
GPFA-AB Reservoirs Methodology Memo 

  

Erin Camp 
Erc85@cornell.edu  

 
Last modified: August 10, 2016 

 
 

The Natural Reservoirs Task of the Appalachian Basin Geothermal Play Fairway Analysis 

project involves mapping and characterizing the proven natural reservoirs, which have the 

potential to be utilized for geothermal energy production within the Appalachian Basin region of 

New York (NY), Pennsylvania (PA), and West Virginia (WV). The results of this task are 

intended to accompany the analyses of the Thermal Resource, Seismic Risk, and Utilization 

tasks, for the purpose of a Combined Risk Map (CRM) to determine the most optimal locations 

in the basin for future geothermal investment. The goals of the Natural Reservoirs task were: 

i. Collect data on known natural reservoirs in the Appalachian Basin, and integrate data 

sources for consistency, 

ii. Research geologic formations in the basin to populate empty fields in the database, 

iii. Choose or develop a metric for quantifying reservoir favorability, 

iv. Predict the likely range of outcomes for all natural reservoirs in the basin, and 

v. Map the reservoir results in a Geographic Information System (GIS) 

Reservoir data collection and compilation methods differed state by state; however, reservoir 

analysis and uncertainty quantification methods are consistent across the tristate region. This 

memo and its accompanying appendix presents a detailed description of all methods that were 

used for the completion of this task’s milestones. 

1. The Desired Resource: Natural Reservoirs 



For the purposes of this project, a geothermal reservoir is defined as a volume of rock in the 

subsurface that has sufficient permeability to allow fluids to flow through it. Fluids are pumped 

into one well, heated by contact with the rock, and pumped back to the Earth’s surface via a 

second well. This scope of this project was limited to consideration of naturally-occurring 

reservoirs, or those in which sufficient permeability already exists. Enhanced or Engineered 

Geothermal Systems (EGS)—the process by which permeability is artificially created in a rock 

using high pressure fluids—was excluded from the analysis as described in the Statement of 

Project Objectives (SOPO).  

Because this project was limited to the analysis of existing data, our proposal hinges on the 

application of subsurface data that has already been collected by the petroleum industry via 

drilling for oil and gas. Such non-proprietary datasets of proven conventional hydrocarbon 

reservoirs generally include depth, thickness, location, spatial extent, porosity, and less 

frequently permeability, though publicly available data vary from state to state and from basin to 

basin. Analyzing petroleum reservoirs for geothermal exploration may lower geothermal project 

risk because: 

i. Non-proprietary hydrocarbon reservoir data is already collected and access to those data 

is low- or no-cost 

ii. Hydrocarbon reservoirs have some degree of inherent porosity and permeability given 

that large amounts of hydrocarbons existed within and flowed out of those reservoirs.  

iii. Sedimentary units generally have higher permeability values than crystalline igneous or 

metamorphic units, in which hydrothermal or EGS projects generally occur.  

2. Data Collection 



The reservoir dataset available for New York differed from that of Pennsylvania and West 

Virginia. This section describes the differences between the two datasets.  

2.1. Pennsylvania and West Virginia 

Extensive data collection and reservoir mapping was completed in the early 2000s for the 

purpose of carbon sequestration research through the Midwest Regional Carbon 

Sequestration Partnership (MRCSP). A GIS database from the MRCSP was available for use 

as a starting point for this project, courtesy of the West Virginia Geological and Economic 

Survey (WVGES). The dataset is not open-source, but it can be purchased from the WVGES. 

The dataset includes oil and gas reservoirs located in PA and WV, but does not include 

reservoirs in NY. The MRCSP calculated potential storage volume for the reservoirs by using 

a volumetric analysis (total volume of rock corrected by reservoir porosity); therefore, the 

following reservoir parameters were included in the dataset: average reservoir production 

depth, reservoir name, formation code (geologic code for the producing formation, see 

Appendix), state, reservoir pressure, porosity, net thickness, and shapefiles (polygons). 

Due to the large size of the PA and WV database and narrow time constraints of the 

Phase One GPFA, reservoirs shallower than our chosen threshold were trimmed from the 

database to reduce the workload. To pick the depth threshold, a temperature threshold of 

40ºC was first selected using the Lindal Diagram of temperatures and potential end-uses 

(Lindal, 1973). An average geothermal gradient and surface temperature for the region 

(calculated from the Thermal Resource Task) resulted in a threshold of 1250 meters (4100 

feet).  

2.2. New York 



The dataset from carbon sequestration research conducted in NY was available to us through 

the New York State Geological Survey (NYSGS); however, it did not prove useful to our 

project because it does not contain any information about potential reservoirs except for their 

depth. Because New York joined the MRCSP years later than the other states in the 

Consortium, their efforts did not produce the same final data products or use the same 

volumetric analysis method as for WV and PA. NYSGS instead approximated the storage 

potential for carbon dioxide sequestration using oil and gas production volumes to estimate 

storage capacity of each reservoir. Because porosity and thickness values were not required 

to conduct their analyses those parameters are not included in the database.  

Instead, we used the Empire State Organized Geologic Information System (ESOGIS) 

online database to access the information that was required for this project. This dataset holds 

data by well rather than by reservoir. Well locations (latitude and longitude) were 

downloaded from ESOGIS and uploaded into a GIS. To create reservoir area polygons 

similar to those in the database for PA and WV, we used a GIS tool to create “buffer zones” 

around wells that pertain to a given reservoir. For details on the process of calculating the 

reservoir well buffer, see the accompanying Appendix.  

The available digital well data from ESOGIS included well Total Vertical Depth (TVD), 

producing formation, reservoir name, latitude, and longitude. Reservoir thickness was not 

available in the digital database, and was extracted manually from downloaded PDFs of Well 

Completion Reports. 

The ESOGIS database does not report either formation or reservoir porosity as a separate 

data field. Porosity data for each reservoir in NY had to be extracted from the published 

literature. In the interest of time, the reservoirs were categorized by producing formation, and 



an average reservoir porosity was assigned to each formation based on values reported in 

literature. Details on porosity value choices can be found in the Appendix. 

No minimum temperature threshold for reservoir analysis was necessary for NY, as the 

database was small enough to be evaluated by the available personnel in a short time. This 

decision was made knowing that any shallow reservoirs in NY would be eliminated once the 

thermal map was integrated with the reservoir map. 

2.3. Permeability 

Neither the MRCSP database nor ESOGIS contains information about reservoir permeability, 

which is the most important parameter for estimating reservoir favorability. Reservoirs across 

the basin were again grouped by producing formation, and a permeability value was assigned 

to each reservoir based on published values for its formation, or an empirical relationship 

with porosity. For more details on the process of estimating permeability for each formation, 

see Appendix.  

3. Reservoir Favorability Metrics 

Following the compilation of the three-state reservoir database, reservoir favorability metrics 

were chosen using the available parameter constraints: permeability, thickness (hydrocarbon pay 

thickness), temperature, depth, and area. Three metrics were ultimately chosen to express 

reservoir favorability: one is a geologic quality metric that serves mostly as a reservoir ranking 

tool and relies only on the geologic properties detailed above; the other two include engineering 

inputs to predict production-stage performance of the reservoirs. The Reservoir Flow Capacity 

(RFC) is the metric that is used as a comparator for the geologic parameters in each reservoir. 

The latter metrics are the Reservoir Productivity Index for supercritical CO2 (RPIg) and for water 



(RPIw), used to quantify potential productivity, or fluid flow rate, in each reservoir during 

production. The following sections describe each metric and their purposes. 

3.1. Reservoir Flow Capacity 

The reservoir flow capacity (RFC) was chosen as a favorability metric not only because it is 

comprised of only geologic parameters, but also because the levelized cost of energy is 

sensitive to this metric (Sanyal and Butler, 2009). This metric provides the opportunity to 

compare the quantitative favorability of each reservoir relative to the other reservoirs based 

on its natural reservoir qualities only. The RFC, shown as F below in units of mD-m, is a 

simple equation comprised of only permeability k in millidarcies (mD), and thickness H in 

meters: 

𝐹 = 𝑘𝐻 (1) 

3.2. Reservoir Productivity Index 

A separate metric was chosen for this project as a means of quantifying the favorability of the 

reservoirs in the basin during energy production. After thermal quality, flow rate is the 

second-most important factor affecting geothermal heat production (Bedre and Anderson, 

2012). The petroleum industry often uses a term called the well productivity index (PI) to 

quantify the flow of a given oil or gas well producing from a hydrocarbon reservoir. The PI is 

defined as the volumetric flow rate of a well divided by the pressure drop from the reservoir 

to the producing well:  
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where Q is flow rate (m3/s), ΔP is the pressure drop from the reservoir to the production well 

(Pa), k is permeability (m2), H is reservoir thickness (m), µ is the fluid viscosity (Pa-s), D is 

the distance between the injection and production well (m), and rw is the wellbore radius (m) 



(Gringarten, 1978). Equation 2 assumes that the reservoir is a homogeneous porous medium 

with horizontal intergranular flow.  

PI has also been used to characterize the productivity of a well doublet for geothermal 

reservoirs, for both EGS reservoirs and sedimentary aquifer reservoirs (Gérard et al., 2006; 

Sanyal and Butler, 2009; Augustine, 2014; Cho et al., 2015;	Hamm et al., 2016). The PI 

metric was adapted to this project by using it as an approximation of a reservoir’s 

productivity, rather than just a well pair. The metric is identical to Equation 2, but is called 

the Reservoir Productivity Index (RPI) and the parameters used are average reservoir values. 

Additionally, mass flow rate (kg/s) was used instead of volumetric flow rate, so that RPI can 

be compared fairly for an incompressible liquid and a compressible gas as the working fluid. 

RPI is used as the model in a Monte Carlo Simulation to predict the uncertainty associated 

with each reservoir, which is described below.  

The RPI was subdivided by the type of working fluid that could be used in the 

geothermal system. Water (RPIw) and supercritical carbon dioxide (sCO2; RPIg) were chosen 

as the two working fluid options for this project. For each reservoir, RPIw and RPIg were 

modeled. The differences between RPIw and RPIg are the respective inputs for viscosity and 

permeability.  

3.2.1. Viscosity  

The viscosity of water varies with temperature, therefore the temperature at the depth of 

each reservoir was calculated. Because the thermal and reservoir tasks were being 

completed simultaneously, reservoir-specific temperatures at depth were not available. 

Therefore, state-wide averaged thermal gradients and surface temperatures were used for 

this work. Uncertainty can be reduced in future work by applying reservoir-specific 



estimates of temperature at depth for a more accurate estimate of fluid viscosity. The 

following values in Table 1 are averages taken from work done by Smith (2015). Those 

geothermal gradients and surface temperatures were used to calculate the temperature at 

the depth of each reservoir using the following equation modified from Tester et al. 

(2012): 

𝑇 𝑧 = 𝑧7
89
8:
+ 𝑇< (3) 

where zr is the depth of the reservoir in meters,  89
8:

 is the temperature gradient in ºC/km, 

and Ts is the temperature at the surface in ºC (Table 1). The dynamic viscosity of water as 

it varies with temperature (Engineering Toolbox, 2015) is presented in  

 

Table 2. The effects of salinity on viscosity were assumed to be negligible. 

 
Table 1. Average temperature gradient and surface temperatures for New York, Pennsylvania, and West Virginia. 

Values averaged from work done by Smith (2015). 

 Gradient (ºC/km) Average Surface Temperature (ºC) 

New York 22.19 9.66 

Pennsylvania 21.19 11.33 

West Virginia 23.19 13.87 
 

 

Table 2. Dynamic viscosity of water as a function of temperature. 
Temperatures are categorized in 10º increments (Engineering Toolbox, 2015). 

Temperature (ºC) Viscosity, water (Pa-s) 

< 30 0.000900 

30-39.99 0.000726 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Data for dynamic viscosity of sCO2 come from Ouyang (2011). The viscosity of 

sCO2 varies as a function of both temperature and pressure. The assumed pressure of the 

injected sCO2 was 10 MPa (100 bar; 1500 psi). At all temperature ranges at a pressure of 

10 MPa, the estimated viscosity of sCO2 is 0.00002 Pa-s. 

3.2.2. Permeability 

Most permeability values are derived from direct measurement of cored rock samples 

using a gas as the fluid. Use of the raw permeability measurements (kg) is acceptable 

when estimating the flow of a gas through a reservoir rock, but not when trying to 

estimate the flow of water through the rock, which is the typical fluid used in geothermal 

systems. In the case of RPIg, the gas permeability was retained because the viscosity of 

sCO2 is much like that of a gas (Brown, 2000; Pruess, 2007); however, for RPIw the gas 

permeability was corrected for the Klinkenberg effect. This correction is more important 

40-49.99 0.000600 

50-59.99 0.000507 

60-69.99 0.000436 

70-79.99 0.000380 

80-89.99 0.000335 

90+ 0.000299 



for low permeability rocks than high permeability rocks (Tanikawa and Shimamoto, 

2006). Since most reservoirs in the Appalachian Basin are of low permeability, this is an 

important step for the RPIw calculations.  

Corrections were applied to all reservoirs based on the reservoir’s primary lithology. 

For carbonate reservoirs, the following correlation from Al-Jabri et al. (2015) was 

applied, 

𝑘= = 0.578𝑘C
D.EFG (4) 

where kw is the permeability of the rock with water, and kg is the permeability of the rock 

with gas, both in units of mD. For all other lithologies, the following correlation from 

Jones (1987) was used: 

𝑘= =
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where p is the mean flowing pressure in psi, and 𝜙 is the porosity as a decimal fraction.  

3.2.3. Thickness 

The MRCSP dataset holds values for each reservoir’s net pay thickness, or the vertical 

column from where oil and gas was produced. The New York ESOGIS database does not 

contain information on reservoir thickness, so pay thickness was extracted manually from 

well production reports downloaded from ESOGIS. If the producing interval was not 

reported, then the perforated interval was used as an approximation. The pay thicknesses 

from all wells in each reservoir were averaged to calculate the mean reservoir pay 

thickness.  



3.2.4. Well Distance and Wellbore Radius 

These geothermal field design parameters were held as constants in the RPIw and RPIg 

equations. D, or distance between wells, was assumed to be 1000 m, while r, or wellbore 

radius, assumed to be 0.1 m. These parameters were not used in the RFC equation.  

3.3. Reservoir Architecture and Flow Considerations 

During the database compilation phase of this project, our reservoirs were categorized as 

either stratigraphically-controlled (porous medium) or structurally-controlled (fractured 

medium), based on what is known about the reservoirs from literature (i.e. Roen and Walker, 

1996). The original intention was to calculate the RFC and RPI of each reservoir using an 

appropriate equation based on the flow type; however, in the allotted time of the project, a 

comparable equation for fracture-dominated reservoirs was not identified. Therefore, the 

equation for RPI in porous medium reservoirs was applied to all reservoirs as a first-order 

approximation, regardless of reservoir architecture.  

4. Uncertainty 

An important piece of this project is the quantification of uncertainty in reservoir data, and 

therefore, also in the uncertainty of the calculated RFC, RPIg and RPIw for each reservoir in the 

basin. In order to calculate the range of possible outcomes (RFC, RPIg and RPIw) for each 

reservoir, we performed a Monte Carlo Simulation on each metric. To do this, the required inputs 

for each variable were the average value, the standard deviation, and probability distribution type 

(normal, log-normal, etc.). 

4.1. Reservoir Parametric Uncertainty Index 

Each average parameter value (i.e. k, H, µ) from the database has inherent uncertainty 

associated with it, both in terms of the variation in data quality and in terms of the natural 



variation, or heterogeneity, of each reservoir. Though average parameter values were 

available in the database for each reservoir, standard deviations and probability distributions 

were not, and therefore had to be selected. To maintain consistency during the assignment of 

standard deviations and distribution types to each parameter for all the reservoirs, we created 

an uncertainty index that ranges from 0 (no uncertainty) to 5 (most uncertain).  

Each uncertainty index value (0-5) corresponds to the likely standard deviation from the 

parameter input, shown in Table 3. The standard deviation increments for each parameter 

were chosen based on reports in reservoir literature of typical variations in reservoir 

thickness, permeability, and temperature (which affects the fluid viscosity) due to 

heterogeneity (i.e., Murtha, 1994; Society of Petroleum Engineers, 2001; Satter et al., 2008; 

Peters, 2012).  

Because the sources of data for the average parameter value were not equally reliable for 

all reservoirs, data quality guided the selection of the uncertainty index value for each 

reservoir’s parameters, as shown in the example in Table 4. For example, permeability data 

that was calculated from a published empirical porosity-permeability relationship for the 

respective geologic formation and region would be assigned an uncertainty factor of 2. That 

reservoir’s average permeability value would therefore be assigned a standard deviation of 

25% with a log-normal distribution. Additionally, each parameter was assigned a probability 

distribution type for a Monte Carlo Simulation. Distribution types were determined based on 

reservoir engineering and modeling best practices and literature. More details on how the 

uncertainty indices were assigned can be found in the Appendix. 

 

 



Table 3. Uncertainty Index reference chart for each parameter in the Monte Carlo Simulation model. 

Uncertainty 
Index Permeability Thickness Viscosity 

 k H µ 
0 0% 0% 0% 
1 12.5% 10% 10% 
2 25% 20% 20% 
3 50% 30% 30% 
4 100% 40% 40% 
5 200% 50% 50% 

Probability 
Distribution log-normal triangular normal 

References Murtha, 1994;  
Satter, 2008 

Peters, 2012; 
SPE, 2001 

Based on 
temperature 

distribution from 
Smith (2015) 

 

Table 4. Example of Uncertainty Index assignment criteria for reservoir permeability data. 

1 • Data from a published empirical porosity-permeability relationship, applicable to 
the respective geologic formation and reservoir. 

2 • Data from a published empirical porosity-permeability relationship, applicable to 
the respective region and formation but not the respective reservoir. 

3 

• Data from unpublished empirical porosity-permeability relationship, applicable to 
the respective geologic formation but not the respective reservoir. 

• Data are a published or unpublished range of values or average value for the 
respective geologic formation and region. 

4 

• Data come from unpublished empirical porosity-permeability relationship 
• An average value can be applied from a similar formation or the same formation 

located in another region 
• Data are a published or unpublished range of values or average value for a similar 

geologic formation in the respective region 
5 • Generic low value (≤1mD) assigned due to lack of available data 

 
 

4.2. Monte Carlo Simulation 

A Monte Carlo Simulation with 100,000 repetitions was coded in MatLab and performed 

on the RFC, RPIg, and RPIw for each reservoir, with inputs for parametric mean, standard 

deviation, and distribution. The simulation generated stochastic results for each reservoir, 



using the assigned uncertainty indices and parameter probability distributions in Tables 3 and 

4. From those data outputs, the 10th, 25th, 50th, 75th, and 90th percentile results were 

calculated. The 50th percentile is the median, or the most likely, result. 

4.3. Uncertainty Metric 

The metric deemed most useful for illustrating the uncertainty of each reservoir was the 

Coefficient of Variation (CV), which is the ratio of the standard deviation of the sample to 

the mean of the sample (Jensen et al., 2000). Using the CV allowed us to normalize the result 

(RFC, RPIg, and RPIw) of each reservoir by its uncertainty. For example, a reservoir with a 

low CV has a smaller standard deviation relative to its mean, and therefore there is less 

uncertainty about its predicted RFC, RPIg or RPIw. 

5. Quality Thresholds for Mapping 

Thresholds for the reservoir favorability metrics are required to segregate the reservoirs 

into favorability ‘grades’ for mapping. A five-grade threshold map was required by the 

project SOPO. Threshold choices based on conversations with experts and the results of the 

Monte Carlo Simulation are listed below.  

5.1. Reservoir Flow Capacity Thresholds 

Because RFC was used primarily to rank reservoir favorability, the RFC thresholds were 

chosen based on the distribution of RFC for the entire reservoir population. The distribution 

of RFC across the entire basin is strongly left-skewed, and therefore is better illustrated on a 

semi-log plot (Figure 1). The RFC thresholds were chosen based on a logarithmic scale, base 

ten. RFC values range from 0.003–15500 mD-m, and thresholds were placed at 1000, 100, 

10, and 1. Reservoirs with RFC greater than 1000 mD-m are deemed most favorable. 

  



	

Figure 1. Distribution of average Reservoir Flow Capacity for all natural reservoirs in the Appalachian Basin. 

	
5.2. Reservoir Productivity Index Thresholds 

RPIg and RPIw metrics thresholds were chosen based on information regarding economic 

productivity rates published in the geothermal literature.  

5.2.1. RPIw Thresholds 

Agemar et al. (2014) report that pressure drawdown for sedimentary geothermal systems 

typically range between 1-3 MPa. If we assume the greatest pressure drop of 3 MPa, and 

assume that 30 kg/s is the minimum mass flow rate acceptable for the water-based 

system, our RPIw threshold for the reservoir which would not require stimulation (i.e. no 

EGS) is approximately 10 kg/MPa-s. Because the distribution of RPIw in the basin is 



strongly left-skewed, the remaining thresholds are logarithmic: 10, 1, 0.1, 0.01. Reservoir 

enhancement techniques can improve productivity by six to nine times (Cladouhos et al., 

2014; Cho et al., 2015), so reservoirs in the 10–1 kg/MPa-s may be suitable with EGS. 

5.2.2. RPIg Thresholds 

The thresholds for RPI with sCO2 as the working fluid were determined using the 

thresholds for RPIw as a baseline, which needed to be adjusted to normalize for the 

amount of heat extracted. For direct use heat applications, the difference in required mass 

flow rate of sCO2 instead of water should only be related to the difference in heat 

capacity. According to Chen and Lundqvist (2006), the heat capacity of sCO2 is about 4 

kJ/kg-K, assuming the CO2 is maintained at a constant pressure of 10 MPa and an 

average reservoir temperature of 60 ºC. At equivalent temperatures, the heat capacity of 

water is 4.2 kJ/kg-K. These values are very close, therefore the same thresholds were 

applied to RPIg. 

5.3. Thresholds for the Coefficient of Variation 

The Coefficient of Variation of the RPI ranges from 0.08-0.39. The thresholds were selected 

using equal interval groups, in order to best illustrate relative uncertainty across the reservoir 

population in the basin. The thresholds selected are: 0.14, 0.20, 0.27, and 0.33. 

6. Selection of Most Favorable Reservoirs 

In order to isolate the reservoirs that have the highest potential productivity with the least risk, 

the RPI or RFC can be combined with the CV results, depending on the desired outcome. If the 

interest is reservoirs that have a high predicted productivity, RPI can be used; whereas if the 

interest is in highlighting reservoirs with the most ideal geologic properties, RFC can be used. 

For the RPIg and RPIw maps, reservoirs with an RPI greater than 10 kg/MPa-s and with a CV 



lower than 0.25 (25% uncertainty) were selected as the most favorable reservoirs. For the RFC 

map, reservoirs with an RFC greater than 100 mD-d and with a CV lower than 0.25 were 

selected as the most favorable reservoirs. The selected reservoirs with the highest potential but a 

greater risk can also be isolated for further research to better constrain and quantify the risk.  

  

References Cited 

Agemar, T., Weber, J., and Schulz, R., 2014, Deep geothermal energy production in Germany: 
Energies, v. 7, no. 7, p. 4397-4416. 

Al-Jabri, R.A., Al-Maamari, R.S., and Wilson, O.B., 2015, Klinkenberg-corrected gas 
permeability correlation for Shuaiba carbonate formation: Journal of Petroleum Science and 
Engineering, v. 131, p. 172-176. 

Augustine, C., 2014, Analysis of Sedimentary Geothermal Systems Using an Analytical 
Reservoir Model, in Proceedings, Geothermal: A Global Solution: Davis, CA, 641-647. 

Bedre, M.G., Anderson, B.J., 2012, Sensitivity analysis of low-temperature geothermal 
reservoirs: effect of reservoir parameters on the direct use of geothermal energy: 
Geothermal Resources Council Transactions, in Proceedings, Geothermal Resources 
Council 2012 Annual Meeting, 1255-1262. 

Brown, D.W., 2000, A hot dry rock geothermal energy concept utilizing supercritical CO2 
instead of water, in Proceedings, Proceedings of the twenty-fifth workshop on geothermal 
reservoir engineering, Stanford University, 233-238. 

Chen, Y., and Lundqvist, P., 2006, Analysis of supercritical carbon dioxide heat exchangers in 
cooling process. 

Cho, J., Augustine, C., Zerpa, L.E., 2015, Validation of a Numerical Reservoir Model of 
Sedimentary Geothermal Systems Using Analytical Models, in Proceedings, Fortieth 
Workshop on Geothermal Reservoir Engineering, Stanford University. 

Cladouhos, T.T., Petty, S., Nordin, Y., Moore, M., Grasso, K., Uddenberg, M., and Swyer, 
M.W., 2014, Reservoir construction from the Newberry Volcano EGS Demonstration: 
Journal of Groundwater Science and Engineering, v. 2, no. 3, p. 1-7. 

Gérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P., and Rummel, F., 2006, The deep EGS 
(enhanced geothermal system) project at Soultz-sous-Forêts (Alsace, France): Geothermics, 
v. 35, no. 5, p. 473-483. 



Gringarten, A.C., ed., 1978, Geothermics and Geothermal Energy: Springer, p. 297-308. 

Hamm, V., Bouzit, M., and Lopez, S., 2016, Assessment of complex well architecture 
performance for geothermal exploitation of the Paris basin: A modeling and economic 
analysis: Geothermics, v. 64, p. 300-313. 

Jensen, J.L., Corbett, P.W., Lake, L.W., and Goggin, D.J., 2000, Statistics for petroleum 
engineers and geoscientists: Amsterdam, The Netherlands, Elsevier. 

Jones, S.C., 1987, Using the inertial coefficient, b, to characterize heterogeneity in reservoir 
rock, in Proceedings, SPE Annual Technical Conference and Exhibition. 

Lindal, B., 1973, Industrial and other applications of geothermal energy , in Armstead, C., ed., 
Geothermal Energy: Review of Research and Development, UNESCO, p. 135-148. 

Murtha, J.A., 1994, Incorporating Historical Data Into Monte Carlo Simulation: SPE Computer 
Applications, v. 6, no. 02, p. 11-17. 

Ouyang, L.-B., 2011, New correlations for predicting the density and viscosity of supercritical 
carbon dioxide under conditions expected in carbon capture and sequestration operations: 
Open Petroleum Engineering Journal, v. 5, no. 1, p. 13-21. 

Peters, E.J., 2012, Advanced Petrophysics: Volume 1: Geology, Porosity, Absolute Permeability, 
Heterogeneity, and Geostatistics: Live Oak Book Company, Palo Alto, CA, 238 p. 

Pruess, K., 2007, Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat 
transmission fluids. 

Roen, J.B., and Walker, B.J., 1996, The atlas of major Appalachian gas plays, West Virginia 
Geological and Economic Survey, Publication V-25. 

Sanyal, S.K., and Butler, S.J., 2009, Geothermal Power from Wells in Non-Convective 
Sedimentary Formations--An Engineering Economic Analysis: Transactions Geothermal 
Resources Council, v. 33, p. 865-870. 

Satter, A., Iqbal, G.M., and Buchwalter, J.L., 2008, Practical enhanced reservoir engineering : 
assisted with simulation software: Tulsa, Okla., PennWell Corp. 

Smith, J., Horowitz, F., and Whealton, C., 2015, Thermal Model Methods, in Appalachian Basin 
Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play 
Fairway Analysis, Geothermal Data Repository, https://gdr.openei.org/submissions/638. 

Society of Petroleum Engineers, 2001, Guidelines for the evaluation of petroleum reserves and 
resources: a supplement to the SPE: Richardson, TX, Society of Petroleum Engineers. 



Tanikawa, W., and Shimamoto, T., 2006, Klinkenberg effect for gas permeability and its 
comparison to water permeability for porous sedimentary rocks: Hydrology and Earth 
System Sciences Discussions, v. 3, no. 4, p. 1315-1338. 

Tester, J.W., Drake, E.M., Driscoll, M.J., Golay, M.W., and Peters, W.A., 2012, Sustainable 
energy: Choosing among options: Cambridge, MA, MIT Press. 

Engineering Toolbox, Water Dynamic and Kinematic Viscosity, 
http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-d_596.html (March 
2015). 


