $0.57 \mathrm{gpm} / \mathrm{ft}$ of drawdown ($1.8 \times 10^{-4} \mathrm{~L} / \mathrm{s} \cdot \mathrm{m}$). The coefficient of transmissivity was determined to be $224 \mathrm{gpd} / \mathrm{ft}\left(2.77 \mathrm{~m}^{2} / \mathrm{d}\right)$.

Aquifer Test 2

Following Aquifer Test 1, drilling continued to a depth of 3713 ft (1132 m) and a $13-3 / 8-\mathrm{in}$. ($34-\mathrm{cm}$) casing was set from the surf ace to a depth of $3559 \mathrm{ft}(1085 \mathrm{~m})$. The borehole continued from 3559 to 3663 ft (1085 to 1116 m) as a $12-1 / 4-\mathrm{in} .(31-\mathrm{cm})$ open hole and a 7-7/8-in. (20-cm) cored interval from 3663 to 3713 ft (1116 to 1132 m). Aquifer Test 2 was performed on this $154-\mathrm{ft}(47-\mathrm{m})$ section of the INEL-1 well from Apri1 6 through April 8, 1979.

The rock strata penetrated by the renewed drilling were dominated by rhyolitic weided tuff with a few thin tuffaceous interbeds of varying compositions. Cores demonstrated that fractures present in the samples had been filled by secondary mineralization and that the rhyolitic rocks were very dense. Water contribution to the test through the bottom of the corehole was, therefore, assumed to be negligible.

The $30-h p$ submersible pump used in Aquifer Test 1 was installed at a depth of about $840 \mathrm{ft}(256 \mathrm{~m})$ below GL . A $1-\mathrm{in}$. ($2.5-\mathrm{cm}$) diameter measuring line was installed to $807 \mathrm{ft}(246 \mathrm{~m})$ below GL to facilitate water-level measurements. Pumping began on April 6. The average pumping rate was about $20 \mathrm{gpm}(1.25 \mathrm{~L} / \mathrm{s})$ for the entire test. The static water level was about $290 \mathrm{ft}(88 \mathrm{~m})$ below GL . Maximum drawdown was about 459 ft (140 m) after pumping for 43 hours. From this information, the specific capacity was determined to be $0.04 \mathrm{gpm} / \mathrm{ft}\left(1.28 \times 10^{-5} \mathrm{~L} / \mathrm{s} \cdot \mathrm{m}\right)$. The coefficient of transmissivity was determined from recovery data as $14.3 \mathrm{gpd} / \mathrm{ft}\left(0.18 \mathrm{~m}^{2} / \mathrm{d}\right)$.

A comparison of the data obtained from Aquifer Test 2 to the data obtained from Test 1 shows that the permeability and the amount of water recoverable from the rhyolite-dominated aquifer are at least an order of magnitude lower than the same parameters in the overlying lower basalts of the Snake River Plain aquifer.

Aquifer Test 3

Following test 2, the borehole was deepened by means of drilling a 12-1/4-in. ($31-\mathrm{cm}$) open hole from 3663 to 4839 ft (1116 to 1475 m) and a $7-7 / 8-\mathrm{in}$. ($20-\mathrm{cm}$) cored hole from 4839 to 4879 ft (1475 to 1487 m). The well casing completion was similar to that of Test 2 and the rocks penetrated were also very similar rhyolitic welded tuff with tuffaceous interbeds. The open $1320-\mathrm{ft}(402-\mathrm{m})$ section of the well was investigated by Aquifer Test 3. The test was performed from April. 13 to 15, 1979, and included the strata analyzed in Aquifer Test 2.

The $30-\mathrm{hp}$ submersible pump was set at about $840 \mathrm{ft}(256 \mathrm{~m})$ below GL. A l-in. ($2.5-\mathrm{cm}$) diameter measuring line was installed at a depth of approximately $810 \mathrm{ft}(247 \mathrm{~m})$ below GL to facilitate water level
measurements. At 1246 on April 14, pumping for Aquifer Test 3 began, and after an hour was nearly at a constant rate of $75 \mathrm{gpm}(4.7 \mathrm{~L} / \mathrm{s})$. Initial static water level was approximately $290 \mathrm{ft}(88 \mathrm{~m})$. Drawdown during the last 17 hours of the test reached a maximum of $359 \mathrm{ft}(109 \mathrm{~m})$. The calculated specific capacity for this zone is $0.20 \mathrm{gpm} / \mathrm{ft}$ $\left(6.4 \times 10^{-5} \mathrm{~L} / \mathrm{s} \cdot \mathrm{m}\right)$. The coefficient of transmissivity was determined from the recovery curve and from a semilog plot of the drawdown data. In both cases, the values were identical at $77 \mathrm{gpd} / \mathrm{ft}(0.95 \mathrm{~m} 2 / \mathrm{d})$. After approximately 2 hours, the drawdown data indicated that very little, if any, further drawdown would occur. This relationship indicates that the effective radius of a cross-sectional area covered by the cone of depression had increased to a point where recharge from the aquifer to the pumping well was nearly equal to its pumping rate.

The hydrologic parameters determined for the rhyolitic rocks in this test are considerably higher than those determined from Test 2 and are mostly due to additional footage in the Test 3 zone. However, the results of Test 3 indicate that the hydrologic parameters of the rhyolitic rocks are about three times smaller than those for the lower basalts of the Snake River Plain aquifer and indicate only limited potential.

Nitrogen-Lift Testing

Nitrogen-lifting was attempted during drilling to assess the open borehole interval from 3560 to $10,333 \mathrm{ft}(1085$ to 3150 m). Nitrogen was introduced through the open-ended drill stem hung in the $13-3 / 8-\mathrm{in}$. (34-cm) casing.

The nitrogen-lifting was useful in cleaning the hole, but did not provide adequate hydraulic data to assess formation characteristics. Flow measurement was extremely difficult because nitrogen built up in the large annular space producing periodic bubbles with surge-type discharge. In addition, access to the eductor pipes at the pressurized wellhead was difficult. The wellhead assembly required to accommodate the equipment precluded measurement of fluid level in the annulus. The method and circumstances did not permit quantitative assessment of response.

Air-Lift Testing

Air-lift testing was carried out June 10-11, 1979. The drilling rig had been moved off the hole at this time after reaching total depth. The interval open to testing was that section of the hole below the 9-5/8-in. ($24-\mathrm{cm}$) casing between 6804 and $10,364 \mathrm{ft}(2074$ and 3159 m). Water level was $295 \mathrm{ft}(90 \mathrm{~m})$. Air was introduced through a string of $2-\mathrm{in} .(5-\mathrm{cm})$ tubing hung inside the $13-3 / 8-\mathrm{in}$. $(34-\mathrm{cm}) \mathrm{c}$ asing. Several attempts were made on June 10th, gradually increasing the length of tubing until it reached $1000 \mathrm{ft}(305 \mathrm{~m})$. The well was permitted to recover overnight and a further test was attempted. Static fluid level before this test was 673 ft $(205 \mathrm{~m})$ and showed a trend of slow recovery of $1.6 \mathrm{ft} / \mathrm{hr}(0.5 \mathrm{~m} / \mathrm{hr})$.

The response to air-lifting was a two-minute pulse of water. When flow stopped, the wellhead assembly was removed and recovery measurements were commenced. After 20 minutes the water level was $668 \mathrm{ft}(204 \mathrm{~m})$ and it slowly recovered to 620 ft (189 m) after 48 hours.

The recovery response to air-lifting was analogous to a "slug" test because the pumping period was extremely short. For this reason, the method of Cooper, Bredehoeft, and Papadapulos was applied as the most appropriate means of analyzing available recovery data. This method indicated an apparent transmissivity of less than $100 \mathrm{gpd} / \mathrm{ft}(1.25 \mathrm{~m} / \mathrm{d})$.

The very slow recovery following air-lift testing suggested the possibility of wellbore damage in addition to low hydraulic conductivity in the section tested. To assess this possibility, an attempt was made to obtain selective samples of borehole fluid using a Schlumberger Repeat Formation Tester on June 15, 1979. The samples recovered at $10,107 \mathrm{ft}$ (3081 m) and $10,307 \mathrm{ft}(3142 \mathrm{~m}$) verified the presence of drilling fluid. The residence time since drilling stopped and the $288^{\circ} \mathrm{F}\left(142^{\circ} \mathrm{C}\right)$ borehole temperature measurement suggested that formation damage might be an important influence on yield.

Swab Testing

In an attempt to clean and stimulate the borehole, swabbing was carried out July 10-13, 1979. This method was selected to minimize the possibility of pushing contaminated drilling fluid into the formation. The swabbing was carried out in stubing with a packer set near the foot of the 9-5/8-in. (24-cm) liner. Limited information on the hydraulic characteristics of the open interval, 6804 to 10,364 ft (2074 to 3159 m), can be drawn from the response to swabbing.

Initial fluid level was $361 \mathrm{ft}(110 \mathrm{~m})$ below GL'. Successive swabbing runs were made, swabbing the tubing dry to a depth of 5512 ft (1680 m). Fluid level recovered in 12 hours to a depth of approximately 1503 ft $(458 \mathrm{~m})$. The recovery data indicated an apparent transmissivity of less than $100 \mathrm{gpd} / \mathrm{ft}\left(1.25 \mathrm{~m}^{2} / \mathrm{d}\right)$. Following swabbing, the hole was
circulated with water through tubing hung to $10,170 \mathrm{ft}$ (3100 m). Approximately $115,000 \mathrm{gal}\left(435 \mathrm{~m}^{3}\right.$) were circulated, representing approximately two borehole volumes.

Pump Testing

Both the air-lifting and swabbing operations indicated that only very poor yield could be expected from the barefoot segment of the borehole. It was decided to try to improve the yield by perforating the 9-5/8-in. ($24-\mathrm{cm}$) liner opposite indicated productive zones between 4200 and 6273 ft (1280 and 1912 m). Perforating was carried out on August 14, 1979 by Schlumberger. Lower fluid temperatures were anticipated in this interval than in the deeper, uncased section. Table 1 shows the perforated intervals and anticipated fluid temperatures obtained from pre-1iner temperature logs.

A preliminary estimate of the potential yield from the perforated well based on earlier testing of the uncased interval by USGS indicated that relatively poor production could be anticipated. The predicted drawdowns at rates of $100 \mathrm{gpm}(6.1 \mathrm{~L} / \mathrm{s})$ and $500 \mathrm{gpm}(31.5 \mathrm{~L} / \mathrm{s})$ are summarized in Table 2. These predictions were made using extension of the linear drawdown trend indicated in the USGS April 14-15 test and applying a ratio technique. The predictions assume no hydraulic boundaries are intersected and that the perforated interval responds as efficiently as the open wellbore would.

A pumping test was performed September 11, 1979 to evaluate the perforated well. The pump used for this test was rated at 400 gpm $(25.2 \mathrm{~L} / \mathrm{s})$ with intake set at $1280 \mathrm{ft}(390 \mathrm{~m})$. Although the preliminary predictions indicated that the water level would fall below 1280 ft (390 m) at $400 \mathrm{gpm}(25.2 \mathrm{~L} / \mathrm{s})$, this pump selection was accepted because the terms of reference for a practical source well called for a yield of 500 gpm ($31.5 \mathrm{~L} / \mathrm{s}$) with reasonable lift costs.

TABLE 1. INEL-1 WELL PERFORATED ZONE INTERVALS AND ANTICIPATED FLUID TEMPERATURES

Perforated Zone, ft $(\mathrm{m})$$\quad$| Anticipated |
| :---: |
| Temperature, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$ |

TABLE 2. PREDICTED INEL-1 WELL DRAWDOWNS

Fluid level in the well was monitored by a nitrogen line set near the pump impellers with pressure read from a Heise gauge. Initial fluid level was $371 \mathrm{ft}(113 \mathrm{~m})$ below ground level. After 7.3 minutes of pumping at $400 \mathrm{gpm}(25.2 \mathrm{~L} / \mathrm{s})$, the available drawdown was exhausted, terminating the test. Recovery measurements were collected for 100 minutes, after which recovery was complete. Drawdown and recovery measurements indicate that the apparent transmissivity is less than $100 \mathrm{gpd} / \mathrm{ft}\left(1.25 \mathrm{~m}^{2} / \mathrm{d}\right)$. All test indicators point to a very poor producing well.

CHEMICAL LOGGING

Chemical logging studies were conducted at INEL-1. Calcium-alkalinity ratios as a function of drill depth assisted in the definition of warm and hot water aquifers penetrated by the drill. This section describes the correlations between chemical logs and geophysical logs and evaluates the chemical data collected from the flow tests, nitrogen-lift, swab test, and the final circulation test of INEL-1.

Correlation of the calcium-alkalinity \log and the compensated neutron \log between 4590 and $5250 \mathrm{ft}(1399$ and 1600 m) was significant. This zone has the highest porosity within the borehole. The chemical log indicates that the borehole area having the highest porosity is the area of highest formation water flow. From the depth of 6230 to $9840 \mathrm{ft}(1900$ to 3000 m), the porosity decreases and the chemical \log gives no indication of any water flow. Below $9840 \mathrm{ft}(3000 \mathrm{~m})$, the neutron \log shows no areas with any significant porosity. The chemical log, however, indicates the possibility of hot water at low flow rates, possibly from small fractures which are not detected by the neutron log.

Comparison of the calcium-alkalinity and the caliper log indicates that the areas where the calcium-alkalinity ratio is highest correlate well with the washout areas of the borehole. It indicates that the formations with the greatest flow are located 4590 and 5575 ft (1399 and 1699 m). Flow tests between 3400 and 4890 ft (1036 and 1490 m) produced water at a temperature of approximately $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ and the resource was estimated to be capable of a flow of approximately $100 \mathrm{gpm}(6.3 \mathrm{~L} / \mathrm{s})$.

The lithologic log defines the fracture zones and contact points between different zones. Comparison of the calcium-alkalinity log with the lithologic \log correlates well between 4590 and 5900 ft (1400 and 1800 m) and $9840 \mathrm{ft}(3000 \mathrm{~m})$. Since the chemical \log depends on drill fluid dilution by an aquifer to show change, it is inferred that these are the water-producing zones in INEL-1. The wellbore between 5900 and 9840 ft (1800 and 3000 m) has a number of high-porosity fractured zones not defined by the chemical log. It is assumed that these zones did not produce enough water to affect the chemical composition of the drill water and consequently the chemical log.

INEL-1 was flow tested at several depths and water samples were obtained. Chemical analysis data from the four flow tests support the following conclusions: (a) most of the water produced from the well comes from the intermediate zone, (b) the water from the intermediate and lower zone is of the low-chloride bicarbonate type, and (c) data evaluation supports the existence at one time of vapor-dominated geothermal systems in the Snake River Plain.

Air-lifting of water from INEL-1 was conducted after well completion to induce flow from the formations at the bottom of the borehole. Samples were then collected using a downole sampler. The very low fluoride and silicon concentrations indicate that the samples contained only the water used for drilling. This indicates that very little, if any, formation water was produced at the bottom of the borehole.

APPENDIX A

DAILY DRILLLING REPORTS

TABLE A-1. DAILY DRILLING REPORTS, FEBRUARY TO MAY 1979

February 15

February 16

February 17
February 18

February 19
February 20

INEL-1 spudded at 11:00 a.m. Drilled lava from $40 \mathrm{ft}(12 \mathrm{~m})$ to $97 \mathrm{ft}(30 \mathrm{~m})$. Survey: 0° at 93 ft (28 m).

Mud - gel/lime:
Weight - $8.8 \mathrm{lb} / \mathrm{gal}(1.05 \mathrm{~kg} / \mathrm{L})$ Viscosity - 50

Bottom hole assembly:
10-in. (25.4-cm) drill collars (2)
Shock sub
26-in. ($66.0-\mathrm{cm}$) bit, HTC OSC3
Drilled in basalt. Added stabilizer and drill collars. Lost circulation at $137 \mathrm{ft}(42 \mathrm{~m})$. Mixed lost circulation materials: Plug-it; mica, walnut hulls, Fibertex.

Bottom Hole Assembly:
9-in. (22.9-cm) drill collar Stabilizer
10-in. (25.4-cm) drill collars (2)
Shock sub
26-in. ($66.0-\mathrm{cm}$) bit, HTC OSC3
Pumped pill. Drilled with water to $164 \mathrm{ft}(50 \mathrm{~m})$.
Mixed LCM. Pumped pill. Drilled to 169 ft (52 m). Tripped out for bit No. 2. Added stabilizer and drill collars to BHA. Drilled to $248 \mathrm{ft}(76 \mathrm{~m})$ in basalt.

Bottom hole assembly:
8-in. ($20.3-\mathrm{cm}$) drill collar Stabilizer
$9-\mathrm{in}$. (22.9-cm) drill collars (4) Stabilizer
10-in. (25.4-cm) drill collars (2)
Shock sub
26 -in. ($66.0-\mathrm{cm}$) bit, HTC OSC3
Drilled to $311 \mathrm{ft}(95 \mathrm{~m})$ with mud, water, and LCM.
Drilled to 326 ft (99 m). Tripped out for bit No. 3. Added five 8 -in. (20.3-cm) drill collars. Pumped pill: no returns.

TABLE A-1 (continued)

February 21

February 22

February 23

February 24

February 25

Tripped in with bit No. 3. Drilled with water to $382 \mathrm{ft}(116 \mathrm{~m})$. Surveyed hole: $1 / 2^{\circ}$ at 325 ft (99 m).

Bottom hole assembly:
8-in. (20.3-cm) drill collars (6)
Stabilizer
$9-$ in. (22.9-cm) drill collars (4)
10-in. (25.4-cm) drill collars (2)
Shock sub
26-in. ($66.0-\mathrm{cm}$) bit, HTC OSC3
Reamed hole. Removed stabilizers. Picked up drilling jars. Drilled to $442 \mathrm{ft}(135 \mathrm{~m})$. Lost circulation at $392 \mathrm{ft}(119 \mathrm{~m})$; got it back at $413 \mathrm{ft}(126 \mathrm{~m})$; surveyed hole; $1 / 4^{\circ}$ at 430 ft (131 m).

Drilled to $537 \mathrm{ft}(164 \mathrm{~m})$ with water. Mixed mud.
Bottom hole assembly:
8-in. ($20.3-\mathrm{cm}$) drill collars (6)
Drilling jars
8-in. ($20.3-\mathrm{cm}$) drill collars (2)
9-in. (22.9-cm) drill collars (4)
10-in. (25.4-cm) drill collars (2)
Shock sub
26-in. ($66.0-\mathrm{cm}$) bit, HTC OSC3
Mixed mud and LCM. Pumped pill. Drilled with 70% returns to $570 \mathrm{ft}(174 \mathrm{~m})$. Survey: $1 / 2^{\circ}$ at 561 ft (171 m).

Drilled with water to $609 \mathrm{ft}(186 \mathrm{~m})$. Tripped out for bit No. 4. Serviced rig. Drilled with water to $698 \mathrm{ft}(213 \mathrm{~m})$. Twisted off. Top of fish at $498 \mathrm{ft}(152 \mathrm{~m})$ at location of drilling jars.
Tripped in with overshot, caught fish and landed it.

Bottom hole assembly at time of twist-off was $686 \mathrm{ft}(209 \mathrm{~m})$ long as follows:

Heavy weight drill pipe (7 jts)
8 -in. (20.3-cm) drill collars (6)
Drilling jars
8 -in. (20.3-cm) drill collars (2)
$9-\mathrm{in} .(22.9-\mathrm{cm})$ drill collars (4)
10-in. (25.4-cm) drill collars (2)
Shock sub
26-in. ($66.0-\mathrm{cm}$) bit, HTC OSCIG

TABLE A-1 (continued)

February 26

February 27

February 28

March 1

March 2

March 3
March 4

March 5

March 6

March 7
March 8

March 9

Tripped in. Mixed mud. Reamed to bottom. Drilled without returns to $865 \mathrm{ft}(264 \mathrm{~m})$.

Pulled 3 stands and picked up drilling jars. Drilled with water to $933 \mathrm{ft}(284 \mathrm{~m})$.

Drilled to $973 \mathrm{ft}(297 \mathrm{~m})$. Tripped out for bit No. 5. Drilled with water to $1067 \mathrm{ft}(325 \mathrm{~m})$. Surveyed hole: $3 / 4^{\circ}$ at $985 \mathrm{ft}(300 \mathrm{~m})$.

Drilled with water to $1218 \mathrm{ft}(371 \mathrm{~m})$, pumping an occasional pill to clean the hole.

Drilled with water and occasional pills to 1524 ft (465 m). Surveyed hole: $1 / 4^{\circ}$ at $1290 \mathrm{ft}(393 \mathrm{~m})$.

Tripped out and reamed hole. Rigged up loggers.
Obtained temperature and caliper logs. Cleaned hole. Tripped in and washed to bottom.

Conditioned hole for casing. Rigged up casing crew. Found tight hole 5 joints down. Rigged down casing crew. Rigged up TV camera and ran in hole to top of fluid. Tripped out. Tripped in hole with bit No. 4 (rerun).

Tripped out. Tripped in with reamers. Reamed hole.

Reamed and cleaned hole.
Reamed hole. Cleaned out to bottom.
Bottom hole assembly:
Heavy weight D.P. (7)
8 -in. (20.3-cm) drill collars (3)
Drilling jars
8-in. (20.3-cm) drill collars (5)
9-in. (20.9-cm) drill collars (4)
10-in. (25.4-cm) drill collars (2)
26-in. ($66.0-\mathrm{cm}$) reamer
26-in. ($66.0-\mathrm{cm}$) bit, HTC OSCIG (No. 4, rerun)
Rigged up to run casing. Set $20-\mathrm{in}$. ($51-\mathrm{cm}$) casing at $1511 \mathrm{ft}(460 \mathrm{~m})$. Set 24 joints of K-55 and 14 joints of $\mathrm{H}-40$.

TABLE A-1 (continued)

March 10

March 11

March 12

March 13
March 14
March 15

March 16

March 17

March 18

Rigged down and loaded out casing crew. Rigged up loggers. Ran logs. Rigged up cementing crew. Ran cement. Rigged up loggers. Ran NCTL. Cut drilling line. Ran in l-in. (2.5-cm) pipe to locate cement. Cement top at $180 \mathrm{ft}(55 \mathrm{~m})$.

Cemented casing in stages in the annulus. Used Class G cement with 20% silica flour, 25 sacks Kolite, 8\% Gypseal.

Cemented final stages. Eight stages were required to complete job. Total volume was 8696 ft 3 (246 m3).

Cut off casing. Welded on well head.
Nippled up BOP.
Pressure tested BOP. Obtained state approval to proceed.

Drilled out cement shoe. Drilled with full returns to 1605 ft (489 m), using gel and water and a $17-1 / 2-\mathrm{in}$. ($44.5-\mathrm{cm}$) bit, No. 6. Got full returns.

Mud:
Weight $8.7 \mathrm{lb} / \mathrm{gal}(1.04 \mathrm{~kg} / \mathrm{L})$ Viscosity 30

Bottom hole assembly:
Heavy wall pipe (7)
8 -in. (20.3-cm) drill collars (3)
Drilling jars
8 -in. (20.3-cm) drill collars (5)
$9-\mathrm{in} .(22.9-\mathrm{cm})$ drill collars (4)
10-in. (25.4-cm) drill collars (2)
17-1/2-in. (44.5-cm) bit, Reed 21 J
Survey at $1605 \mathrm{ft}(489 \mathrm{~m})$ shows $1 / 2^{\circ}$ deviation. Tripped in hole. Drilled in basalt to 1715 ft (523 m). BHA as before except with shock sub, reamers, and stabilizers just above bit.

Mud:
Gel/Benex
Weight $8.7 \mathrm{lb} / \mathrm{gal}(1.04 \mathrm{~kg} / \mathrm{L})$
Viscosity 40
Drilled to $1931 \mathrm{ft}(589 \mathrm{~m})$. Surveys showed $1 / 4^{\circ}$ deviation. Tripped out for bit No. 7.

TABLE A-1 (continued)

March 19

March 20

March 21

March 22

March 23

March 24

March 25

March 26

March 27

March 28

Drilled to $2144 \mathrm{ft}(653 \mathrm{~m})$ with full returns.
Mud:
Weight $8.9 \mathrm{lb} / \mathrm{gal}(1.07 \mathrm{~kg} / \mathrm{L})$
Viscosity 44
Drilled to $2339 \mathrm{ft}(713 \mathrm{~m})$. Conditioned hole for coring. Tripped out for core barrel.

Tripped in for core No. 1. Cut $21 \mathrm{ft}(6.4 \mathrm{~m})$, recovered $5 \mathrm{ft}(1.5 \mathrm{~m})$. Reamed corehole, drilled to $2436 \mathrm{ft}(742 \mathrm{~m})$. BHA as before, except bit No. 6 was rerun to ream corehole.

Drilled to 2507 ft (764 m), survey at 2438 ft (743 m) showed zero-degree deviation. Tripped out for core No. 2. Drilled with core barrel to $2518 \mathrm{ft}(767 \mathrm{~m})$. Core barrel jammed. Tripped out with core; cut $11 \mathrm{ft}(3.3 \mathrm{~m})$ recovered 8 ft (2.4 m) .

Conditioned hole and rigged up for aquifer test. Ran in $800 \mathrm{ft}(244 \mathrm{~m})$ of $1-\mathrm{in} .(2.5-\mathrm{cm})$ pipe. Set submersible pump at $802 \mathrm{ft}(245 \mathrm{~m})$. Ran aquifer test.

Continued test. Pulled pump. Measured water level recovery. Tripped in with bit No. 8. Drilled to $2739 \mathrm{ft}(835 \mathrm{~m})$. Survey showed no deviation.

Drilled to $3143 \mathrm{ft}(958 \mathrm{~m})$. Surveyed hole; $1 / 8^{\circ}$ deviation.

Mud:
Weight $8.9 \mathrm{lb} / \mathrm{gal}(1.07 \mathrm{~kg} / \mathrm{L})$
Viscosity 47
Drilled to $3551 \mathrm{ft}(1082 \mathrm{~m})$. Survey showed $1 / 4^{\circ}$ deviation.

Drilled to 3564 ft (1086 m). Tripped out for logs. Rigged up loggers. Logged borehole.

Finished logging. Rigged down loggers. Tripped in hole to circulate. Rigged up casing crew and r an $13-3 / 8-\mathrm{in}$. ($35.6-\mathrm{cm}$) casing. Ran 87 joints P110, $72 \mathrm{lb} / \mathrm{ft}(107 \mathrm{~kg} / \mathrm{m})$.

TABLE A-1 (continued)

March 29	Finished running casing, set at 3559 GL. Rigged up loggers. Logged casing. Rigged down loggers. Rigged up cementers. Cemented casing with $4781 \mathrm{ft}^{3}\left(135 \mathrm{~m}^{3}\right) \mathrm{Class} G$ cement with one-to-one D72, 40% D66, 3% D20, 0.3% D13.
March 30	Rigged up loggers and ran cement bond log.
March 31	Removed 20 -in. ($51-\mathrm{cm}$) BOPE. Rigged up for 12-1/4-in. (31-cm) hole.
April 1	Nippled up BOPE.
April 2	Worked on BOP leak.
April 3	Worked on expansion spool.
April 4	Completed repair of BOP. Ran $1500-\mathrm{psi}$ ($10.3-\mathrm{MPa}$) pressure test. Picked up bottom hole assembly and tripped in with $12-1 / 4-\mathrm{in}$. (31.1-cm) bit No. 9 ; HTC-OWV.
April 5	Drilled cement shoe. Drilled with water to $3661 \mathrm{ft}(1116 \mathrm{~m})$. Tripped out for core No. 3.
April 6	Drilled for core to $3713 \mathrm{ft}(1132 \mathrm{~m})$. Tripped out with core No. 3. Cut $52 \mathrm{ft}(15.8 \mathrm{~m})$, recovered $44 \mathrm{ft}(13.4 \mathrm{~m})$. Rigged up for Aquifer Test 2.
April 7	Ran aquifer test.
April 8	Completed aquifer test. Picked up BHA and tripped in with bit No. 10.
	Bottom hole assembly: Weighted pipe (7) 7-in. (17.8-cm) drill collars (3) Drilling jars 7-in. ($17.8-\mathrm{cm}$) drill collars (4) 8 -in. (20.3-cm) drill collars (5) Shock sub Stabilizer, RWP $9-\mathrm{in}$. (22.9-cm) drill collar Stabilizer 6 pt reamer 12-1/4-in. (31.1-cm) bit, HTC J44
April 9	Reamed out corehole. Drilled to $3955 \mathrm{ft}(1205 \mathrm{~m}$) .
April 10	Drilled to 4445 ft (1355 m) with water.

April 11	Drilled to 4796 ft (1462 m) .
April 12	Orilled to $4839 \mathrm{ft}(1475 \mathrm{~m})$. Circulated and tripped out for core No. 4. Cut and recovered 39 ft (11.9 m).
Apri1 13	Inspected downhole rotating hardware.
	All O.K. Picked up 2-in. ($5-\mathrm{cm}$) pipe and rigged up for aquifer test No. 3. Set pump at 813 ft (248 m) GL. Started testing.
April 14	Aquifer test.
April 15	Completed test. Tripped out. Lost $814 \mathrm{ft}(248 \mathrm{~m})$ of $2-i n .(5-\mathrm{cm})$ pipe with elevators and bails. Fished for pipe.
April 16	Caught fish and landed 39 joints of $2-\mathrm{in}$. ($5-\mathrm{cm}$) pipe. Fished for elevator and bails.
April 17	Fished. Milled on iron. Reamed hole. Tripped in hole and drilled to 4900 ft (1494 m) with bit No. 11, 12-1/4-in. (31.1-cm); HTC J55.
April 18	Drilled to 5266 ft (1605 m) with water.
Apri1 19	Drilled to 5689 ft (1734 m). Deviation at 5465 ft (1666 m) was $1-1 / 4^{\circ}$.
April 20	Drilled to 5804 ft (1769 m). Ran survey: deviation at $5679 \mathrm{ft}(1736 \mathrm{~m})$ was 2°. Tripped out to modify BOPE. Cut drilling line.
April 21	Tripped in with bit No. 12, HTC 355. Drilled with water to 6066 ft (1849 m).
April 22	Drilled to $6400 \mathrm{ft}(1951 \mathrm{~m})$. Survey showed $2-1 / 4^{\circ}$ deviation at $6220 \mathrm{ft}(1896 \mathrm{~m})$.
April 23	Drilled with water to $6486 \mathrm{ft}(1977 \mathrm{~m})$. Deviation 2°. Tripped out for bit change. Rigged up USGS (Denver) loggers. Ran logs, including televiewer.
April 24	Completed logging and rigged down loggers. Tripped in with bit No. 13, HTC J55. Washed to bottom, pumped pill, drilled to $6552 \mathrm{ft}(1997 \mathrm{~m})$.
April 25	Drilled to $6860 \mathrm{ft}(2091 \mathrm{~m})$. Pumped pill periodically.

April 26

April 27

Apri1 28

April 29

April 30
May 1
May 2

May 3

May 4
May 5

May 6

May 7

May 8
May 9

May 10

May 11

May 12

Drilled to $7107 \mathrm{ft}(2166 \mathrm{~m})$. Survey showed $2-1 / 4^{\circ}$ deviation.

Drilled with water to $7125 \mathrm{ft}(2172 \mathrm{~m})$. Tripped out for bit change. Tripped in with bit No. 14, washed to bottom. Drilled to $7245 \mathrm{ft}(2208 \mathrm{~m})$.

Drilled to $7521 \mathrm{ft}(2292 \mathrm{~m})$. Deviation 1-3/4‥ Serviced rig.

Drilled to $7760 \mathrm{ft}(2365 \mathrm{~m})$. Serviced rig. Deviation 1-1/2 ${ }^{\circ}$.

Drilled to $8010 \mathrm{ft}(2441 \mathrm{~m})$. Deviation $1-1 / 4^{\circ}$.
Drilled to $8295 \mathrm{ft}(2528 \mathrm{~m})$.
Drilled to $8946 \mathrm{ft}(2590 \mathrm{~m})$. Tripped out for bit change.

Cut drilling line. Tripped with bit No. 11
(rerun). Drilled to $8673 \mathrm{ft}(2644 \mathrm{~m})$.
Serviced rig. Drilled to $8934 \mathrm{ft}(2723 \mathrm{~m})$.
Drilled with water to 9177 ft (2797 m). Pumped pills.

Drilled to $9294 \mathrm{ft}(2833 \mathrm{~m})$. Deviation 3°. Serviced rig. Drilled to $9352 \mathrm{ft}(2850 \mathrm{~m})$.

Drilled to $9455 \mathrm{ft}(2882 \mathrm{~m})$. Survey showed deviation 2°. Serviced rig. Drilled to 9585 ft (2922 m).

Drilled to 9773 ft (2979 m).
Drilled to $9810 \mathrm{ft}(2990 \mathrm{~m})$. Circulated to clean hole. Tripped out for core. Tripped in with core barrel.

Cut core No. 5. Tripped out. Cut $6 \mathrm{ft}(1.8 \mathrm{~m})$, recovered $1 \mathrm{ft}(0.3 \mathrm{~m})$. Rigged up loggers and logged bore hole.

Completed logging. Rigged down to loggers. Tripped in with bit No. 13 (rerun). Drilled to $9910 \mathrm{ft}(3021 \mathrm{~m})$.

Drilled to $10,084 \mathrm{ft}(3074 \mathrm{~m})$.

May 13
May 14

May 15

May 16

May 17

May 18
May 19
May 20

May 21

May 22

May 23

May 24

May 25
May 26

May 27

Drilled to $10,265 \mathrm{ft}(3129 \mathrm{~m})$.
Drilled to $10,324 \mathrm{ft}(3147 \mathrm{~m})$. Circulated. Tripped out for core No. 6.

Tripped out with core barrel. Cut $7 \mathrm{ft}(2.1 \mathrm{~m})$, recovered $1.5 \mathrm{ft}(0.5 \mathrm{~m})$. Tripped in with bit No. 13 (rerun). Washed to bottom and reamed core hole. Drilled to $10,333 \mathrm{ft}(3150 \mathrm{~m})$. Circulated and conditioned hole. Tripped out for water test.

Tripped in with drill pipe for logging. Rigged up loggers. Logged borehole. Began flow test using nitrogen lift.

Continued nitrogen lift. Logged the borehole. Completed nitrogen lift test.

Continued logging.
Completed logging.
Tripped in and conditioned hole. Pumped pill at $7100 \mathrm{ft}(2164 \mathrm{~m})$. Pulled two stands to 6860 ft (2091 m). Rigged up cementers. Pumped $50-\mathrm{ft}$ ($15.2-m$) cement plug.

Tagged cement at $6798 \mathrm{ft}(2072 \mathrm{~m})$. Rigged up to run casing. Rigged up lay-down machine. Removed bottom hole assembly. Rigged up casing crew and r an 84 joints of $5959-5 / 8-i n . ~(24.4-\mathrm{cm}$) casing.

Continued running casing. Made up hanger tool. Hung liner top at $3262 \mathrm{ft}(994 \mathrm{~m})$. Cemented bottom of liner at $6796 \mathrm{ft}(2071 \mathrm{~m})$ with $251 \mathrm{ft3}$ (7.1 m 3) of cement.

Tripped out with hanger tool. Picked up RTTS packer and tripped in to 3100 ft (945 m). Cemented top of liner with $241 \mathrm{ft} 3\left(6.8 \mathrm{~m}^{3}\right)$ Class G cement. Rigged down cementers.

Drilled out cement. Conditioned hole. Rigged up to \log.

Washed to bottom. Conditioned hole for core No. 7 .
Cut core No. 7 to $10,365 \mathrm{ft}(3159 \mathrm{~m})$. Tripped out with core barrel. Cut $32 \mathrm{ft}(9.8 \mathrm{~m})$, recovered $8 \mathrm{ft}(2.4 \mathrm{~m})$.

Released rig.

APPENDIX B

BIT RECORD

APPENDIX B

TABLE B-1. BIT RECORD

Bit No.	$\begin{gathered} \text { Size } \\ \text { in. }(\mathrm{cm}) \\ \hline \end{gathered}$	Make	Type	$\begin{aligned} & \text { Depth Out } \\ & \mathrm{ft}(\mathrm{~m}) \end{aligned}$	Footage ft (m)	Rotating Time hr
1	26-1/2 (67.3)	Hughes	OSC3AJ	164 (50)	124 (38)	32
2	26-1/2 (67.3)	Hughes	OSC3AJ	326 (99)	162 (49)	15
3	26-1/2 (67.3)	Hughes	OSC3AJ	609 (186)	283 (86)	25
4	26-1/2 (67.3)	Hughes	OSCIGJ	973 (297)	364 (111)	28
5	26-1/2 (67.3)	Hughes	OSCIGJ	1524 (465)	551 (168)	53
6	17-1/2 (44.5)	Reed	213	1931 (589)	407 (124)	30
7	17-1/2 (44.5)	Reed	213	2340 (713)	409 (125)	35
6 R	17-1/2 (44.5)	Reed	213	2507 (764)	146 (45)	9
8	17-1/2 (44.5)	Reed	S62J	3561 (1005)	1043 (318)	54
9	12-1/4 (31.1)	Hughes	OWV	3661 (1116)	100 (30)	6
10	12-1/4 (31.1)	Hughes	J44	4839 (1475)	1126 (343)	63
11	12-1/4 (31.1)	Hughes	355	5804 (1769)	919 (280)	52
12	12-1/4 (31.1)	Hughes	J55	6486 (1977)	682 (208)	46
13	12-1/4 (31.1)	Hughes	J55	7125 (2172)	639 (195)	51
14	12-1/4 (31.1)	Hughes	J55	8496 (2590)	1371 (418)	106
11R	12-1/4 (31.1)	Hughes	J55	9810 (2990)	1320 (402)	122
13R	12-1/4 (31.1)	Hughes	J55	10333 (3149)	517 (158)	67
15	8-3/4 (22.2)	Security	H75GJ	Drilled out	ement shoe	

APPENDIX C CORING SUMMARY

APPENDIX C

TABLE C-1. CORING SUMMARY

Core No.	Date	$\begin{aligned} & \text { From } \\ & \mathrm{ft}(\mathrm{~m}) \star \end{aligned}$	$\begin{gathered} \text { To } \\ \mathrm{ft}(\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{array}{r} \text { Cut } \\ \mathrm{ft}(\mathrm{~m}) \\ \hline \end{array}$	Recovered ft (m)
1	March 21	2340 (713)	2361 (720)	21 (7)	5 (1.5)
2	March 22	2507 (764)	2518 (767)	11 (3)	8 (2.4)
3	April 06	3661 (1116)	3713 (1132)	52 (16)	44 (13)
4	Apri] 13	4834 (1473)	4878 (1487)	44 (14)	39 (12)
5	May 10	9810 (2990)	9816 (2992)	6 (2)	1 (0.3)
6	May 14	10324 (3147)	10331 (3150)	7 (3)	1.5 (0.5)
7	May 25	10333 (3149)	10365 (3159)	32 (9)	8 (2.4)

*Referenced to kelly bushing (KB).

APPENDIX D

GEOPHYSICAL LOGGING SUMMARY

APPENDIX D

TABLE D-1. GEOPHYSICAL LOGGING SUMMARY

$\begin{gathered} \text { Date } \\ (1979) \\ \hline \end{gathered}$	Log Type	Interval $\mathrm{ft}(\mathrm{~m})^{*}$
March 3	Temperature survey	40-1500 (12-457)
	Four-arm caliper	40-1500 (12-457)
	Dual induction-SFL	40-1500 (12-457)
	Compensated neutron formation density	40-1500 (12-457)
March 10	Uncompensated formation density before and after cementation	40-1500 (12-457)
March 27	Temperature survey	500-3500 (152-1067)
	Four-arm caliper	1500-3500 (457-1067)
	Borehole compensated sonic	1500-3500 (457-1067)
	Compensated neutron formation density	1500-3500 (457-1067)
March 28	Dual induction-SFL	1500-3500 (457-1067)
March 29	Uncompensated formation density before and after cementation	22-3500 (7-1067)
May 11	Temperature survey	3500-9700 (1067-2957)
	Borehole compensated sonic	3500-9700 (1067-2957)
	Dual induction-SFL	3500-9700 (1067-2957)
May 16	High-resolution temperature survey	9700-10,200 (2957-3109)
May 18	Dipmeter-fracture identification	9700-10,200 (2957-3109)
	Borehole compensated sonic	9700-10,200 (2957-3109)
	Dual laterolog	8776-10,094 (2675-3077)
	Compensated neutron formation density	8776-10,094 (2675-3077)

TABLE D-1 (continued)

$\begin{gathered} \text { Date } \\ (1979) \\ \hline \end{gathered}$	Log Type	Interval $\mathrm{ft}(\mathrm{~m})^{\star}$
May 24	Uncompensated formation density before and after cementation	3010-7172 (917-2186)
June 15	Repeat formation tester	3559-10,333 ($1085-3149$)
August 14	Perforating depth control casing collar	40-6300 (12-1920)
	Perforation record	40-6400 (12-1951)
*Referenced to ground level (GL).		

