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LOW TEMPERATURE GEOTHERMAL PLAY FAIRWAY 
ANALYSIS FOR THE APPALACHIAN BASIN: 

PHASE 1 REVISED REPORT 
NOVEMBER 18, 2016 

 

EXECUTIVE SUMMARY  
Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of 

the resource base to warrant their time and financial resources.  The hydrocarbon industry has addressed 

exploration and development complexities through use of a technique referred to as Play Fairway 

Analysis (PFA). The PFA technique assigns risk metrics that communicate the favorability of potential 

hydrocarbon bearing reservoirs in order to enable prudent allocation of exploration and development 

resources.   

The purpose of this Department of Energy funded effort is to apply the PFA approach to geothermal 

exploration and development, thus providing a technique for Geothermal Play Fairway Analysis (GPFA). 

This project focuses on four risk factors of concern for direct-use geothermal plays in the Appalachian 

Basin (AB) portions of New York, Pennsylvania, and West Virginia (Figure 1). These risk factors are 1) 

thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization 

opportunities (Figure 2).  This research expands upon and updates methodologies used in previous 

assessments of the potential for geothermal fields and utilization in the Appalachian Basin, and also 

introduces novel approaches and metrics for quantification of geothermal reservoir productivity in 

sedimentary basins. Unique to this project are several methodologies for combining the risk factors into a 

single commensurate objective that communicates the estimated overall favorability of geothermal 

development. Uncertainty in the risk estimation is also quantified. Based on these metrics, geothermal 

plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat 

applications. The methodologies developed in this project may be applied in other sedimentary basins as a 

foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty 

assessment. Through our identification of plays, this project reveals the potential for widespread 

assessment of low-temperature geothermal energy from sedimentary basins as an alternative to current 

heating sources that are unsustainable.  

There is an important distinction in this Geothermal Play Fairway Analysis project as compared to 

hydrothermal projects: this Appalachian Basin analysis is focused on the direct use of the heat, rather than 

on electricity production. Lindal (1973) illuminated numerous industrial and other low-temperature 

applications of geothermal energy for which this analysis can be useful.  The major relationship to 

electricity is that direct-use applications reduce the electricity requirements for a region.  Even though all 

of the geothermal resources in the Appalachian Basin are low grade, the high heating demand across New 

York, Pennsylvania, and West Virginia combined with the numerous populations centers translate into 

economic advantages if geothermal direct-use heating replaces electricity-based heating. The advantage is 

derived from the high efficiency of extracting heat from geothermal fluids rather than using the fluids to 

generate electricity (Tester et al., 2015). 
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Figure 1:  Population density 

(U.S. Census Bureau, 2010) 

within the Appalachian Basin 

region (Shumaker, 1996) 

highlighting the larger cities. The 

black polygon shows the 

boundary of the northern part of 

the Appalachian Basin. 

 

 

 

 

 

 

 

 

 

The Geothermal Play Fairway Analysis of the Appalachian Basin is valuable for several reasons: 

1. The fact that the Appalachian Basin is a sedimentary basin with a history of substantial 

hydrocarbon drilling activity increases the accessibility of knowledge about the subsurface 

thermal field and reservoirs. GPFA techniques developed here could be applied in other 

sedimentary basins with ample publicly available hydrocarbon drilling records around the U.S., 

such as the Williston Basin, Sacramento Basin, San Joaquin Basin, Gulf Coast Basin, Black 

Warrior Basin, Denver Basin, Anadarko Basin, Illinois Basin, Michigan Basin and others. 

2. The Appalachian Basin, like most of the U.S. east of the Rocky Mountains, is considered a ‘low 

temperature’ geothermal area. Some low temperature geothermal areas are suitable for direct-use 

applications (e.g., district heating, greenhouses, aquaculture, and industrial processes, such as 

pasteurization) or coproduction, but not for electricity generation alone. Because low-temperature 

geothermal resources are more common than high grade in the U.S., this project is important 
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beyond its regional footprint for its development of analysis methods applicable to direct use low-

temperature geothermal projects across the U.S. 

3. Several major population centers located within the Appalachian Basin concentrate the demand 

for heat in small areas. These include Pittsburgh, PA; Williamsport, PA; State College, PA; 

Morgantown, WV; Charleston, WV; Buffalo, NY; Syracuse, NY; and Rochester, NY (Figure 1).   

4. Space heating and cooling of homes is the #1 use of the residential consumption of produced 

electrical energy in the U.S. (U.S. Energy Information Administration, 2015). This project 

explores the possibility that communities in the Appalachian Basin may be able to employ 

geothermal district heating to relieve the growing stress on the electric power grid. 

 

Figure 2:  Appalachian Basin Geothermal Play Fairway Analysis Process.  Each of four key risk factors 

studied in the context of favorability and uncertainty were combined using Play Fairway Metrics (PFM) to 

create final Play maps and evaluate the overall basin risk. 

Data Sources and Project Flow  
The team began by characterizing the constraints to developing a geothermal project that must be 

managed in an integrated fashion. These constraints were treated as four categories of risk: 1) Thermal 

Resource Quality, 2) Natural Reservoir Quality, 3) Risk of Seismic Activity, and 4) Utilization Viability. 

Each risk was quantified, as was the uncertainty associated with the resultant risk value. These four risk 

factors were then combined (Figure 2) into a single metric that was used to determine the most favorable 

fairways within the Appalachian Basin.   

To conduct a quantitative analysis, we utilized data collected as part of previous national and state 

research efforts, as well as data from the National Geothermal Data System; the Midwest Regional 
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Carbon Sequestration Partnership; New York, Pennsylvania and West Virginia State geologic, oil and gas 

well data provided by the State Geological Surveys and by their oil and gas regulatory bodies; NOAA 

Climate data; NEIC and EarthScope (TA) seismicity data; regional-scale magnetic map; regional-scale 

gravity map; US Census Bureau population data; and Energy Information Agency power consumption 

data.   

Thermal Resource Quality 
Appalachian Basin temperature data from oil and gas bottom-hole temperatures (BHTs) are abundant 

(Figure 3) but of low quality. This project generated a new set of BHT corrections appropriate for this 

basin. At the location of each well, the corrected BHT was combined with generalized thermal 

conductivity stratigraphy to estimate the local geotherm using a 1-D heat conduction model. Analyses of 

local spatial outliers were performed on the geotherms, followed by a spatially stratified ordinary Kriging 

regression that predicted properties of the thermal field and its lateral variations. A sensitivity analysis on 

the input variables to the heat conduction model revealed that BHTs are the most critical input variable 

for quantifying properties of the thermal field. Overall, these methods resulted in higher quality results 

and a more robust evaluation of the uncertainty than previous studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Well 

locations colored by depth of the BHT measurement, and BHT correction regions used in this project. County 

and state outlines are shown. For quality reasons, only those BHT measurements at depths greater than 1000 

m were retained for analysis except for a small region in NW Pennsylvania where BHT’s as shallow as 750 m 

were included. 
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Natural Reservoir Quality 
The Appalachian Basin’s conventional hydrocarbon fields and its unconventional shale reservoirs have 

been extensively studied (Engelder, Lash, & Uzcátegui, 2009; Nelson, 2009). In the second task, Natural 

Reservoir Quality analysis, we examined the suitability of rocks to function as natural reservoirs, which 

necessitate sufficient water flow rates between injection wells and production wells to harvest heat within 

the reservoir. This procedure included additional independent methods to predict permeability using 

information from carbon sequestration studies and porosity data, both overlapped with oil and gas 

exploration and production datasets. Some of the most vital data are very scarce in public records: 

permeability values, pressure data, and production data.  The oil and gas reservoir property records are 

spatially biased toward those locations with profitable amounts of hydrocarbons in the rock pore spaces. 

This bias ought not be shared by this project’s search for water in pore spaces, although the existing data 

cause persistence of this bias. The spatial bias and the lack of permeability and/or flow data impose a 

severe limit on the completeness of the reservoir assessment that was possible in Phase 1. The locations of 

the natural reservoirs and lateral variations in reservoir properties reported here must be considered with 

the understanding that there exist potential errors that are not quantified due to lack of data and because 

our data base focused on oil/gas rather than on formations with water.  Indeed, more data could identify 

additional reservoirs.   

Seismicity 
With the extent of ongoing induced earthquake activity in several states (Oklahoma, Texas, Kansas, Ohio) 

and the potential for similar activity in portions of the Appalachian Basin, it is expected that the public 

will require an informed risk assessment in advance of undertaking a new type of energy extraction work 

in the subsurface. To anticipate this concern, we examined the options for a regional analysis to identify 

sub-regions that may be more or less at risk for slip along planes of weakness in the rocks. 

Acknowledging that data for such a task are insufficient, we utilized what was available: records of 

seismic activity, regional estimates of the orientations of principal stress directions, and locations and 

orientations of zones identified on gravity and magnetic data as sites of lateral change in rock properties 

at depths down to several kilometers below Earth’s surface. Analysis of those data sets highlight areas 

within the basement that have higher or lower sensitivities to fluid pressure changes. With these data, we 

created a first approximation of spatially variable risks for induced earthquakes.  

Utilization Opportunities 
Economically viable projects for low-temperature direct-use geothermal heat must be located near the 

field where the hot water is extracted to limit thermal losses and excessive pumping costs. Therefore, for 

the Utilization risk factor we worked principally with population density as a regionally known variable. 

For this economic analysis, we employed a previously developed model by Beckers et al. (2014), 

GEOPHIRES (GEOthermal energy for Production of Heat and Electricity [“IR”] Economically 

Simulated), with variations to capture the surface costs associated with delivering heat from a wellhead to 

final consumers through a district heating system. The Utilization maps do not include the costs of 

producing the hot water at the well head, because the below-ground costs are directly coupled to the 

spatial variability of the heat resource and the reservoir properties, which are factors treated under the 

Thermal Resource risk and Natural Reservoir risks. The result of the district heating analysis is provided 

as a surface levelized cost of heat (SLCOH).  Because we have now identified potential plays, the cost of 

heat delivery for individual locations within the plays, including all of the components needed to compute 

a true levelized cost of heat, should be calculated during a follow-up study.  In addition to district heating, 

we located institutions and businesses that utilize large amounts of thermal energy at low temperatures 

across the three-state study area.  These represent additional utilization opportunities for the region that 

should be investigated in more detail in future studies. 
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Combined Risk Metric 
The final task developed and assigned a Combined Risk solution to incorporate each of the four project 

risk factors using a set of Play Fairway Metrics (PFMs). This task identified the most favorable locations 

within the study area to examine with additional scrutiny. The four individual risk factors were assigned 

favorability ratings from 0 – 5, with 0 unfavorable (red), 3 moderately favorable (yellow) and 5 favorable 

(green) (Figure 4) Several techniques were used to compute the combined risk metric at each location 

using a grid resolution of 1 km
2
. These methods included using the average of individual risk factor 

favorability ratings, the geometric mean of individual favorability ratings, or the minimum (least 

favorable) value of the four risk favorability ratings.  There is value in considering the outcomes of each 

of these methods:   

1. The averaging approach highlights areas that appear favorable overall, but does not inform a 

decision maker if any given risk factor is unfavorable at a location. 

2. The minimum value approach highlights the most unfavorable rating of the four risk factors, but 

does not inform a decision maker of how much more favorable are other risk factors.  

3. The geometric mean approach highlights those few areas that are favorable in all four risk factors, 

but highly down-weights those areas that are even slightly less favorable. 

Overall the average and geometric mean approaches rapidly identify areas for which additional study to 

reduce uncertainty related to any one of the risk factors is most warranted. The minimum value approach 

highlights the fact that there are some sites for which the minimum of the geologic risk factors (thermal, 

reservoir, seismic) is favorable, but no place where the existing results warrant immediate investment in 

commercialization   

While it is almost impossible for analysts to say which method is best, the information conveyed by these 

methods is useful for the decision maker to consider in assessing their site, or when comparing sites for 

development. Where all three PFM methods are favorable, these sites are most robust as potential plays; 

however, uncertainty in each metric should also be considered while making a decision.  Each individual 

risk is accompanied by a map of the uncertainty, which was then included as part of the final PFM.  

Figure 4: Individual Risk Factor maps and the combined Play Fairway Metric maps are expressed as a five-

point scale (shown here) and a similar three-point scale. The thresholds are selected at values that correspond 

to differences in favorability of the risk factors. 

The set of PFMs that combine all four risk factors highlight the spatial lay-out of existing population 

centers. Areas of low population density are matched by low favorability ratings, irrespective of their 

geological resources. 

The geologic risk factors (thermal, reservoir, and seismic), when combined into a set of PFMs, emphasize 

the fixed natural-system properties that must be accommodated by engineering designs for well fields and 

for utilization scenarios. The advantage of the 3-factor geology-only PFMs is that they identify areas that 

a stakeholder group would find suitable for creation of a new industrial, commercial, or residential 

activity that utilizes the geothermal heat. These geology-only-PFMs express the fact that the Geothermal 

Play Fairway team cannot anticipate all possible thermal utilization scenarios that may interest a 
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particular future user group. This natural resource information can be combined in future studies with not 

only direct costs but also indirect benefits, such as reduced use of fossil fuels, regulatory considerations, 

or tax incentives, to develop more comprehensive descriptions of the spatial variation of costs and 

benefits. 

There are five Play Fairways that we recommend be of highest priority for further investigation (Figure 

5). The five designated Play Fairways are multi-county regions in which there are generally favorable 

combinations of some of the factors, but within each Play Fairway there is a high degree of spatial 

variability. Decision-makers should look at the detailed maps of the combined risk metrics that are most 

applicable to the type of geothermal system and type of use that most closely fit their criteria, and use that 

combined risk metric set as the basis for further investment. Technological progress in the extraction of 

geothermal heat from the rock reservoirs is one example in which future users of this report may find that 

the most favorable choices for their potential project differ from the reservoir attribute on which this 

research group focused in selecting the Fairways. 

The Corning-Ithaca Play Fairway (mostly in New York) includes locations with especially favorable 

overall scores and small degrees of uncertainty, and warrants investigation to better determine the full 

costs of heat delivery as well as to determine the spatial extent of the high quality reservoirs. The 

Morgantown-Clarksburg Play Fairway (West Virginia), the Meadville–Jamestown Play Fairway (mostly 

in Pennsylvania) and the Charleston Play Fairway (West Virginia) also have favorable scores for most of 

the four risk factors, and deserve more in-depth analysis than was within the scope of this Phase 1 project. 

The Pittsburgh Play Fairway is a region of very few deep wells and therefore scant data for the subsurface 

depths at which the temperature exceeds 50 °C. Given the large utilization potential near the city of 

Pittsburgh, we recommend a more focused study of the deepest wells in order to better evaluate the 

potential for deep natural reservoirs.   
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Figure 5: The most favorable Play Fairways within the Appalachian Basin based on this project synthesis of 

all Risk Factors as of Phase 1. Play fairways are named for one or more population centers within them. All 

but the Pittsburgh Play Fairway are subdivided into an inner fairway (high priority) and outer fairway 

(medium priority) regions, based on the combined risk analysis. Individual potential users should refer to the 

set of combined risk maps that best fits their criteria because the combined risk factors are highly 

heterogeneous within each Fairway.  
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SUMMARY OF PROJECT ACTIVITIES  

Original Project Hypotheses 
Given the characteristic stable-continent heat flows associated with the Appalachian Basin (Blackwell & 

Richards, Geothermal Map of North America; Explanation of Resources and Applications, 2004), the 

resource is presumed to be suitable for lower temperature, direct-use geothermal applications.  The 

extensive hydrocarbon extraction in the vicinity affords prolific bottom-hole temperature (BHT) data with 

which to assess the thermal field, as well as oil and gas production data that are useful in determining 

other key geothermal reservoir characteristics, such porosity and permeability.  These oil and gas 

industry data will be useful in modeling the sedimentary basin’s suitability for lower temperature, 

direct-use type geothermal applications, in terms of both heat resources and reservoir characteristics.  

Because project viability includes other factors, including risk of seismicity, population distribution, and 

demand for heat, these and other criteria will also be incorporated into an economic viability model, 

used to inform the next step of project development. 

This report is organized into the following sections:  

 Summary of Project Activities: original project hypotheses, approaches used, problems 

encountered, departure from planned methodology, and impact on project results.  

 Methodology: underlying scientific theory and key assumptions, steps in the workflow, summary 

of the strengths and limitations of the process, mathematics used (including formulas and 

calculation methods), potential sources of error, software used, and results of tests to demonstrate 

satisfactory model performance.  

 Discussion of Results: primary conclusions, comparison of actual accomplishments with original 

goals and objectives, risk factor and related error/uncertainty maps, and final favorability maps.  

 Recommendations for Further Analysis Phase: objectives and outcomes, description of planned 

activities (SOPO tasks), partners identified and roles, timeline, preliminary budget information, 

and anticipated permitting requirements.  

 Catalog of Supporting Files:  a list of datasets used including the source(s), limitations on rights, 

and any operations performed on the data to prepare them for use), custom 

code/scripts/configuration files used to process data, GIS databases, risk factor maps and final 

favorability maps (as images and in georeferenced format). This section also includes a series of 

‘Project Memos’ detailing major project tasks and methods, which will be useful for other 

researchers.  

 References:  Major works cited in this report.  The Catalog of Supporting Files contains more 

detailed documents with additional references provided.     

 

Approaches Used 
The Statement of Project Objectives (SOPO) outlines the Phase 1 Project Plan as a series of seven Tasks, 

each with several subtasks, as summarized below.  Tasks 1-5 comprise the primary research activities in 

Phase 1 and Tasks 6-7 are related to project management and outreach (Figure 2). Specific research 

details, equations, and methods are provided within the Catalog of Supporting Files section of this report. 

The plan was followed very closely, with only minor adjustments needed, as described in the next section, 

Accomplishments and Challenges. The following is the condensed list of our original major SOPO Tasks 

and a description of each one.  For the full detailed list that includes all the subtasks, milestones, and 

deliverables, see the Catalog of Supporting Files document, SOPOTasksMilestones.pdf. 
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1. Task 1.0  Thermal Resource Quality Assessment: The purpose of this task and its several 

subtasks are to research and assemble the available thermal data in the published literature as well 

as thermal data available from non-published sources, to establish the data infrastructure for the 

project, and to carry out the assessment of the first of the proposed Risk Factors (RF1), Thermal 

Resource Quality. 

Task 1 Deliverable: Deliver an improved region-wide map of depths to 80 °C isotherm 

and a county map for four counties per state, as well as a Green-Yellow-Red-ranked 

thermal resource map for the region and for the four counties per state, as derived from 

all the considerations described in Task 1, including lithologies, updated conductivity, 

and updated basement heat flux model, etc. as well as the supporting data according to 

the Data Management Plan and thermal models for the New York (NY), Pennsylvania 

(PA) and West Virginia (WV) region of the Appalachian Basin. 

2. Task 2.0  Natural Reservoir Quality:  The purpose of this task is to develop the supporting 

database to evaluate and map the distribution of potential geothermal reservoirs.  The result will 

be Ranking Maps and supporting data for natural reservoirs in a majority of the Appalachian 

Basin of WV, NY and PA. 

Task 2 Deliverable: Deliver reservoir quality maps, supporting data and related models 

for the NY, PA and WV region of the Appalachian Basin incorporating information such 

as reservoir quality and variability, porosity, permeability, and hydraulic conductivity. 

3. Task 3.0  Risk of Seismicity:  The purpose of this task is to review seismicity (excluding 

enhanced geothermal systems –EGS) as a Risk Factor and identify regions with enhanced 

likelihood for inducing unintended seismic activity during preparation of a reservoir, or during 

the course of geothermal heat production.  The result of the task will be maps for the study area in 

the Appalachian Basin in NY, PA and WV of potential faults and of faults that are active. 

Task 3 Deliverable: Deliver risk map, supporting data according to the Data 

Management Plan, and related models, for the NY, PA and WV region of the 

Appalachian Basin for induced or reactivated seismicity, incorporating fault positions and 

seismicity activity.  

4. Task 4.0  Utilization Variability:  The purpose of this task is to identify regions in the 

Appalachian Basin with the capacity to utilize low-grade geothermal heat and the related 

variability of demand. The result of the task will be utilization maps for the region of the 

Appalachian Basin in NY, PA and WV and estimates of Levelized Cost of Heat for a small set of 

communities. 

Task 4 Deliverable: Deliver maps for spatial variability of population and heat demand, 

and a ranked map for utilization using supporting data according to the Data management 

Plan, for the NY, PA and WV region of the Appalachian Basin. Deliver estimated 

Levelized Cost of Heat (LCOH) for two communities in each state.  

5. Task 5.0  Risk Matrix Analysis:  The purpose of this task is to merge the risk segment maps 

described above to produce an overall risk map.  This will be the compilation of factors and the 

most favorable combinations of multiple risk factors from the Risk Factors evaluated in Tasks 1-

4.  A risk matrix will be applied to combine the four sets of risk factors and will identify up to six 

“most promising Play Fairways” within the Appalachian Basin in NY, PA and WV. 
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Task 5 Deliverable: Deliver common risk assessment map, which delineates up to 6 Play 

Fairways within the NY, PA and WV region of the Appalachian Basin based upon the 

compilation of the spatial variability of the risk factors assessed in Tasks 1-4.  The 

models and available supporting data, according to the Data Management Plan, will also 

be delivered.   

6. Task 6.0  Project Management and Reporting:  The three team leaders (Cornell, SMU, WVU) 

will interact bi-weekly to assure continued progress on the project. At each quarter's end, 

available team members will meet by conference call or in person to discuss project progress and 

needs.  Quarterly project reviews will be held with DOE staff by phone or webinar to present 

project status and verify milestones. One quarterly review will be made in-person at the 

Geothermal Technology Office peer review (tentatively scheduled for spring 2015 in Denver). 

Task 6 Deliverable A final report detailing all facets of the study and detailed 

suggestions for Phase II will be presented at the end of Phase 1. This report will be the 

basis for a competitive downselect process for Phase 2.  The raw data collected and/or 

new data generated as part of the project will be uploaded to the NGDS at the end of the 

Phase I, following USGIN metadata guidelines. 

7. Task 7.0  Commercialization / Market Transformation: Commercialization activities are to 

include 1) participation in a poster session at the Geothermal Resources Council (GRC) 2014 

meeting, to lay out the project plans and objectives, and 2) a follow-up presentation summarizing 

project results (tentatively for GRC 2015). 

Accomplishments and Challenges 
The Geothermal Play Fairway Analysis - Appalachian Basin (GPFA-AB) project had few departures from 

the original SOPO.  Southern Methodist University (SMU) and Cornell University team members are 

both experienced with large collections of data from oil and gas wells; Cornell and West Virginia 

University (WVU) are lead researchers for district heating models and wrote the code for GEOPHIRES 

(GEOthermal energy for Production of Heat and Electricity [“IR”] Economically Simulated (Beckers, 

2015)); Cornell is experienced in analyzing datasets using statistical methodologies. The project 

accomplished all SOPO tasks and exceeded what was required. For instance, a set of BHT corrections 

specific to the Appalachian Basin region were developed, a set of three reservoir productivity metrics 

were created, the content model for Geologic Reservoirs was updated, innovative techniques were 

implemented for determining potential locations for induced seismicity that included stress orientations, a 

specialized list of site-specific industry locations of interest for utilization was created and Surface 

Levelized Cost of Heat was calculated for hundreds of Census Bureau Places, new methodologies for 

assigning and combining risk segment maps were developed, and detailed methodology ‘memos’ were 

written for future researchers to use in other Play Fairway Analysis projects (see Catalog of Supporting 

Files).  Next, each of the Tasks are discussed to highlight changes from the planned methodology. 

The Geothermal Play Fairway Analysis - Appalachian Basin (GPFA-AB) project is built from the 

foundation of previous work efforts by Cornell, SMU, and WVU (Blackwell et al., 2010; Aguirre et al., 

2013; Stutz et al., 2015).  In addition to the initial team members, we included other faculty, staff, and 

students who were able to provide valuable expertise to the project.  The Catalog of Supporting Files in 

this Phase 1 report provides a full explanation of the methods, assumptions, formulas and references.  The 

data uploads to the National Geothermal Data System (NGDS) via the Geothermal Data Repository 

include not only a wealth of detailed information drawn from thousands of oil and gas wells in the region, 
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but also provide summary maps indicating the risk factors evaluated in each of the Tasks undertaken and 

the composite of the four Task results.   

Task 1 Thermal Resource Quality Assessment 
Bottom-hole Temperatures 

The foundation of our thermal resource assessment is bottom-hole temperature (BHT) data as control 

points of temperature at depth, and American Association of Petroleum Geologists (AAPG, 1994) 

Correlation of Stratigraphic Units of North America (COSUNA) lithology and thicknesses for subregions 

of the Appalachian Basin. BHT data were collected for New York, Pennsylvania, West Virginia, and a 

surrounding 50 km buffer into Maryland, Virginia, Kentucky, and Ohio. These BHTs, though prolific, are 

potentially subject to thermal disturbance from drilling activity and other errors that occurred when data 

were collected. Various BHT correction algorithms have been developed over the years to approximate 

equilibrium conditions (Harrison, Luza, Prater, & Chueng, 1983; Förster & Merriam, 1995; Blackwell & 

Richards, Geothermal Map of North America; Explanation of Resources and Applications, 2004). 

Through an extensive novel statistical evaluation of a small set of equilibrium well-log temperature 

measurements in the Appalachian Basin, a new set of BHT corrections appropriate for this basin were 

developed, which enables a rigorous treatment of the uncertainty related to application of the corrections. 

A set of equilibrium temperature wells (29) and 44 additional wells that were judged to be reliable 

temperature logs (Whealton, 2015, 2016; see also BHT Correction Memo) were used to devise correction 

functions. The focus on sub-regions increased the possibility to discover relationships between geological 

characteristics and the temperature corrections. Once the correction functions were defined, the depth-

BHT data for over 13,000 wells were corrected.   

Thermal Conductivity Stratigraphy 

In order to determine properties of the thermal field, knowledge of lithology, thermal conductivity, 

radiogenic heat production, and formation thickness are needed. Each of these variables are unknown, and 

required assumptions backed by previous studies (Thermal Model Memo). Anadarko Basin thermal 

conductivity samples were used as representative of the Appalachian Basin because reliable data for 

Appalachian Basin rocks were not available, and because these basins reached similar burial depths. In 

order to capture the distribution of thermal conductivities that could be present, each formation in the 

Appalachian Basin was subject to a Monte Carlo analysis to determine the distribution of possible values 

in thermal conductivity (details are provided in the Catalog of Supporting Files within the memos). These 

formation values were used to determine the harmonic average thermal conductivity over the entire 

sedimentary column. Thermal conductivity measurements are associated with a 5-10% expected error 

(Gallardo & Blackwell, 1999), yet it is one aspect of the accuracy that can be readily improved, with 

reduced uncertainty, through collection in future studies of conductivity data specific to sites and 

formations of interest.   

Thermal Model  

The corrected BHTs were used along with the thermal conductivity stratigraphy to estimate the geotherm 

(i.e., temperatures at depth) at the location of each well using a 1-D heat conduction model developed for 

this project. This model improves upon and corrects equations previously published by Blackwell et al. 

(2007) and Stutz et al. (2012, 2015) (see Thermal Model Memo for details). These corrections are 1) the 

heat balance used to calculate the radiogenic heat production at the sediment-basement interface, 2) 

sediment thickness and sediment radiogenic heat production terms that were missing in the prior 

formulation for the temperature-at-depth for depths deeper than the well, 3) the calculation of surface heat 

flow relative to the radiogenic heat generation assumptions made, and 4) an explicit analytic solution to 



DE-EE0006726 

Cornell University 

FY2015-16, Final 

Page 19 of 81 

the governing Ordinary Differential Equations, thus freeing ourselves from the need to evaluate the 

results of the thermal model via approximate numerical techniques. In other words, input BHT values are 

exactly reproduced using this method. Previous formulations did not reproduce the BHTs.  

The model for steady state 1-D heat conduction was written in the open source language Python 2.7.9.  

This updated thermal model allows for a rapid computation of the surface heat flow and the geotherm on 

a site-by-site basis (>13,300 sites for this project). Input variables include the ground surface temperature, 

corrected BHT, depth of BHT measurement, radiogenic heat production, mantle heat flow, thermal 

conductivity for related COSUNA stratigraphy, and the total sediment thickness. A sensitivity analysis on 

the input variables to the heat conduction model was also performed, revealing that the quantification of  

properties of the thermal field is most sensitive to the BHTs and the sedimentary rock conductivities 

(Whealton, 2016). The Thermal Model Memo for this code has refined descriptions of the parameters, 

variables, and equations, thus making it easily adaptable. The code and full revision history are located on 

BitBucket (Horowitz et al., 2015). 

Spatial Regression 

Selected depths along the geotherms were subject to a spatial outlier analysis (see Outlier Memo). Points 

found not to be outliers acted as control points in a spatially stratified ordinary Kriging regression (e.g. 

Gaussian process regression) implemented in the ‘gstat’ package of R version 3.1.0 “Spring Dance”.  The 

justification for lateral stratification during Kriging is that laterally variable geological materials may 

cause lateral variability in the thermal field. The lateral boundaries were chosen based on gravity and 

magnetic potential field edges at depth (from the Seismic Risk Factor analysis). Smith (2016) and an 

Interpolation Memo provide details.  This spatially stratified regression captured the structure of local 

spatial correlation in the predicted properties of the thermal field (e.g. depth to 80 °C) better than 

previously published regional approaches (Aguirre, 2014), thereby improving the accuracy and the 

uncertainty quantifications for the thermal resource assessment.  

The results of this analysis are maps of the predicted mean and the standard error of the predicted mean 

for each thermal property.  Figure 6 presents the depth to 80 °C resource map for the region.   

Based on the map of depth to 80 °C (Figure 6), along with some consideration of the reservoir availability 

and population centers, at a mid-point in our project four of the most favorable counties in each state were 

selected and reviewed in greater detail (Figure 7).  These twelve counties are shown in Figure 8 through 

Figure 17 as a set of 5 thermal resource maps paired with a cross section through each. The cross sections 

highlight the uncertainty and variability in the thermal resource through these counties.   
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Figure 6: A) Predicted Mean Depth to 80 °C based upon thermal analysis.  The sub-regions within the basin 

are boundaries for the spatially stratified Kriging interpolation of the thermal field properties. B) 

Uncertainty on the depth to 80 °C expressed as standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Counties selected for more detailed thermal maps based upon having favorable thermal properties, 

available reservoirs, and population centers. 
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Figure 8: Erie, PA and Chautauqua, NY (Predicted Mean Depth to 80 °C [m]) with Cross Section. 

 

Figure 9:  Variability and uncertainty in the predicted mean depth to 80 °C along cross section C-C’. 

Interpolation boundaries are marked by vertical dotted lines. Mean depths are significantly different when 

uncertainty bars do not overlap. 
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Figure 10: Fayette, PA and Preston, WV (Predicted Mean Depth to 80 °C [m]) With Cross Section. 

 

Figure 11: Variability and uncertainty in the predicted mean depth to 80 °C along cross section D-D’. 

Interpolation boundaries are marked by vertical dotted lines. Mean depths are significantly different when 

uncertainty bars do not overlap. 
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Figure 12: Kanawha and Lincoln, WV (Predicted Mean Depth to 80 °C [m]) With Cross Section. 

 

Figure 13: Variability and uncertainty in the predicted mean depth to 80 °C along cross section E-E’. 

Interpolation boundaries are marked by vertical dotted lines. Mean depths are significantly different when 

uncertainty bars do not overlap. 
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Figure 14: Gilmer, WV (Predicted Mean Depth to 80 °C [m]) With Cross Section. 

 

Figure 15: Variability and uncertainty in the predicted mean depth to 80 °C along cross section F-F’. 

Interpolation boundaries are marked by vertical dotted lines. Mean depths are significantly different when 

uncertainty bars do not overlap. 
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Figure 16: Predicted Mean Depth to 80 °C [m]) With Cross Section for Chemung, Steuben, and Tomkins 

counties of NY and Potter and Tioga counties of PA.  

 

Figure 17: Variability and uncertainty in the predicted mean depth to 80 °C along cross section G-G’. 

Interpolation boundaries are marked by vertical dotted lines. Mean depths are significantly different when 

uncertainty bars do not overlap. 
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One approach to evaluate the confidence in the thermal analysis results is to compare the equilibrium 

temperature for the subset of 47 reliable wells with data as deep as 1.5 km to the predicted mean 

temperature at 1.5 km. Figure 18 reveals the number of standard errors difference between the recorded 

equilibrium temperature at or near 1.5 km and the predicted mean temperature at 1.5 km.  Another 

approach was used to evaluate the results of the spatial regression. This approach was a “leave-one-out” 

cross validation. For the depth to 80 °C map in Figure 6, over 98% of the left-out wells had a calculated 

depth to 80 °C within 3 standard errors of the predicted mean at the location of the left-out point – a 

comforting result. 

 

 

Figure 18: Wells considered equilibrium or having reliable temperature data are compared to predicted 

temperatures at 1.5 km depth.  Colors of circles show differences in measured and predicted temperature at 

1.5 km in terms of the number of standard errors that the equilibrium temperature was from the predicted 

mean. 
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The final product of the thermal analysis is a risk-factor map portrayed on a 3-color or 5-color scale 

(Figure 19). For this map, the depths of the modeled position of the 80 °C isotherm were converted to a 

non-dimensional measure of favorability that ranges from 0-3 or from 0-5, respectively, based on a set of 

threshold values. The thresholds are detailed in Memo 17 (Combining Risk Factors).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Play Fairway Metric risk segment map for the thermal resource with a five color 

scheme. Green-Favorable, Red-Unfavorable. 
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Challenges 

We are aware that to select a site and have it be colder than predicted is much more costly than it being 

hotter than expected.  Thus, as we complete Phase 1 there continues to be an emphasis on the thermal risk 

factor associated with the BHT correction used and the confidence related to the BHT values as a 

foundational parameter in the thermal resource assessment.  To improve on past projects’ efforts, we did 

not use the Harrison Correction (1983), which only uses a depth-dependent temperature change. Instead, 

we devoted significant effort to developing a set of sub-region-specific corrections for the Allegheny 

Plateau and the Rome Trough (the portion of the Rome Trough in Pennsylvania). A separate correction 

was also developed for West Virginia. Use of temperature data held by oil and gas companies would 

permit improved accuracy.  

At the project outset we evaluated the possibility of running thermal conductivity measurements on core, 

but this could not be accomplished within the available resource constraints due to mechanical failure of 

the WVU divided bar. Further studies to obtain thermal conductivity data for samples of rocks collected 

at depths of project interest are recommended. 

Task 2 Natural Reservoir Quality  
The natural reservoirs task required a number of simplifying assumptions due to data availability 

limitations. Additional simplifying assumptions underpin the computation of reservoir productivity 

indices and reservoir fluid capacity. All assumptions made are listed within the Natural Reservoirs 

Methodology Memo in the Catalog of Supporting Files. 

This project has incorporated the available reservoir parameters (permeability, thickness, and working 

fluid viscosity) in order to make a meaningful comparison of the potential flow rates from a total of 1,894 

proven oil and gas reservoirs in this sedimentary basin. While not explicitly required in the SOPO, we 

developed three alternative metrics for quantifying reservoir favorability. The first metric, Reservoir Fluid 

Capacity (RFC), is based on the natural geologic qualities of the sedimentary aquifers. The RFC, 

expressed in units of mD-m, combines permeability and thickness. The second and third metrics, termed 

the Reservoir Productivity Indices (RPI), are sensitive to the design of a well field and to the pressure 

used to pump a well. The RPI metrics are built around Darcy’s Law flow through porous media in a 

confined aquifer (Gringarten, 1978; Augustine, 2014). The RPI metrics report mass flow rate per pressure 

drop (Kilograms per Megapascal seconds; kg/MPa-s) for two different choices of working fluids in a 

reservoir: RPIw considers the viscosity and permeability of water as the working fluid, whereas RPIg 

considers the viscosity and permeability of supercritical carbon dioxide as the working fluid. A Monte 

Carlo simulation was used to calculate each reservoir’s RFC, RPIw and RPIg, while taking into account 

the uncertainty on parameter values (e.g., reservoir permeability, thickness, and viscosity).  

Because the distribution of RFC for the entire reservoir population is strongly skewed, we adopted 

reservoir quality rank thresholds based on a logarithmic scale (thresholds at 1000, 1000, 10 and 1 md-m). 

A different approach to selecting thresholds was used for the RPI: in order to meet the required flow rates 

without any additional stimulation or enhancements, we estimate that >10 kg/MPa-s value for the 

reservoir productivity index is required for either RPIw or RPIg. The majority of the reservoirs we have 

identified are below this RPI value (Figure 20). On a map, areas with dark green color indicate locations 

with this most suitable value of reservoir productivity index (Figure 21). The spatial distribution of 

reservoirs of varying quality is partly expressed in Figure 21 although some regions have stacked 

reservoirs of differing qualities, and these are not well expressed on a single map. 
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Figure 20: Histograms of the P50 RPIw (blue) and RPIg (brown) frequencies of reservoirs in the Appalachian 

Basin. Where RPIw data overlap with RPIg data, the values are displayed by a dark brown. The P50 

expresses the most likely case given the set of 100,000 Monte Carlo realizations for each reservoir. The 

frequencies are ordered by the Reservoir Productivity Indices (kg/MPa-s). 

  



DE-EE0006726 

Cornell University 

FY2015-16, Final 

Page 30 of 81 

 

 

Figure 21: Distribution of reservoirs of varying 

degrees of favorability as measured by the reservoir 

favorability metrics: RPIw on the upper left, RPIg 

in the upper right, and RFC in the lower left. The 

gray areas indicate regions without suitable data, 

because of the data bias toward oil and gas 

production. Within the gray areas there may exist 

high quality natural reservoirs, and undoubtedly 

there exist regions without suitable natural 

reservoirs. To discriminate those two cases in the 

areas without oil or gas fields requires analysis 

beyond the scope of Phase 1. 

 

 

The final product of the reservoir quality analysis is a set of maps portrayed on a 3-color or 5-color scale 

(Figure 22 displays the result for RFC). For each of these maps, the estimated flow capacity at each 

location was converted to a non-dimensional measure of favorability that ranges from 0-3 or from 0-5, 

respectively, based on a set of threshold values. The thresholds are detailed in Memos 11 (Natural 

Reservoir Methodology) and 17 (Combining Risk Factors). The uncertainty corresponding to the Risk 

Factor map for RFC (Figure 22) and maps for RPIw and RPIg can be found in Memo 17 (Combining 

Risk Factors) and as individual files in the Geothermal Data Repository. 

 

 

 

 



DE-EE0006726 

Cornell University 

FY2015-16, Final 

Page 31 of 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Play Fairway Metric risk segment map for the reservoir metric with a five color scheme. 

Green-Favorable, Red-Unfavorable. This map displays the result based on the metric Reservoir 

Fluid Capacity (RFC).  

 

Challenges 

The Natural Reservoir Analysis followed the SOPO tasks and methods as planned.  Reliance on rock 

property information from the oil and gas industry imposed a location bias in the data sets. Suitable hot-

water reservoirs may occur outside of the oil and gas fields, but to identify them will require time-

intensive analyses of well production records and the development of geological models of the controls 

on matrix permeability and fracture permeability.  

In working with low-temperature geothermal resources, the potential reservoir flow rate is of utmost 

importance (Bedre & Anderson, 2012).  The project team concludes that the knowledge available falls 

significantly short of what would be needed to predict at any given location whether a high enough fluid 
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flux to support a district heating system can be extracted without stimulation. We recommend future 

studies to improve on the capacity to estimate flow potential by collecting data on production, injection, 

flow-back tests, and pressure tests in the most attractive prospective plays, to the extent that these data 

can be obtained from regulatory bodies, private companies, and data brokers. 

This project analysis of natural reservoirs included more parameters than previously reported in the 

existing National Geothermal Data System (NGDS) content model for Geologic Reservoir Analysis, 

which had been developed by the Texas Bureau of Economic Geology.  One new parameter is “Reservoir 

Productivity Index” (RPI), a metric adapted from the productivity index of a well, in units of kg/MPa-s. 

Instead of simply adding a field called RPI to the existing content model for Geologic Reservoirs, we 

updated the entire content model and added flexibility for numerous types of analysis projects to provide 

relevant reservoir data.  Researchers can now use the content model to report “Reservoir Favorability” 

and describe the units and methods associated in their analysis – in our case RPI in kg/MPa-s.  This is just 

one example of many such updates; the revised NGDS Geologic Reservoir Content Model is now 

available on USGIN (U.S. Geoscience Information Network, 2015) for others to use. 

Task 3 Risk of Seismicity 
The seismic risk factor analysis was initially aimed at determining whether a candidate location is near an 

active fault, and thereby potentially susceptible to induced seismicity from geothermal operations. 

Existing fault maps do not share the GPFA-AB boundaries or scale. Hence, their use leads to problems of 

uneven coverage, varying interpretation of faults vs. lineaments, and different mapping scales. For more 

uniformity across the GPFA-AB region, we use a Poisson wavelet analysis of gravity and magnetic fields, 

co-invented by Frank Horowitz (Hornby et al., 1999) and widely deployed in the mining industry since 

the late 1990s (e.g. GoldCorp, 2001). 

Multiscale edge Poisson wavelet analyses of potential fields ("worms") have a physical interpretation as 

the locations of lateral boundaries in a source distribution that exactly generates the observed field – see 

the Seismic Hazards memo for more discussion.  Clearly, not all lateral boundaries (“worms”) are faults, 

and vice versa, thus only a subset might be active. As the basin is within an inter-plate region, 

deformation is very slow and return time for naturally occurring earthquakes is potentially >10,000 years.  

Also, only steeply dipping structures will be expressed by “worms”.  

To identify seismically active structures, we plotted both the “worms” and the earthquakes from the 

National Earthquake Information Center (NEIC) and EarthScope Transportable Array (TA) catalogs. 

“Worms” within a small distance of epicenters are tracked spatially. To within errors in location, this 

identifies structures that might be seismically active faults - which we categorize with higher risk than 

other structures. We called this strategy the “proximity technique” (Figure 23, Proximity Earthquakes).  
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Figure 23: Map of spatial variability of the risk of induced seismicity based on the proximity of each location 

in the study area to a recorded seismic event and/or the co-occurrence of a “worm” and a nearby seismic 

event. Red indicates highest risk; green is lowest risk. 

As the project progressed, after discussion with experts both within and outside of the team, we tried an 

additional approach, termed a slip-tendency estimate. Plotting multiscale edge Poisson wavelet analysis 

lateral boundaries within World Stress Map σ1 directions (see Catalog of Supporting Files for more 

information in the Identifying Potentially Activatable Faults Memo) yields an alternative qualitative 

approach to identifying reactivatable geological structures. Here, we use “worms” to locate steeply-

dipping structures with strikes favorably oriented for failure by Byerlee's law (Figure 24, Stress 

Orientation Hazard). While this might be a necessary criterion for fault activation (under an assumption of 

the validity of Byerlee’s Law model) it is not a sufficient criterion because we lack detailed information 

about stress magnitudes throughout the GPFA-AB region.  

Ultimately, we judged that the most useful representation of the total seismic risk resulted from the 

combined risk map formed by averaging the risk factor categories given by the proximity technique and 

the slip-tendency technique (Figure 25, Combined Seismic Risk). 
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Figure 24: Map of the spatial variability of risk of induced seismicity estimated based on slip-tendency, as 

calculated by the premises of the locations of planes of weakness relative to the regional stress field. For this 

analysis, the “worms” are treated as if they are all planes of weakness, and Byerlee’s Law criteria used.  
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Figure 25: Preferred map of the spatial distribution of risk of induced seismicity, created by averaging the 

proximity and slip-tendency techniques. 

In addition to the summary of the seismic risk method in the Catalog of Supporting Files, the reader 

should refer to (Seismic Risk Map Creation Methods Memo and the Identifying Potentially Activatable 

Faults Memo) for a complete discussion of these matters, including an overview of the wavelet theory, the 

earthquake catalog cleaning, and the computational techniques developed to estimate risks and their 

uncertainties at all points along the worms. 

Challenges 

The risk of induced seismic activity is now on many peoples’ mind across the country. Those living in 

New York, Pennsylvania and West Virginia are no different. There is concern that the reinjection of water 

produced during oil and gas extraction will induce seismicity, and it is easy to imagine that a similar 

concern will be raised about the recirculation of water in a geothermal energy extraction project.  
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Initially the project had expected to use mapped faults that we anticipated would be available from the 

state agencies and the USGS. We found that there are extreme differences in the details and styles of 

surface fault maps within and between the states, making this dataset difficult to use for our basin-scale 

analysis. To make up for this data layer loss, we focused on generating a spatially consistent map of the 

gravity-field and magnetic-field variations (Hornby et al., 1999). This analysis located rock-property 

edges not only in the deeper levels of the sedimentary basin fill, but also in the basement beneath. In light 

of recent analyses that show that many of the induced earthquakes in Ohio, Oklahoma, Texas, and Kansas 

associated with oil and gas wells are related to deep basement faults, these new maps should be of value 

to the oil and gas industry and to geological carbon sequestration researchers and regulators, as well as to 

the geothermal industry.  

The use of earthquake locations (from USGS/NEIC and the EarthScope TA) was chosen as the most 

direct indicator of areas of most concern. They are, except in areas of active mining (both surface and 

deep). The NEIC catalog explicitly categorizes earthquake events, while the TA event list includes 

everything recorded and located by a seismic array. The TA database added many more “apparent” 

earthquake locations, which we initially attributed to the higher sensitivity available from the TA’s closer 

station spacing than that found in the NEIC. Nevertheless, during our on-site visit to the State Geological 

Survey of West Virginia, they questioned the significance of numerous TA data located in areas of coal 

mining. Our experienced team members suggested filtering out TA events that occurred between 7 am 

and 6 pm, based on the fact that mine blasting is allowed only during daylight hours (Mining Safety and 

Health Administration, Title 30 CFR). The filtered results indeed nearly eliminated events located in the 

coal mining regions of West Virginia along with other suspicious locations (e.g., near quarries).  

As evaluation of the potential for extraction of deep hot geothermal water advances in the Appalachian 

Basin, we recommend attention be given to experiences in the oil and gas industry. Lessons learned from 

their experience may inform successful approaches to avoid issues related to induced seismicity. Even 

within the single year duration of this project, induced seismicity emerged as a major hazard for the oil 

and gas industry and therefore the amount of research is escalating. It should be noted that the mapping of 

the Seismic Risk parameters presented here is at the regional scale. Nevertheless, it has been learned that 

the induced seismicity risk is highly dependent on the specific location. An early part of focused 

examination of any location-specific well field and utilization scenario should be to obtain relevant data 

with which to analyze the seismic background activity, fault locations and orientations, and state-of-

stress. 

Task 4 Utilization Assessment 
The Utilization Assessment used US census data, Energy Information Agency (EIA) data and National 

Oceanic and Atmospheric Administration (NOAA) climate data to estimate the demand and surface costs 

associated with the delivering hot water to buildings via a single community district heating system, 

following methods detailed by Reber et al. (2014). The cost estimates include pipes, pumps and heat 

exchangers, and the annual demand expectations rely on place-specific climate conditions. The economic 

analysis was limited to the surface expenses, and therefore is termed the Surface Levelized Cost of Heat 

(SLCOH). The SLCOH was calculated using a software tool, GEOPHIRES (Beckers et al., 2014), which 

permitted repetition of the analysis for many communities.  

 

The Utilization effort included two broad types of data in Phase 1: 1) residential – community ‘Places’, 

and 2) site-specific users with high heating demands such as universities, industrial users, government 

facilities, etc. Most analysis was focused on the first category of potential use, community district heating 

systems. Rather than using the 1500 population minimum as did Reber (2013), a population threshold of 

4,000 residents per Place was applied for all three states, to focus on those Places with a sufficient number 

of users to justify the initial capital investment associated with a district heating system. This Census-
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based analysis seemed to overlook the possible cases of individual commercial, industrial, or large private 

entities who seek sustainable, low-carbon, high capacity, heating or cooling systems. Therefore a second 

effort was completed that determined >165 site-specific plausible users whose work entails high heat 

loads, such as paper mills, wood drying kilns, dairy processing (includes yogurt and milk pasteurization 

products), college and university campuses, and select military locations. No economic analysis was 

conducted for those sites, but maps were generated to illustrate their locations relative to the favorability 

of the three geological risk factors. 

 

The GEOPHIRES program was designed to output Levelized Cost of Heat (LCOH). For Phase 1 the team 

used only the above-ground portion of the GEOPHIRES program. Thus the output SLCOH (Table 1) 

cannot be compared to the usual LCOH of other projects as it does not include the site-specific below-

ground costs of drilling and completion of wells. This division of the costs was done because the 

subsurface costs will depend on flow rates and temperatures, which for this project are analyzed as 

separate risk factors. Consequently, the full LCOH will be more expensive per MMBTU than what the 

Phase 1 products show. A 30-year lifetime for a geothermal field was assumed. For district heating 

systems already in place, they would not need most of the surface infrastructure.  Additionally, using the 

surface components of GEOPHIRES enables those communities without installed district heating systems 

to consider the infrastructure costs of a system independent of the power supply (geothermal or natural 

gas).   

 
Table 1:  Distribution of Surface Levelized Cost of Heat (SLCOH) for Census Places with population ≥ 4, 000 

within the Appalachian Basin for NY, PA and WV.  A total of  236 sites are shown; an additional 19 sites had 

SLCOH values greater than 25 $/MMBTU.  Results given in US $ are normalized to year 2012. 

State Best Case (Green) 
$5 – $13.5/ MMBTU 

SLCOH 

Good (Yellow) 
$13.5 - $16/ MMBTU 

SLCOH 

Unfavorable (Red) 
$16 - $25/ MMBTU 

SLCOH 

New York 30  27  30  

Pennsylvania 37  52  27  

West Virginia 21  10  2  

 
The top sites for each of the three states based on the Place analysis methodology described above are 

listed in Tables 2 - Table 4.   

 
Table 2:  Top ten West Virginia Census Places with the lowest SLCOH.  Only Places and Cooperating Places 

with population of 4,000 and above are included. 

County Census Place Name Place 
Population 

SLCOH ($/MMBTU) 

Lewis County  Weston city  4110  7.0  

Upshur County  Buckhannon city  5639  10.9  

Wetzel County  New Martinsville city 5366  11.1  

Randolph County  Elkins City-Beverly Town 7796  11.1  

Wood County  Parkersburg city  31,492  11.2  

Ohio County  Wheeling city 29,051  11.2  

Kanawha County  Charleston city 53,031  11.4  

Monongalia County  Morgantown-Westover City  36,249  11.6  

Harrison County  Clarksburg City-Anmoore 
Town  

19,154  11.6  
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Taylor County  Grafton City 5164  11.7  

 
Table 3:  Top ten New York Census Places with the lowest SLCOH.  Only Places with population of 4,000 and 

above are included. 

County Census Place Name Place Population SLCOH ($/MMBTU) 

Erie  Kenmore Village  15,423  11.2  

Erie  Lancaster Village  10,352  11.2  

Erie  Buffalo City  340,149  11.3  

Erie  Eggertsville CDP  15,019  11.3  

Monroe  Rochester City  224,987  11.5  

Ontario  Canandaigua City 10,545  11.7  

Erie  Grandyle Village CDP  62,773  11.7  

Niagara  Niagara Falls City  50,193  11.7  

Erie  Tonawanda City  15,130  11.8  

Onondaga  Syracuse City  147,414  11.8  

 
Table 4:  Top ten Pennsylvania Census Places with the lowest SLCOH.  Only Places with population of 4,000 

and above are included. 

County Census Place Name Place Population SLCOH ($/MMBTU) 

Luzerne  Kingston Borough  13,182  10.9  

Allegheny  Dormont Borough  8593  11.1  

Luzerne  Wilkes-Barre City  41,498  11.2  

Clarion  Clarion Borough  5276  11.5  

Allegheny  West View Borough  6771  11.7  

Butler  Butler City  13,757  11.8  

Washington  Paris CDP  20,478  11.8  

Mercer  Greenville Borough  5919  11.8  

Luzerne  Plymouth Borough 5951  11.9  

Allegheny  Bellevue Borough  8370  12.0  
 

One of the final products of the analysis of utilization for district heating systems is a map that portrays 

on a 3-color or 5-color scale (Figure 26). For these maps, the surface levelized cost of heat (SLCOH, 

$/MMBTU) at each location was converted to a non-dimensional measure of favorability that ranges from 

0-3 or from 0-5, respectively, based on a set of threshold values. The thresholds are detailed in Memo 17 

(Combining Risk Factors). The map for a 3-color scale and for the uncertainty corresponding to the Risk 

Factor map (Figure 26) can be found in Memo 17 (Combining Risk Factors) and as individual files in the 

Geothermal Data Repository.  

As noted below and described in Memo 17 (Combining Risk Factors), in the step of combining several 

risk factors to illumine their combined risk metrics we added a 5 km buffer around all of the Places and 

Collaborating Places. This represents the potential to transfer water in pipes from a well field to a 

community district heating system.  
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Figure 26: Play Fairway Metric risk segment map for the utilization of resource with a five color 

scheme. Green-Favorable, Red-Unfavorable. This illustrates the Places with no additional distance 

buffer; a buffer is added before combining this risk factor with others. 

Challenges 

For a utilization project focused on low-temperature geothermal applications, the temperatures are 

typically in the range of 50 to 120 °C. For these temperatures to be of value, utilization must occur close 

to the well field to avoid heat loss.  

The Utilization Risk calculations followed the Reber et al. (2014) methodology; however only a subset of 

their methodology was most appropriate for the project and transferrable to other future phases of this 

project. The most significant challenge was to select between the slightly different methods to analyze the 

costs and benefits of utilization of geothermal fluids for district heating that had been developed in 

parallel by Cornell University and West Virginia University students. Both groups had worked on related 

projects that expanded the details within the GEOPHIRES program (Reber, 2013; He, 2015). It was 

determined that the addition of new variables and updates to the MATLAB code would be simpler if 

Reber’s work scheme was applied uniformly across the three-state study area. Reber’s files for the still-

current 2010 US Census were used, along with the census data for WV. As a result of this work, 
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improvements to the methods and parameter names of Reber’s code were made for ease of transferal to 

other users (see Catalog of Supporting Files for Utilization Analysis Memo).      

Because the Utilization team removed the drilling expense component and the geotherm of a site from the 

analysis of costs of a direct-heating project, the value being mapped is not the Levelized Cost of Heat 

(LCOH) as originally planned as part of the SOPO, rather it is the Surface Levelized Cost of Heat 

(SLCOH). In the absence of drilling costs and their dependence on the site geotherm, the population 

density and climate-based heat demand became the variables of importance for the SLCOH. The impact 

on the Combined Risk of proximity of a community to a potential geothermal reservoir is expressed in the 

four-factor Combined Risk Maps.  

For the compiled list of sites of commercial, industrial, or large private entities who plausibly might be 

interested in evaluating the potential to use deep direct geothermal heat, further analysis of potential 

utilization needs is recommended. We recommend that a full analysis of LCOH for several of those 

potential users be completed. 

Task 5 Combined Risk Metric Analysis  
The overall risk matrix analysis combined the four risk factors into an aggregate measure of the 

favorability of different locations, which we refer to as Play Fairway Metrics (PFMs). We explored 

several methods of combining the Task risk factors (discussed in more detail in Catalog of Supporting 

Files, Combining Risk Factors Memo). In the end we calculated the average, geometric mean, and 

minimum of the four scaled risk factors (SRF). The equations for calculating the average, geometric 

mean, and the minimum PFMs of the four SRFs are provided in EQ 1 to EQ 3.  

 

Each of the risk factors are scaled to a non-dimensional measure of favorability from their original 

measure. One critical issue is that we require co-location of the resource with utilization locations; 

however in practice we expect that the resource can be a small distance (approximately 5 km) away from 

the utilization center. Therefore, each of the identified utilization places were buffered by 5 km. Many of 

the maps contained no data in some cells, for instance reservoirs are not known over the whole areal 

extent. Therefore only areas with all risk factors quantified at that cell (1 km
2
 grid) were ranked in the 

final map. 

 

𝑃𝐹𝑀𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 1/4(𝑆𝑅𝐹𝑠𝑒𝑖𝑠𝑚𝑖𝑐 + 𝑆𝑅𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑆𝑅𝐹𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 + 𝑆𝑅𝐹𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 

                       

(1) 

 

𝑃𝐹𝑀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐_𝑚𝑒𝑎𝑛 = √𝑆𝑅𝐹𝑠𝑒𝑖𝑠𝑚𝑖𝑐 ∗  𝑆𝑅𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ∗ 𝑆𝑅𝐹𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 ∗ 𝑆𝑅𝐹𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
4

 

(2) 

 

    

𝑃𝐹𝑀𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min{𝑆𝑅𝐹𝑠𝑒𝑖𝑠𝑚𝑖𝑐 , 𝑆𝑅𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 𝑆𝑅𝐹𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 , 𝑆𝑅𝐹𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛} 

(3) 

 

 

 

 

In addition to simply calculating the PFMs, we also approximated the uncertainty of each using a first 

order Taylor series expansion. The Taylor series approximation is given in EQ 4, where m is the mean 

value of the SRF and the variance of each SRFi is approximated by interpolating a table derived from 

Monte Carlo analysis, as described in the Methodology Overview document. 
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𝑉𝑎𝑟(𝑃𝐹𝑀) ≈  ∑ [
𝜕𝑃𝐹𝑀(𝑚)

𝜕𝑆𝑅𝐹𝑖
]

2

𝑉𝑎𝑟(𝑆𝑅𝐹𝑖
̂ )

𝑛

𝑖=1

 

            (4) 

The Taylor series approximation is useful for the average and the geometric mean, but it is not a good 

representation of the minimum of several values unless 1 risk factor is always the minimum value. 

Because the distribution of each SRF is different, no general analytic results are provided for the 

uncertainty of the minimum. In order to obtain uncertainty in the minimum maps, we opted to run a 

Monte Carlo analysis with 10,000 replicates only for 5-color combined risk maps. These are provided in 

the text that follows. 

Although the combined risk maps are useful, the ability to compare many locations at once on a site-by-

site basis is also important.  As an example of what is possible with the PFM analysis, we compared a 

small subset of potential sites to assess the individual Task Risk Factors that produced the final combined 

site PFM value for a site (Figure 27).  At these same locations we computed more detailed measures of the 

uncertainty and generated boxplots that show the uncertainty in the mean of the combined risk for a site 

(Figure 28). This type of additional review will enable decision makers to understand if some projects are 

more or less appealing based on the uncertainty associated with different risk factors and the potential 

importance of that uncertainty. Multiple decisions makers may have different attitudes towards 

uncertainty, and uncertainty may be more or less important for varying types of projects.  

For these sites we also compared the three methods of combining risk factors into PFMs. In general, the 

average value for a site (blue x in Figure 29) will always be greater than the geometric mean value (gray x 

in Figure 29), which will always be greater than the minimum value (black x in Figure 29). Figure 29 also 

shows the Monte Carlo 90% probability interval (PI) for the mean value. In general, the uncertainty in the 

minimum is greater than the uncertainty in the geometric mean and the average. 
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Figure 27: Example of a parallel axis plot for nine illustrative project locations. The reservoir metric 

illustrated is RFC and the risk factor combination method is the average. The plot emphasizes which sites 

tend to perform better on the metrics or if there are tradeoffs between objectives. This example illustrates the 

use of Reservoir Fluid Capacity as the reservoir metric. 
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Figure  

 

 

 

 

Figure 28: Boxplots of the estimated empirical distribution of favorability for the three geologic variables for 

nine illustrative project locations, for combinations based on averaging the individual risk factors. The 

reservoir metric used is RFC. The distribution at each site reports the results of a Monte Carlo simulation. 

The box is defined as between the 25
th

 and 75
th

 percentiles with a line at the median. The whiskers extend to 

the most extreme observation that is within 1.5 times the interquartile range from the upper or lower 

quartile. Points outside the whiskers are plotted individually. 
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Figure 29: Graph showing the relative outcomes of the three different combination functions, for the geologic 

factors only. FM refers to the Play Fairway Metric. Note that FMavg (PFMavg) always exceeds FMgm 

(PFMgm), which are greater than FMmin _PFMmin) at selected sites. Lines represent approximate 90% 

probability intervals (5th to 95th percentile). PIs are based on the Weibull distribution for FMmin, the log-

normal distribution for FMgm, and the normal distribution for FMavg. Note that the uncertainty is often 

greatest for the function of minimum. The reported FM is marked with an ‘x’. From Whealton (2016), based 

on analysis of the near-final data set for this project. 

 

Challenges 

Any attempt to combine different dimensions of a project, without a complete physical and economic 

analysis for a site, will involve critical approximations. A strength of the simple 4 risk factor analysis is 

that it provides several maps that could represent different ways a decision maker might consider 

combining the four risk factors. The values of each factor can also be represented spatially, which gives 

insight into where different factors are favorable. This allows identification of potentially favorable 

locations.  Once a few especially attractive locations are identified, the decision maker can be presented 
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additional site-specific information including the uncertainty distribution of the four risk factors and of 

the combined metric.  

This analysis is limited in several ways. First, there are no existing geothermal district heating systems in 

the Appalachian Basin study area, and therefore no test cases against which to compare our combined risk 

metric. Second, the combined PFMs are only relative representations of favorability because there is no 

unified economic model. If there were information on the economic costs of seismic insurance, for 

instance, then this could be incorporated into a single model; but this is not feasible in a preliminary 

screening analysis. We have implied equal weighting, but some risk factors might have disproportionate 

impacts on the economics of a project. Additionally, the thresholds are not uniformly specified across risk 

factors. For instance, a value of 2 in thermal does not imply the same level of favorability (likelihood of 

success) as a value of 2 for seismic. The thresholds used in scaling are relative rankings. Thresholds are 

reasonable measures of general favorability, but they will cause the result to only represent relative 

favorability in the combined PFMs.  

The uncertainty values assigned to each risk factor were based on spatial prediction errors (thermal risk 

factor) and professional judgment of researchers who analyzed the other  risk factors. Therefore, our 

estimates of the uncertainty of the combined metric also is dependent upon the assessment by the 

developers as to the relative precision of different factors. The intent of the uncertainty analysis is to 

honestly represent the precision of the analysis as understood by those who performed the calculations, 

and to improve the characterization of the uncertainty associated with the recommendations to direct 

additional investigations. 

 

Utility of the Methods for Application at other Sites 
From the onset, the Geothermal Play Fairway Analysis – Appalachian Basin (GPFA-AB) team 

emphasized a detailed regional study with a premium on developing methods that were transferable to 

other areas of interest (see Catalog of Supporting Files).  Geological examples include widely available 

datasets and a detailed description of methods. The Utilization effort focused on two categories of direct 

use that are widely applicable, first to residential and community users and second to high heat-demands 

users such as universities, industrial processes, government facilities, etc. The methods and assumptions 

are extensively described in a series of memos (listed in the Catalog of Supporting Files). Numerous Tier 

1, 2 and 3 data have been submitted to the National Geothermal Data System (NGDS) via the Geothermal 

Data Repository, as described in the Catalog of Supporting Files. 

Commercial Viability of the Play 
Phase 1 results for the best Play Fairways in the Appalachian Basin enhance commercial viability by 

reducing risk of development. Additional study is vital to address the economic viability of geothermal 

district heating of any given location in the study area. Recommendations for work to assure 

commercialization is laid out in the Catalog of Supporting Files. 

The Phase 1 analyses clearly indicate the presence of a low temperature geothermal resource. The thermal 

analysis indicates useful temperatures can be accessed at reasonable drilling depths (e.g., 80 °C can be 

reached between 1000–3000 m depth in 30% of the Appalachian Basin (Figure 6). With some important 

local exceptions, the reservoir rocks are of low inherent porosity and, by inference, permeability, at these 

depths. The reservoirs that have high possibility for natural productivity should be targets for immediate 

follow-up research. Elsewhere that the thermal resource quality and utilization opportunities align, the 

reservoirs either lacked data for characterization, or stimulation would be needed, as it has been for many 

decades of hydrocarbon extraction in the basin. While the available flow rate at depths of interest is not 
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yet fully understood, the investment return analysis must consider the possibility of costs associated with 

both initial stimulation and ongoing circulation of fluids at relatively high flow rates to support a closed 

loop district heating system of sufficient scale to justify these costs.  

While these costs are significant, the threshold for alternative energy sources in the study area is higher 

than the nation as a whole. The study area includes New York, with 2014 average retail price of 

electricity 156% of the national average. While Pennsylvania as a whole is just under the national 

average, both the residential and industrial sectors exceed the national average at 107% and 106% 

respectively. West Virginia actually pays less than the national average for electricity, but there are 

substantial environmental benefits associated with shifting a portion of West Virginia’s electricity 

generation and consumption from coal (~80%) to cleaner alternatives.  In this region, heating accounts for 

the primary electricity consumption. Because of this, district heating is proposed as the most 

economically justifiable use of the low temperature geothermal resources. 

When analyzing the utilization risk factor, which is essentially the first stage of an economic analysis, the 

team considered scenarios that favor economic viability. For instance, because the up-front capital 

investment is significant, the utilization calculations intentionally excluded very small (population 

<4,000) municipalities that might otherwise be suitable in terms of the geological characteristics. Distance 

between resource (production wells) and consumers is also treated as an important economic factor, 

through both the impact on costs of piping and on heat loss. Many of the largest population centers within 

the study area are surrounded by suburban areas. Those suburbs have a large population and may be more 

suitable for siting a geothermal well field in a neighboring rural area within 10 km distance.   Some 

potential consumers of the heat may have motivations beyond the cost of heat per BTU, such as 

independence from the utility grid, commitment to renewable energy, or atypical needs for heat such as an 

industrial or agricultural application. Our analysis does not quantify those benefits. 

The primary environmental hurdle is believed to be seismic risk. This was addressed as one of the major 

factors in determining the viable plays. Other environmental factors, such as wetland protection, should 

be able to be addressed through proper engineering design, community education efforts, and permitting. 

The circulating geothermal fluids at the surface are presumed to be a closed loop system, with reinjection 

of all volumes produced, engineered to have casing in the upper portions of the wellbore within reach of 

fresh water aquifers and/or the water table. The target temperature of 80 °C would rarely be reached 

shallower than 1,000 m, which is likely deeper than drinking water aquifers. One environmental factor 

that has not been addressed during Phase 1 is the water needs associated with supplying necessary flow 

rates through the reservoir rock. Studies of water system risks related to high volume hydraulic fracturing 

have demonstrated that the availability of water in New York, Pennsylvania and West Virginia is not 

among the more important limiting environmental factors, though of course water supplies need to be 

planned and the extraction from certain streams avoided (Rahm and Riha, 2012; 2014). 

An initial effort at understanding the permitting requirements was completed as shown in the Permitting 

Memo. There is a need for further review as part of the well site selection work. Geothermal energy 

extraction regulations are not established in NY, PA and WV, except for geothermal heat pumps, creating 

limited levels of legislative clarity concerning the deeper geothermal resource. For example, in 

Pennsylvania and West Virginia it has not been designated if geothermal energy is a mineral right or a 

surface right. In New York, it is not legislatively designated as a mineral, but it is at least listed as a type 

of drilling under the oil and gas permitting section. As a future effort, it is recommended that test 

scenarios be worked through the permitting process of the deep geothermal wells with the appropriate 

agencies to educate them and then assist them in expanding their forms and the permitting process. 

Further details are given in the Catalog of Supporting Files. 
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Possible heat resource users (>165 sites) in addition to Census-identified “places” have been identified in 

the three states. For three cases, explicit interest in extraction of geothermal heat in the temperature range 

investigated in this study has been brought to the team’s attention. For instance, the West Virginia 

National Guard is interested in pursuing alternative sources of onsite energy at military bases, motivated 

by the security associated with grid independence. The Cornell University community has adopted a 

Climate Action Plan, pledging to become carbon neutral by 2050, and there is interest in accelerating this 

to completion by 2035. West Virginia University is poised to upgrade an aged campus direct heating 

system, previously supplied by steam from a nearby coal-fired power plant under a contract that expires 

shortly, with a new heat source, and is considering geothermal energy among the options. More generally, 

the city of Pittsburg, Pennsylvania participated in the DOE August Direct Use Workshop and has 

undertaken many energy efficiency initiatives with programs like Sustainable Pittsburg and the 2030 

District0F

1
. 

METHODOLOGY 
The methodology applied to the Appalachian Basin Geothermal Play Fairway Analysis is described 

generally in this section, and more thoroughly in the Methodologies Overview found in the Catalog of 

Supporting Files. Additional details can be found in the 18 ‘Project Memos’ found in the Catalog of 

Supporting Files of this report.   

The overarching process involved evaluation of each risk factor, resulting in 4 risk segment maps and 3 

maps of uncertainty (the Utilization risk factor was assigned an uncertainty deviation equal to 5% of the 

computed value for the entire basin, and thus not mapped) (Figure 19, Figure 22, Figure 25, Figure 26).  

Following this, the 4 risk factors were combined into a single favorability map.  The Catalog of 

Supporting Files discusses the methodology for computing each of the four risk factors as well as the 

combination effort, touching on:  a summary of the strengths and limitations of the process, mathematics 

used, potential sources of error, software used, and the results of any testing used to demonstrate 

satisfactory model performance. Hyperlinks to specific Memos are inserted within the Catalog of 

Supporting Files text for more information on mathematical formulas and calculation methods, potential 

sources of error, details on the software used (such as version and hardware requirements), and code 

verification/validation, sensitivity analyses, history matching with lab or field data, as appropriate.  

A key assumption central to the project is the understanding that this particular play fairway analysis is 

focused on low temperature and/or direct use applications.  The Appalachian Basin, like much of the 

contiguous U.S., has relatively average continental heat flow (Blackwell and Richards, 2004). While not 

hot enough for traditional hydrothermal power generation, the basin is expected to be warm enough for a 

reduction of power load through direct use applications such as district heating (Reber, 2013). Despite the 

fact that these low-temperature systems can have a lower initial capital requirement than a large 

hydrothermal power plant, understanding where they will be most successful is critical.   

The oil and gas industry has utilized Play Fairway Analysis as a means to site oil and gas well drilling in 

the most advantageous locale, within resource constraints. This project strives to use a similar approach. 

The four primary risk factors identified as critical to the success of a low-temperature geothermal project 

(e.g., quality of the thermal resource, potential for natural reservoir flow, induced seismic risk, and 

demand for the geothermal resource) are not considered to be a complete list of requirements. Indeed it is 

intended that a ‘down select’ based on these initial four criteria will allow later stages of the assessment 

                                                      

1
 http://www.pittsburghpa.gov/green/energyefficiency.htm 
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that may be more costly to focus on only the most advantageous locations. This Geothermal Play Fairway 

project proposes identifying sub-regions worthy of the next stage of activities (exploratory drilling and/or 

additional well logging, permitting due diligence, negotiation of project partnerships, funding avenues, 

etc.).    

The project workflow consisted of a series of seven overlapping tasks, each with various subtasks, 

designed to identify the play fairways.  The first four tasks were specific to the four risk factors (Figures 

30-34). Task 5 evaluated the combined risk, to identify candidates for continued Phase II activities 

(Figure 35). Task 6 encompasses project management and Task 7 provides for sharing Phase I plans and 

results.   

 

Figure 30: Appalachian Basin Geothermal Play Fairway Analysis Process. Each of four key risk 

factors studied in the context of favorability and uncertainty were combined using Play Fairway 

Metrics (PFM) to create final Play maps and overall basin risk.  
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Figure 31:  Flow chart for Task 1 Thermal Resources Risk showing primary data and overview of steps. 

 

 

Figure 32:  Flow chart for Task 2 Natural Reservoirs Risk showing primary data and overview of steps. 
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Figure 33:  Flow chart for Task 3 Risk of Seismicity showing primary data and overview of steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34:  Flow chart for Task 4 Utilization Assessment showing primary data and overview of steps. 
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Figure 35:  Flow chart for Task 5 Combining Risk Metrics showing an overview of main steps and methods 

for producing favorability maps. 

 

The final step was designation of certain regions as Geothermal Play Fairways based on the computed 

common risk assessment maps. This step was both quantitative and qualitative. Quantitatively, the 

designations were informed by aggregated Play Fairway Metrics from a suite of models that combine all  

categories of risk and alternative models that combine subsets of the four major factors. Regions which 

had high potential in any 2 risk factor categories (e.g. good temperature and near a city; or near a city and 

a set of reservoirs of high quality) were considered to be candidates for designation as a play fairway of 

interest. Qualitatively, we consider the geological variability known to occur across the study area, the 

possibility for technological advancement in heat recovery from the rocks, and the possibility for uses of 

direct heat not described in our population-based analysis of the Surface Levelized Cost of Heat for 

district heating systems. Because the reservoir data set is highly discontinuous in space for a reason that is 

not pertinent to its potential to be used as a geothermal reservoir, namely the presence and absence of oil 

and gas, we selected Play Fairways that are much more spatially continuous than are the quantitative Play 

Fairway Metrics maps.  
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DISCUSSION OF RESULTS 
Phase 1 of the Appalachian Basin Geothermal Play Fairway Analysis project was a success, with original 

goals and objectives accomplished.   

Primary Conclusions 

Thermal Analysis 
The thermal resource maps created as intermediate products of this project improve upon some previously 

published Appalachian Basin thermal resource maps, including, but not limited to Blackwell & Richards 

(2004), Frone & Blackwell (2010), Shope et al. (2012), Aguirre (2014) and Stutz et al. (2015).  Results of 

the Phase 1 thermal analyses show that geothermal resources in the Appalachian Basin are indeed almost 

exclusively low temperature, which is in agreement with previous analyses.  

The results indicate that rocks of temperatures of 80 °C can be reached across approximately 30% of the 

coverage area at depths routinely accessed between 1000-3000 m (Figure 6), with varying levels of 

certainty. These depths are comparable to the average depth of oil development and natural gas 

development wells in the US, which were 1500 m and 2000 m, respectively, in 2008 1F

2
.  

The costs of geothermal energy development projects will be strongly dependent on the depth to 

temperatures needed for a given project, thus we consider it paramount to better validate the regional 

thermal models, to reduce the uncertainty on temperature predictions and, in turn, the uncertainties on 

project costs. A priority for future work should be to validate or modify the BHT corrections.  

Additionally, uncertainties in the predicted depths to temperatures needed for projects also result from the 

use of inaccurate thermal conductivities (e.g., Crowell, 2015). Future studies should measure Appalachian 

Basin conductivities, thereby increasing the accuracy of the predicted temperature values relative to the 

use of Anadarko Basin thermal conductivities.  Additionally, a future priority should include collecting 

detailed thermal logs from shut-in or about-to-be-abandoned wells. These logs will provide ground-truth 

for our thermal models and their assumption of conduction-only heat flow — as well as constraints on the 

distribution of thermal conductivities actually encountered in the rocks. 

Reservoir Favorability/Productivity Analysis  
A new methodology and set of metrics were developed to quantify the favorability of known hydrocarbon 

reservoirs to perform as low-temperature geothermal reservoirs. Either directly or indirectly, these 

productivity metrics take into account the depth, reservoir thickness, and permeability. A potential 

weakness of the method is that it uses an estimation of matrix permeability flow for all cases, including 

reservoirs dominated by fracture permeability. Nevertheless, in the validation of the methodology RPI 

performed well when compared to gas production volume data for both fractured and porous reservoirs.  

The metrics RPIw and RFC predict similar distributions of the variability of reservoir quality across the 

study area, with RPIw generally one rank less favorable than RFC (Figure 21a,c). This similarity of 

pattern stems from the facts that both metrics depend direct on the permeability of water and permeability 

varies by several orders of magnitude whereas factors like thickness vary much less; a sensitivity analysis 

showed that permeability is the dominant factor in RPIw values (Methodology appendix). Future 

experience with direct-use geothermal energy systems, further analysis of the total levelized cost of heat 

for a family of possible end-use systems, and technological progress would lead to revisions of the 

                                                      

2
 http://www.eia.gov/dnav/ng/hist/e_ertwo_xwdd_nus_fwa.htm; 

http://www.eia.gov/dnav/ng/hist/e_ertwg_xwdd_nus_fwa.htm 
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reservoir metric thresholds for ranking. Any such changes in the thresholds would alter the combined risk 

outcomes. Whereas the RPIg map appears much more favorable (Figure 21b) because the use of 

supercritical carbon dioxide increases the flux of working fluid through the reservoir pore system, the 

employment of supercritical carbon dioxide as a working fluid lies further into the future of technological 

advances and policy development than does the use of water as a working fluid. 

With reference to the metric Reservoir Productivity Index for water as the working fluid (RPIw), the 

Phase 1 reservoir favorability analysis found that the reservoir productivity potential in the basin is highly 

variable (Figure 21), and the majority of the study area could not be ranked by reservoir productivity 

because of a lack of suitable data. While the great majority of reservoirs are of low natural quality (RPIw 

< 1 kg/[MPa-s]), a small subset has a productivity index >10 kg/(MPa-s) (Figure 21), which may be 

sufficient flow to produce without reservoir stimulation. The productivity index values in excess of 1 

kg/MPa-s correspond to the following formations: 

      Trenton-Black River dolomite fields in southern NY and northern PA 

      Lockport dolomite in northern PA 

      Galway (aka Theresa, or Rose Run) in northwestern PA and western NY 

      Bass Islands Formation in NY and PA 

      Newburg Sandstone in southwestern WV 

      Onondaga Limestone Reefs in southern NY and northern PA 

      The Elk Group Sandstones in various location in Pennsylvania 

      Devonian Unconformity Play in southwestern PA. 

 

A sensitivity analysis showed that the low productivity index for most reservoirs results from low 

permeability (see Catalog of Supporting Files: Methodology). Furthermore, the oil and gas industry has 

commonly employed stimulation for over 50 years in the study area, ranging from small degrees of 

stimulation in vertical wells up to high volume horizontal hydraulic fracturing. That history suggests that 

reservoir improvement by stimulation (hydraulic shearing of existing fractures to improve permeability 

and flow rate) should be given appropriate consideration in future studies.  

We have drawn two major conclusions regarding the usefulness of the techniques employed for this risk 

factor. First, among the more than 1800 reservoirs analyzed, this technique successfully distinguished 

between low quality reservoirs and the best quality reservoirs. Second, reliance on data from oil and gas 

fields provides incomplete understanding of the regional distribution of and variations among natural 

reservoirs. There is a need for future evaluation of potential reservoirs that did not produce oil or gas 

(“saline water aquifers”) to increase reservoir coverage. In total, because there is such incomplete 

coverage of reservoirs in our study area (Figure 22), and also because our reservoir uncertainty index was 

based more heavily on data quality rather than on reservoir heterogeneity, we recommend that the 

calculated uncertainty map play a small role in reservoir decision-making. High uncertainty could be due 

to poor reservoir quality, or it could be due to a lack of data to make an accurate prediction of reservoir 

quality.  Regardless, if natural reservoirs are to be exploited for geothermal energy in the Appalachian 

Basin, additional work is recommended to develop a better way to understand and estimate variability 

within the reservoirs themselves.  

Part of the Phase 1 uncertainty exists because fractured reservoirs are common in the Appalachian Basin. 

Even though our sensitivity analysis of four reservoirs found a good match between the predicted RPI and 

gas production for a case of a fracture-dominated field, it is not known whether that success would hold 

for the majority of fracture-dominated reservoirs. Analysis of fracture-dominated reservoir systems could 

be improved by the integration of more well test and production data, and by further integration of 
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fracture-flow principles. A theoretical approach that considers the orientation of planes of weakness in the 

stress field predicts the orientations and locations of zones of dilatant strain, which should favor water 

flow through fracture systems. A regional prediction of the tendency toward dilation is straightforward to 

add to the analysis used to evaluate induced seismicity. If that theoretical analysis is completed, its results 

should be compared to the known locations of any of the fracture-dominated oil or gas reservoirs as a 

quality test.  

Seismic Risk Analysis 
Throughout the Appalachian Basin study region, based upon analysis of historical earthquake activity, of 

the locations of rock-property discontinuities that may be faults, and of the regional stress field, we 

highlighted areas at increased risk of induced seismicity (Figure 23 - Figure 25).  Earthquake activity over 

the last 50 years occurred sparsely across the three states of interest, and no seismic events of magnitude 

exceeding approximately ML 4.7 occurred. Within the Appalachian Basin in New York, the natural faults 

with a known slip history are almost entirely limited to the northern half of the Basin region (Figure 23), 

where the insulating sedimentary basin rocks are thin and therefore the geothermal heat opportunities are 

not favorable. In Pennsylvania, most of the sparse natural earthquakes occurred in the northwestern 

extreme of the state, where the largest recorded event is of ML 4.5. This cluster of seismic events occurs 

in general proximity to good natural reservoirs but only modest quality thermal resources. In West 

Virginia, natural earthquakes are more widespread in the southwestern half of the state, including the ML 

4.7 event in the southernmost county (McDowell), but no natural earthquake activity has been recorded in 

the northeastern half of the state in the last 50 years (Figure 23). Although the thermally favorable areas 

of southwestern West Virginia are in relatively close proximity to clusters of natural earthquakes, the 

thermally favorable areas of the north-central part of the state are distant from known earthquakes.  

Acknowledging that a 50 year earthquake record is insufficient for characterizing risk, the incorporation 

of a second theoretical means of risk analysis suggests much more widespread occurrence of localized 

zones of enhanced risk (Figure 24). To acknowledge the theoretical slip-tendency solution while placing 

greater confidence on the proximity-based solution, we recommend considering the average risk index  

(Figure 25) as the working hypothesis for risk of induced seismicity. However, the accuracy of this 

prediction is likely low, because neither the orientation nor the magnitudes of the local stress field are 

known.  

To make major improvements on the regional-scale analysis of risk of induced seismicity would require a 

very large research undertaking. The data collection effort needed to determine which “worms” are 

indeed zones of weakness, to determine the local stress orientations, and to measure stress magnitudes is 

large. We recommend that a collaboration among seismologists and potential-field geophysicists be 

undertaken as a step towards validation of the Phase 1 approach with detailed real-world microseismicity.  

Utilization Analysis 
The distribution of Surface Levelized Cost of Heat (SLCOH) is highly skewed (Figure 36): very few 

census locations provided an estimated cost of less than $10/MMBTU. Our results show that roughly 9% 

of Census Place (and Cooperating Places) have a SLCOH in the range of $10/MMBTU to $15/MMBTU, 

6% ranged from $15/MMBTU to $20/MMBTU, and for the remaining approximately 85% such a means 

of heat delivery by district heating system would cost much more.  
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Figure 36: Density histogram of Surface Levelized Cost of Heat among Census Places in the Appalachian 

Basin that have populations >4000. Of the two colored lines at bottom, the upper one shows the threshold 

SLCOH values corresponding to the five colors of the Figure 37 map. The total area of the bars sums to 1. 
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Figure 37: Utilization risk segment map (with 5-km radius buffers around Places). Green is favorable (lower 

SLCOH) and Red is higher SLCOH).  See Figure 36 for the threshold SLCOH values between colors. 

 

Some communities of favored low cost for such a system (Figure 37) occur in areas with moderate to 

favorable thermal resources, such as for the West Virginia cities of Buckhannon and Charleston (Table 2; 

Figure 6). In Pennsylvania, low SLCOH estimates overlap with moderate thermal resources for 

Greenville Borough in Mercer County and Clarion Borough in Clarion County (Table 4; Figure 6). In 

New York, the five high population areas with lowest SLCOH do not occur in thermally favored regions 

(Table 3; Figure 6), although some smaller cities in the southern tier of counties (i.e., Elmira in Chemung 

County) have reasonably favorable SLCOH ($13.9/MMBTU), moderately good thermal opportunity, 

very good reservoir opportunities, and a minimum of seismic risk (Figure 56 of Memo 17, Combining 

Risk Factors: Detailed Calculations and Extended Results). Now that the distribution of resources in the 

subsurface has been newly established (temperature and reservoir resources), we recommend that a study 

be carried out to add the subsurface costs to the district heating surface costs for a few communities. The 

resultant LCOH for district heating systems will then be appropriate for discussion of alternative energy 

supply choices. 

In addition to a risk factor analysis map based on census data, the team also identified more than 165 

prospects for high value direct-use geothermal energy opportunities throughout the study area. These 
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include industrial sites, university campuses, and federal facilities, among others. We recommend also 

that some of these sites be selected for estimation of surface and subsurface costs and LCOH analysis. 

 

Combination of Risk Analysis 
The four individual analyses were combined into final favorability maps using several techniques 

(average, geometric mean, minimum values) (Figure 38 - Figure 40). The uncertainty associated with 

each combination of the four risk factors has been computed. We also computed the uncertainty for each 

of the methods. For the case of the combination achieved by averaging the four factors, a map of the 

spatial distribution of uncertainty is shown in Figure 35b. Similar uncertainty maps for all the other 

combinations can be found in the Methods Overview. The various techniques emphasize differing 

properties of the choices that an institution might make, and thus for now all are retained.  

Using all 4 risk factors, the averaging of the individual risk factors (Figure 38) indicates the most 

favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis 

(dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the 

Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New 

York (together, the Meadville–Jamestown play fairway), and New York counties of Chemung and 

Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway). These areas are 

treated as the higher priority portions of four play fairways, surrounded by broader medium priority 

zones. Also treated as medium priority and worthy of additional exploration is a broad region near 

Pittsburgh Pennsylvania, for which the available geological data are insufficient to fully analyze the 

geological risks but yet the population is high. For uniformity, these five play fairways are illustrated on 

all of the following sets of Play Fairway Metric maps. 
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         (a)              (b) 

Figure 38:  a) Favorability map for the combination of all four risk factors using an average, for the reservoir 

metric RPIw. Green-Favorable, Red-Unfavorable. b) Uncertainty on the combined risk expressed as 

standard deviation. Darker tones indicate less uncertainty.  
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Figure 39: Favorability map for the combination of all four risk factors using the geometric mean, for the 

reservoir metric RPIw. Green-Favorable, Red-Unfavorable. 
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Figure 40: Favorability map for the combination of all four risk factors, for the reservoir metric 

RPIw, using the minimum value. Green-Favorable, Red-Unfavorable.  

The maps presented above (Figure 38 - Figure 40) are designed to highlight utilization opportunities for 

communities and municipalities based on population clusters. However, the long list of other prospects 

for geothermal direct-use identified (over 165 across the 3 state area), independent of census data, points 

out that the utilization and the spatial variability in the cost of utilization are to a large degree functions of 

institutions. These factors contributing to the financial risk change through time and are spatially 

distributed. For example, a multi-year dynamic variability is true for regulations, carbon markets, 

community perceptions, and sites of employment or industry.  

Therefore there is considerable value to examine the combined risks of the three geological characteristics 

only (Figure 41 - Figure 43). This second combined risk map set represents the geologically fixed 

features, against which the dynamic human factors can be compared either qualitatively or quantitatively. 

Relative to the three geologic characteristics, the most favorable counties illuminated by the average 

combined risk are more widespread (Figure 41), especially in West Virginia. In West Virginia, these 
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occur in the central-northern region (Monongalia, Preston, Taylor, Barbour, and Upshur), various clusters 

of counties in the western part of the state (Ritchie, Doddridge, Gilmer Calhoun; Jackson, Putnam, 

Kanawha) and in the far south (Mingo, Wyoming; Raleigh). Pennsylvania shows little area with 

collectively favorable geological factors, with small areas within counties in the far west (Crawford, 

Venango, Warren), center (Elk, Cameron, southwestern Potter), and northern tier (Tioga, Bradford, 

Susquehanna). New York’s coverage of favorable geological factors by the average method (Figure 41) 

is intermediate, revealing almost no strongly favorable areas in counties north of the southern tier. The 

certainty of that null result is diminished by the bias in the data, because there are few deep wells in that 

region of New York that could provide necessary BHT data. Along the southern tier, favorable areas are 

sparse in the west (Chautauqua County) and of increasing coverage from Allegany east through Chemung 

County.  

Figure 41: Favorability map for the combination of the three geologic risk factors, for RFC as the 

reservoir metric, using an average. Green-Favorable, Red-Unfavorable. 
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Figure 42: Favorability map for the combination of the three geologic risk factors, for RFC as the reservoir 

metric, using a geometric mean. Green-Favorable, Red-Unfavorable. 
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Figure 43: Favorability map for the combination of the three geologic risk factors, for RFC as the reservoir 

metric, using the minimum. Green-Favorable, Red-Unfavorable. 

A focus on the three geological risk factors without the district-heating utilization factor facilitates 

consideration of the spatial variation of favorable conditions for end uses in industrial processing, military 

facilities, and institutions with a large capacity of temporary housing, like universities. Figure 44 

illustrates the correspondence between the 165 identified potential industrial and special use sites and the 

geological favorability. 

The success of a geothermal energy extraction project that is based on circulation of water through 

naturally existing pore spaces, on which this study has focused, requires the co-occurrence of favorable 

rock temperature and favorable reservoir conditions at the same depth. To illustrate the spatial variability 

of the intersection of those two properties, Figure 45,  
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Figure 46 and Figure 47 illustrate the temperature field at depths of 1.5 km, 2.5 km, and 3.5 km below the 

surface, respectively. On each of those maps, the documented oil and gas reservoirs are mapped that 

occur within vertical distances of 500 m above or below the reference depth of the temperature field. 

 

Figure 44: Comparison of the favorability map for the combination of the first three geologic risk factors (for 

RPIw as the reservoir metric) using the average, to the locations of the Utilization Individual Sites. Green-

Favorable, Red-Unfavorable. 
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Figure 45. Map of the temperature predicted at a depth of 1.5 km depth below the local Earth surface 

throughout the study area. Superimposed are the locations of reservoir rocks in the range of depth below the 

surface of 1000–2000 m, based on oil or gas production. For those reservoirs, the reservoir quality metric 

based on RPIw for a 5-point non-dimensional scale is indicated by the color of the surrounding polygon: a 

black line indicates a reservoir risk factor of 4 or 5; a gray line indicates a reservoir risk factor of 3. 

The resulting comparison of temperature and reservoirs at similar depths partially illuminates the 

qualitative aspects of the designation of regions as the five Play Fairways. For example, there is a region 

southeast of Buffalo (southeastern Erie County, NY) for which the four factor combined risk factor metric 

map illustrates a favorability score between 1 and 2 (on a 5-color scale, for which 5 is favorable). 

Examination of the maps of temperatures at 1.5 km and 2.5 km depths (Figure 45,  
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Figure 46) reveal that the favorable reservoirs  occur almost entirely near 1.5 km depth where 

temperatures are <50 °C. At 2.5 km depth where the temperatures reach ~50 °C only a very small area is 

known to be underlain by good reservoirs. Consequently we did not designate this region as a play 

fairway. 

Figure 46. Map of the temperature predicted at a depth of 2.5 km depth below the local Earth surface 

throughout the study area. Superimposed are the locations of reservoir rocks in the range of depth below the 

surface of 2000–3000 m, based on oil or gas production. For those reservoirs, the reservoir quality metric 

based on RPIw for a 5-point non-dimensional scale is indicated by the color of the surrounding polygon: a 

black line indicates a reservoir risk factor of 4 or 5; a gray line indicates a reservoir risk factor of 3.  
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Figure 47. Map of the temperature predicted at a depth of 3.5 km depth below the local Earth surface 

throughout the study area. Superimposed are the locations of reservoir rocks in the range of depth below the 

surface of 3000–4000 m, based on oil or gas production. For those reservoirs, the reservoir quality metric 

based on RPIw for a 5-point non-dimensional scale is indicated by the color of the surrounding polygon: a 

black line indicates a reservoir risk factor of 4 or 5; a gray line indicates a reservoir risk factor of 3.  
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Consideration of a combined risk method that more strongly weights the geological weaknesses of the 

plays (Figure 42, geometric mean) reduces significantly the attractiveness of all but a handful of areas. 

The region favored by the averaging method which changed least when analyzed by the geometric mean 

method (Figure 48) is a three-county cluster in south-central New York (the border of Steuben with Yates 

and Schuyler counties, and Chemung County). There, favorable temperatures coincide with high potential 

from the Trenton-Black River reservoirs (Figure 47). These define a play fairway that is robust based on 

consistent PFM favorability (Corning–Ithaca Play Fairway; Figure 38, Figure 41), and should be a high 

priority for further analysis. In West Virginia the total number of possible sites increased dramatically 

when the utilization constraint was lifted (compare Figure 39 to Figure 42, geometric mean), identifying 

favorable plays primarily in eastern Monongalia, western Preston, Taylor and Harrison counties in the 

north (Morgantown–Clarksburg Play Fairway) and as patches in the southern counties of Kanawha, 

Putnam and Jackson (Charleston Play Fairway). The challenge for the Morgantown-Clarksburg Play 

Fairway will be to locate adequate natural reservoirs. In the Charleston Play Fairway the Oriskany 

stratigraphic reservoirs and Newburg Sandstone combine with favorable temperatures to create two types 

of play that warrant further investigation. A wide area in western Pennsylvania ((Mercer, Crawford, 

Venango and Warren counties) and southwestern New York (Chautauqua county) also has favorable 

scores for most of the four risk factors, garnering designation as the Meadville–Jamestown Play Fairway. 

 

 

 

 

 

 

 

 

 

 

Figure 48: Comparison of the geology-only risk factors, using RFC as the reservoir metric, a) combined by 

the average method, and b) combined by the geometric mean method. Green-Favorable; Red-Unfavorable. 

A region with a high population and thick insulating sedimentary rocks that is not highlighted by either 

combined risk analysis is the southwest Pennsylvania region around Pittsburgh. It is an example of a 

region with high use potential (Figure 37; Table 4’s boroughs of West View, Brentwood, and Dormont 

are all near Pittsburgh) but there is little oil and gas well BHT data deeper than 1000 m and few 

documented reservoir rocks (Figure 21). Based on the sparse geological information near Pittsburgh on 

which to base this project and the high degree of utilization opportunity, Pittsburgh is designated as a 

region worthy of farther consideration (Pittsburgh Play Fairway), which we designate as medium priority 

(Figure 38 to Figure 40). The outlines of this play respect the variability of Risk Matrix values of the 

areas around Pittsburgh, but are mostly influenced by utilization opportunities (Figure 37). 
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Three of the institutions that we know are interested in investigating the feasibility of tapping deep 

sedimentary basin geothermal direct-use resources are located relatively near the better areas revealed by 

the combined geological risk analyses (Figure 38 - Figure 40). In south-central New York, Cornell 

University in Tompkins County is at the margin of the inner high priority region of the Corning–Ithaca 

Play Fairway. A lack of information about reservoirs is the primary shortcoming in Tompkins County. 

West Virginia University in Monongalia County and a West Virginia National Guard base in Preston 

County are within the Morgantown–Clarksburg Play Fairway. 

The Geothermal Play Fairway – Appalachian Basin analysis has been conducted to provide guidance to 

individuals who are considering decisions about investing time or resources in further assessment. The 

products are both computed maps of the spatial distribution of combined risk factors that strictly reflect 

existing available data and analyses, and also generalized Play Fairway maps that draw upon additional 

qualitative judgments. The mixed quantitative-qualitative Play Fairway product includes the judgment 

that, if data were not strongly biased toward the geological distribution of oil and gas, the spatial 

distribution of reservoirs would be much more extensive and yet those additional hypothetical reservoirs 

would be of highly heterogeneous quality. Two additional qualitative judgments are that the current state 

of knowledge of a method by which to assess at a regional scale the risk of induced seismicity is 

immature, and that the data on which this project based its seismic risk analysis are insufficient. Because 

the selected play fairways cover much broader areas than the spatial variability of the seismic risk metric, 

users should recognize that some locations within each play fairway likely harbor a higher risk of induced 

seismicity than other locations. Therefore individuals using either the quantitative combined risk maps or 

the quantitative-qualitative play fairways should plan to analyze the site-specific seismic risk as part of a 

decision-making process. 

The team recommends that users of these results focus their attention on the combinations of risk factors 

that best fit their potential projects and focus on the detailed maps rather than on the broad fairway 

designations. This is because the possible rank metrics and the spatial variability of favorable and 

unfavorable conditions depend upon which rank factors are included or excluded, and because the 

thresholds used for this assessment of district heating system utilization may differ from the thresholds 

that are appropriate to the user’s potential geothermal system. For example, a future user whose interest 

rests in off-the-grid heating of a military base may be willing to consider reservoir stimulation, whereas a 

user whose interest is to provide processing heat to a yogurt-making facility may only be interested if 

natural reservoir flow is sufficient at shallow depth. Both those users would be better served by use of the 

geology-only combined risk metrics without inclusion of our utilization metric than by the four-factor 

maps, and the first group might discount reservoir metrics entirely whereas the latter group would be 

keenly interested in the combined risk map that uses RPIw.  

Furthermore, users should bear in mind that the play fairway designations do not take into consideration 

the full costs of a geothermal district heating system.  Additional site-specific studies are needed to 

combine the subsurface risks and the above-surface expenses. 

Comparison of Actual Accomplishments with Original Goals and Objectives 
Referring to the project major tasks and deliverables described under Approaches Used in this report, all 

goals and objectives were achieved.  Deliverables exceed those required, going beyond the risk segment 

maps and the final favorability maps, to also include a series of research Memos documenting the details 

of the analysis by topic and even some sub-topic areas.  Maps and supporting documents can be found in 

the Geothermal Data Repository and the Memos can be found within the Catalog of Supporting Files.    

Uncertainties Corresponding to the Final Favorability Maps   
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Accompanying the Final Favorability Map generated by averaging the four individual risk factors and 

using RPIw as the reservoir metric is a map depicting uncertainty (standard deviation) (Figure 38). A 

similar map of the uncertainty for each combination of the four risk factors and of the three different 

choices of reservoir metrics, as well as for most combinations of only the geologic metrics, exist in Memo 

17 (Combining Risk Factors). These are among the Tier 2 files placed in the Geothermal Data Repository.  
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RECOMMENDATIONS FOR FURTHER ANALYSIS  

Description of Objectives and Outcomes of Recommended Studies 
At the closure of this regional-scale Geothermal Play Fairway Analysis of the northern Appalachian 

Basin, the most significant technical uncertainties, starting with the largest unknowns, are 1) reservoir 

distribution and capacities; 2) validity of thermal resource maps, and 3) the holistic estimation of 

Levelized Cost of Heat for favorable geological situations. Furthermore, in preparation for developing an 

operational geothermal heat supply and usage system at any location within the study area, additional 

groundwork is needed that pertains to permitting and public awareness.  

Description of Recommended Activities 
An overview of the recommended activities for each of the identified priority Play Fairways may be 

found in Table 5: Summary of five play fairways and recommendations for next investigation steps.  We 

explain briefly here the nature of follow-on studies that we recommend in order to verify our Phase 1 

analyses as well as to advance the analysis of geothermal energy potential for a few select “prospect 

scale” locations.  

Broadly speaking, we recommend refinement, validation, and extension of the following aspects of our 

Phase 1 work: 

 Reservoir Productivity Maps. We recommend three sets of study to improve the predictions of 

reservoir productivity. The first type of study focuses on improving the quality of results of the 

reservoir productivity index as presented in this report. More data on properties of known 

reservoirs exist in oil and gas production data sets (e.g., pump tests) and, if accessed, could be 

used to improve the analyses. The second and third types of study focus on identifying 

geothermal reservoirs outside of oil and gas fields and on better differentiating fracture-

permeability reservoirs from matrix-permeability reservoirs. The second recommended type of 

study would use sedimentary facies and published structural geological knowledge to identify 

potential geothermal reservoirs. The third type of study would explore the possibility of locating 

dilational regions through one or two approaches based on geophysical data. An option is to 

combine the orientations of multiscale edges in magnetic and gravity field data (“worm analysis”) 

with stress field information, and calculate which of the potential fault zones (“worms”) are best 

oriented, in theory, for dilation. The other option is to identify locations of potential structural 

complexity by locating places that magnetic and/or gravity “worms” intersecting. Either of these 

approaches may identify zones with higher likelihood for fracture systems that can serve as a 

reservoir, yet the method should be validated against a few locations known from hydrocarbon 

production to be dominated by fracture permeability. Informed by the results of some or all of 

these three studies, the basin scale productivity indices could be reexamined and reservoir maps 

could be adjusted accordingly.  

 Thermal Resource Maps. Because the accuracy of our Phase 1 result was limited by the 

availability of relatively few widely separated equilibrium temperature gradient determinations as 

well as by the need to assume thermal conductivity values that may or may not be appropriate, we 

recommend efforts to add more high quality data to the thermal analysis. First, we recommend 

acquisition of existing shut-in temperature data (as representative of an equilibrium value) from 

industrial partners. Second, we recommend that new equilibrium temperature profiles be logged 

in shut-in holes or those about to be abandoned. Those new equilibrium temperature data can 
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serve the dual purposes of testing the accuracy of this study’s thermal model, as well as perhaps 

enabling refinement of the BHT correction analyses. Additionally, thermal conductivity of 

relevant core samples should be measured. Results from detailed thermal logs as well as statistics 

from conductivity measurements should then be jointly inverted to establish local heat fluxes and 

a conductivity stratigraphy at those locations. All of these aspects should be incorporated into 

enhancing the regional thermal model.  

 Seismicity Potential. The validity of the seismicity risk factor maps should be tested against 

newly acquired seismic monitoring results in PA and NY. Also, to ground-truth the techniques we 

utilized against real-world situations, detailed analysis should be conducted of known induced 

seismicity (e.g., at the Dale brine mining site (Fletcher and Sykes [1977]) relative to our worm-

based seismic risk estimates. Where higher resolution gravity and magnetic surveys may be 

acquired in the future, features within them that may be faults (e.g., the set of “worms”) should be 

subject to the “orientation in stress field” analysis described in this report and accompanying 

methods memo. 

 Structural Delineation at the Prospect Scale. For specific project sites of interest for further 

examination of the geothermal development potential, geophysical studies are recommended to 

locate faults. These studies should include collection of high spatial resolution gravity and 

magnetics data, as well as purchase or acquisition of 2D seismic reflection lines along profiles 

that survey a variety of orientations. Where surface materials do not entirely obscure the 

sedimentary rocks, geological mapping of faults is equally recommended.  

 Utilization LCOH Methods. Detailed scenarios for geothermal direct-use heating should be 

developed for interested communities or businesses. Alternatives for financing and potential tax 

benefits for the geothermal projects in these scenarios should be explored, and corresponding 

benefits and costs expressed by refinement of the GEOPHIRES computational model. 

GEOPHIRES should be used to estimate the Levelized Cost of Heat, inclusive of subsurface and 

surface parts, for those scenarios.  

 Potential Basement Reservoirs. Our study focused on analyzing hot-sedimentary-type plays for 

the Appalachian Basin region. The analysis should be extended to the underlying basement rocks 

with an eye towards Enhanced Geothermal System (EGS) type projects. A recommended initial 

step is to describe expected basement lithologies, constrained by core/cuttings and outcrop where 

available. Additionally, basement fracture architectures (healed/open; spacing) should be 

estimated for these rocks.  

 Planning for pilot boreholes or full geothermal well fields. Where a stakeholder group has 

significant interest in exploring the potential for geothermal direct-use heating, community 

education and efforts to secure necessary permits should be integral parts of their work. Outreach 

information must be developed and used within the communities surrounding prospect-scale 

locations. Additionally, permitting for well drilling and potential mitigation strategies must be 

planned. Other work should involve determining whether significant quantities of water – in 

addition to that naturally occurring in our reservoirs – will be required for a given prospect-scale 

location and, if so, how to secure the rights to that water. If so, the responsible agencies, costs, 

etc. for that location must be evaluated.  
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Table 5: Summary of five play fairways and recommendations for next investigation steps.  

Summary of five play fairways and recommendations for the next investigation steps. The minimum “depth to 80 °C” values are for the best location in the inner 
high priority fairway, and the city values are the best location within 10 km from the city. Also given for those locations is the range of depths corresponding to 95% 
confidence2. The reservoir units are the geological formations in or near the play fairway that are relatively deep (to access higher temperature rocks) and have a 
favorable reservoir productivity index. Blank boxes indicate no recommended immediate action, pending further reservoir analysis and improved assessment of 
probability of reservoir success 

 
 

Play Fairway 
(Name of 

major 
community) 

Conditions in inner high priority play fairways  
(2015 Phase 1 analysis results) 

Recommendations 

Depth (m) to 
80 °C 

Uncertainties (m): 
95% Confidence 

Range of 
Combined Errors 

Reservoir Target 
Unit and Depth(s) 

Below Local Surface 
(m) 

Geophysical 
data & analysis 

Borehole data & analysis Utilization scenarios & 
analysis 

Charleston Location of 
Minimum: 

2200 

Charleston: 
2500 

Location of 
Minimum: 
950-3500 

Charleston: 
950-4100 

 

Newburg Limestone 
(~1700) 

 
Oriskany Sandstone 

(~1400-1500) 
(quality highly 
uncertainty) 

Seismic for 
influence of the 
Rome Trough 
on thermal field 
and fracture 
networks 

Use existing well logs to identify 
positions of deep formations 
that are known reservoirs in 
region, and evaluate by log data 
and models (facies, structure, 
and probability), the reservoir 
potential near Charleston. Log 
equilibrium temperature profile. 

Define needs of a stakeholder 
district heating system and 
model the subsurface costs of 
delivering geothermal heat to 
meet their needs 

Morgantown 
Clarksburg 

Location of 
Minimum: 

2300 
 

Morgantown 

2700 
 

Clarksburg: 
3380 

 

Location of 
Minimum: 
1000-3600 

 

Morgantown: 
1500-3900 

 

Clarksburg: 
2100-4700 

Newburg Sandstone 
(~1500-2300) 

 
 

 

Purchase or 
record gravity 
data & 
magnetics data 
and analyze for 
locations of 
faults 

Log an existing well to obtain 
equilibrium temperature thermal 
profile and reservoir parameters 

Define needs of WVU district 
heating system and model the 
subsurface costs of delivering 
geothermal heat to meet 
WVU needs;  define needs of 
military base and model the 
subsurface costs of delivering 
geothermal heat to meet its 
needs 

Pittsburgh Location of 
Minimum: 

Location of 
Minimum: 

Formation 
associated with 

 For deep wells in neighboring 
counties, use existing well logs to 

Define needs of a stakeholder 
district heating system and 

file://///smu.app-basin-gpfa.us/Users/teresajordan/Documents/Atacama%20dump/Real%20Documents/energy%20research%20&%20education/Geothermal/Play%20Fairway%20Analysis%20Appalachian%20project/Phase%201ReportBodyJan2016StillNeedsNewFig5AndNewTableTJ.docx
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2400 
 

Pittsburgh: 
3800 

 

1200-3600 
 

Pittsburgh: 
2100-5500 

Devonian 
Unconformity 

(~1500) 
 

Elk Group 
(~1250-1430 m) 

identify positions of deep 
formations that are known 
reservoirs in region, and 
evaluate by log data and models 
(facies, structure and probability) 
their potential near Pittsburgh 

model the subsurface costs of 
delivering geothermal heat to 
meet their needs 

Meadville –
Jamestown 

Location of 
Minimum: 

2700 
 

Meadville: 
3000 

 

Jamestown: 
2900 

 

Location of 
Minimum: 
1500–3900 

 

Meadville: 
1800-4200 

 

Jamestown: 
1700–4100 

Galway Formation 
(~2000) 

 
Onondaga 

Limestone (~1300) 

 Use existing well logs to identify 
positions of deep formations 
that are known reservoirs in 
region, and evaluate by log data 
and models (facies, structure and 
probability), their potential near 
Meadville and Jamestown. Log 
equilibrium temperature profile. 

Define needs of a stakeholder 
district heating system and 
model the subsurface costs of 
delivering geothermal heat to 
meet their needs 

Corning –
Ithaca 

Location of 
Minimum: 

2300 
 

Corning: 
2500 

 

Ithaca: 
2600 

 

Location of 
Minimum: 
1500–3100 

 

Corning: 
2100–2900 

 

Ithaca: 
2100–3100 

 

Trenton-Black River 
(2800-3100) 

Purchase or 
record seismic 
reflection data, 
gravity data, 
magnetic data, 
and analyze for 
additional T-BR 
reservoir 
locations as 
well as for fault 
locations 

Log an existing well to obtain 
equilibrium temperature thermal 
profile and reservoir parameters 

Define needs of Cornell 
University district heating 
system and model the 
subsurface costs of delivering 
geothermal heat to meet CU 
needs;  define needs of 
Corning  area office campuses 
and model the subsurface 
costs of delivering geothermal 
heat to meet their needs 

2
 The uncertainty is based on two components. The first uncertainty component is the standard error on the thermal model depth estimate, derived from 

relations between standard error vs. BHT depth in 77 wells with detailed stratigraphy, then applied to the area of interest based on the dominant BHT depths 

in counties near the named location. The second uncertainty component is the kriging standard error of predicted mean at the named location due to spatial 

extrapolation of the well-specific predicted values of depth to 80 °C. These two components are treated as independent, permitting derivation of the combined 

uncertainty as the square root of the sum of the squares. The upper and lower bounds of 95% confidence are expressed by the best estimate of depth minus 

and plus, respectively, the combined uncertainty.
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FINAL PHASE 1 RESEARCH REPORT 

MEMO 1: CATALOG OF SUPPORTING FILES 
Supporting documentation for GPFA-AB Phase 1 consists of  Methodology overview, a series of 
Research Memos, numerous National Geothermal Data System Submissions, and project management 
documents correlating to the Phase 1 Statement of Project Objectives (SOPO).  The text of the 
Methodology report, the research memos and the SOPO documents are included here, whereas the data 
submissions are a catalog listing. 

Statement of Project Objective Task Milestones 
The project tasks and milestones are available following this overview of methods.  

Methodology Overview and Research Memos 
This Methodology Overview (Memo 1) was generated at the conclusion of the project and provides a 
general description of the methods by which all the constituent tasks were completed. An extended and 
integrated description of research methods (Final Phase 1 Research Report – Methodologies for GPFA-
AB) follows the overview and the Statement of Project Objective Task Milestones.  

During the course of the Appalachian Basin Geothermal Play Fairway Analysis Phase I project, 17 
written memos were developed and utilized.  These served a dual purpose: 

1. Solicitation of feedback and input in determination of assumptions, selection of methodology, etc. 
among the team members, particularly for project elements that required reflection and 
refinement, such as how best to correct Bottom Hole Temperatures (BHT) or what thermal 
conductivity values to assign to lithological strata.    

2. Providing insight to other researchers wishing to expand on this research, in the Appalachian 
Basin or elsewhere, after the conclusion of the project. 

Depending upon the subject, some memos are a brief description and justification of choices made, 
whereas others delve into more analysis and are the result of several authors editing over a period of 
weeks. For example, the Memo describing the BHT Corrections goes into detail about the statistical 
analysis of different approaches tried and why the formula selected was appropriate for this data set. In 
several cases, these memos also accompany a Tier 2 Data Submission as explanation of the data and 
methods utilized. 

Memo 1: CATALOG OF SUPPORTING FILES ......................................................................................... 1 
Statement of Project Objective Task Milestones ...................................................................................... 1 
Methodology Overview and Research Memos ......................................................................................... 1 

Methodologies for GPFA-AB ............................................................................................................... 2 
Memo 2: BHT Corrections in GPFA-AB ............................................................................................. 2 
Memo 3: Anadarko Basin Thermal Conductivities in GPFA-AB ........................................................ 3 
Memo 4: Assignment of Conductivity Stratigraphy for Individual Wells using COSUNA 
Methodology in GPFA-AB ................................................................................................................... 3 
Memo 5: Tests of Simplified Conductivity Stratigraphy by Monte Carlo Analysis in GPFA-AB ...... 3 
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Memo 6: Thermal Outlier Assessment in GPFA-AB ........................................................................... 4 
Memo 7: Thermal Resource Thresholds in GPFA-AB ......................................................................... 4 
Memo 8: Thermal Model Methods and Well Database Organization in GPFA-AB ............................ 4 
Memo 9: Exploratory Data Analysis and Interpolation Methodology for Thermal Field Estimation .. 5 
Memo 10: Selection of Four Counties in Each State with the Best Thermal Resources ..................... 5 
Memo 11: Natural Reservoirs Methodology in GPFA-AB .................................................................. 5 
Memo 12: Natural Reservoirs Database Inputs in GPFA-AB .............................................................. 5 
Memo 13: Identifying Potentially Activatable Faults in GPFA-AB ..................................................... 5 
Memo 14: Seismic Risk Map Creation Methods in GPFA-AB ............................................................ 6 
Memo 15: Utilization Analysis in GPFA-AB ....................................................................................... 6 
Memo 16: Risk Analysis in GPFA-AB ................................................................................................. 6 
Memo 17: Combining Risk Factors in GPFA-AB ................................................................................ 7 
Memo 18: Permits for Geothermal District Heating Project in GPFA-AB .......................................... 7 

Available Data in Tier 1, 2 and 3 to GTDA: ............................................................................................. 7 
Tier 1, Phase 1 Final Report and Associated Appendices .................................................................... 7 
Tier 2, Thermal Quality Analysis Maps and Structured Data ............................................................... 8 
Tier 2, Natural Reservoir Quality Analysis Maps and Structured Data ................................................ 8 
Tier 2, Risk of Seismicity Analysis Maps and Structured Data ............................................................ 8 
Tier 2, Utilization Variability Maps and Structured Data ..................................................................... 9 
Tier 2, Combination of Risks Play Fairway Maps and Structured Data ............................................... 9 
Tier 3, Geologic Reservoir in New Revised Content Model Format .................................................... 9 
Tier 3, Heat Flow Updates in Content Model Format ........................................................................ 10 

 

File names listed in this Methodology Overview can be used in internet searches to go to the 
corresponding Memo in the Geothermal Data Repository. 

Methodologies for GPFA-AB 
Phase 1 of the project consisted of a series of 7 tasks, the first 5 of which justify detailed explanation of 
the methods.  Tasks one through four evaluated 4 criteria in the context of risk:  thermal resources, natural 
reservoir quality, seismicity, and utilization.  The fifth task combined these risk elements into a series of 
combined risk maps in order to identify geothermal play fairways.  This document describes the 
methodology for each of these five major tasks, making some references to additional research memos 
contained within this section.   

Methodologies for GPFA-AB filename: GPFA-AB_Phase1Methodology.pdf 

Memo 2: BHT Corrections in GPFA-AB  
Determination of heat flow is a crucial element in estimating geothermal resource potential.  Geothermal 
gradient is one of the key components in calculating heat flow.  The oil and gas industry activity within 
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the Appalachian Basin is a wealth of temperature at depth data, as ‘raw’ or uncorrected Bottom Hole 
Temperature (BHT) values are routinely collected during the oil and gas drilling and/or extraction 
process.  However, BHT can differ from true in-situ rock values due to drilling disturbances, circulation 
of fluids, and other human induced factors.  Additionally, extreme terrain variations as seen in 
mountainous areas can impact accurate determination of geothermal gradient.  For these reasons, BHT 
values are generally ‘corrected’ to approximate an equilibrium temperature-depth profile.  Over the years, 
several approaches to BHT corrections have been used in heat flow determinations and geothermal 
resource estimations.   This memo describes the BHT correction methodology used in this GPFA-AB 
project. 

BHT Corrections in GPFA-AB filename: Memo2_GPFA-AB_BHTCorrections.pdf 

Memo 3: Anadarko Basin Thermal Conductivities in GPFA-AB  
One of the key components in calculating heat flow and temperatures at depth is the thermal conductivity 
of the rock layers.  The thermal conductivity values of rocks within the Anadarko Basin have been studied 
in greater detail than many other sedimentary basins.  While this GPFA is focused on the Appalachian 
Basin, values from the Anadarko Basin have been used as a proxy where measured values unavailable 
within the Appalachian Basin. This memo describes the results of a resampling of Anadarko Basin 
thermal conductivities from Carter et al. (1998). Methods for assigning specific thermal conductivity 
values to each Appalachian Basin formation are discussed in an appendix to the memo entitled 
Assignment of Conductivity Stratigraphy for Individual Wells using COSUNA Methodology in GPFA-
AB. The thermal conductivity values for each formation will be provided as an NGDS data submission.  

Anadarko Basin Thermal Conductivities in GPFA-AB filename:  
Memo3_GPFA-AB_AnadarkoBasinThermalConductivity.pdf 

Memo 4: Assignment of Conductivity Stratigraphy for Individual Wells using COSUNA 
Methodology in GPFA-AB 
In order to determine properties of the thermal field at depth, the thermal conductivity stratigraphy of the 
basin must be known everywhere. In practice, it is infeasible to know the conductivity stratigraphy 
everywhere, so approximations are needed. For this project, the Correlation of Stratigraphic Units of 
North America (COSUNA) stratigraphic columns, available from the American Association of Petroleum 
Geologists were used as approximations of the stratigraphy because 1) well specific stratigraphy is not 
available for every well, and 2) the time constraints of Phase 1 would not be conducive to implementing 
specific geology to each well.  COSUNA provides information on stratigraphy for ‘sections’ throughout 
the continent, including approximate thicknesses of different rock types.  A weighted average of thermal 
conductivity for the entire wellbore can be approximated by consulting COSUNA charts for the various 
rock types and thicknesses encountered within the well.  This memo documents the approach, 
assumptions, limitations, advantages, etc. of the COSUNA methodology for assignment of thermal 
conductivity and formation thicknesses to each well.   

Assignment of Conductivity Stratigraphy for Individual Wells using COSUNA Methodology in GPFA-
AB filename: Memo4__GPFA-AB_COSUNA_Documentation_NewConductivityMethod.pdf 

Memo 5: Tests of Simplified Conductivity Stratigraphy by Monte Carlo Analysis in GPFA-AB  
The simplification of well geology using the COSUNA approximation is tested by using Monte Carlo 
analysis to examine the potential differences of the thermal model outcomes for the COSUNA 
simplification compared to a full analysis of each well.  For 77 wells, thermal model outcomes of the 
conductivity stratigraphy based on well details are compared to thermal model outcomes for the same 
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locations if the COSUNA approximation is used instead. This memo first describes the approach of 
selecting a smaller subset of wells from the large collection to better understand the Basin’s 
characteristics.  Criteria were established for well selection based on availability of better lithology detail, 
multiple temperature-depth readings at appropriate depths, spatial distribution throughout the region of 
interest, etc. against which to test the COSUNA-based thermal model.  The memo then describes the 
Monte Carlo simulation parameters. The results of the analysis are that the differences between the 
COSUNA stratigraphy with Carter conductivities and the detailed stratigraphy are generally minor when 
compared over the whole region.  

Tests of Simplified Conductivity Stratigraphy by Monte Carlo Analysis in GPFA-AB filename: 
Memo5_GPFA-AB_ConductivityStratigraphyMonteCarloAnalysis.pdf 

Memo 6: Thermal Outlier Assessment in GPFA-AB 
The project team must determine which algorithm should be used to identify outliers in the geospatial 
datasets.  Outliers pose a problem for non-robust regression schemes because they would have high 
squared residuals. Many regression techniques seek to minimize the squared residuals, so an outlier can 
have undue influence on the results of the analysis.  This memo outlines the recommended outlier 
detection algorithm and contains several appendices within it.  Appendix 1 outlines the previous work on 
outlier algorithms for the NY and PA geothermal dataset.  Appendix 2 illustrates the sensitivity of the 
final results to algorithm parameters over a reasonable range of values.  Appendix 3 provides Monte 
Carlo type I error rates for different distributions with known shape (e.g. normal, student t, uniform). The 
type I errors were derived empirically using Monte Carlo simulation for sample size of 25. In addition to 
references, appendices for this memo include: 

1. Appendix 1: Summary of Outlier Algorithms Used at Cornell 
2. Appendix 2: Sensitivity Analysis of Recommended Algorithm 
3. Appendix 3: Type I Error Rates 

Thermal Outlier Assessment in GPFA-AB filename: Memo6_GPFA-AB_ThermalOutlierAssessment.pdf 

Memo 7: Thermal Resource Thresholds in GPFA-AB 
The thermal risk factor needs to have thresholds assigned for visualizing the map in the discrete play-
fairway color scheme.  These thresholds should be objectively defined to reflect actual acceptability of the 
resource at that threshold level. Using this method, the resulting risk factor maps will reflect the 
favorability of the site. This memo discusses how the risk thresholds were determined for the Thermal 
Risk Factor, and the methods are transferrable to other risk factors.  

Thermal Resource Thresholds in GPFA-AB filename: Memo7__GPFA-AB_ThermalResourceThresholds 

Memo 8: Thermal Model Methods and Well Database Organization in GPFA-AB 
This memo describes the reorganization of the GPFA well database into a format with additional data 
fields that are necessary to run the thermal model. It also describes the methods, assumptions, and 
equations used in the thermal model. These methods were used for creating the 3rd quarter and final 
thermal maps for this project.  This memo will accompany the Tier 2 Data submission for the Thermal 
Analysis task, including a Derivation of 1-D Conduction Heat Balance.  The Tier 2 Thermal Analysis data 
upload will contain several attached files with this memo: 

1) Well Databases Folder 
2) Trenton-Black River Sediment Thickness Map 
3) Influence of Annual Temperature Fluctuation on Near-Surface Temperatures 
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4) Drilling Fluid Query in SQL 
5) Probabilistic assignment of Drilling Fluid based on Nearest Neighbor Wells 

Thermal Model Methods and Well Database Organization in GPFA-AB filename: 
Memo8__GPFA-AB_ThermalModel 

 
Memo 9: Exploratory Data Analysis and Interpolation Methodology for Thermal Field 
Estimation  
This memo describes the methods, including formulas and assumptions, used to interpolate the geotherm 
data at each well to create the thermal risk factor and uncertainty maps for the project. Included in this 
memo is an exploratory data analysis on wells after processing in the thermal model.  
 
Exploratory Data Analysis and Interpolation Methodology for Thermal Field Estimation filename: 
Memo9__GPFA-AB_ExploratoryDataAnalysisAndInterpolationMethodologyForThermalFieldEstimation 

Selection of Four Counties in Each State with the Best Thermal Resources 
This memo describes the methods used to select the four “best” counties in each state according to the 
thermal resources. This analysis complements the Play Fairway maps that are based on the combination 
of the other three risk factors with the thermal resources. but this analysis is specific to thermal attributes. 

Selection of Four Counties in Each State with the Best Thermal Resources filename:  
Memo10__GPFA-AB_SelectionOfFourCountiesInEachStateWithBestThermalResources 

Memo 11: Natural Reservoirs Methodology in GPFA-AB 
Task 2 for this project involves the mapping and characterization of natural reservoirs within the 
Appalachian Basin region of New York (NY), Pennsylvania (PA), and West Virginia (WV). The 
intention of this memo is to present the methods that have been used for the completion of this task’s 
milestones. The reservoir data collection and compilation methods used for NY are different than those 
used for PA and WV, as will be described within. Reservoir analysis and uncertainty quantification 
methods are consistent across the tri-state region. 

Natural Reservoirs Methodology in GPFA-AB filename:  
Memo11_GPFA-AB_NaturalReservoirsMethods 

Memo 12: Natural Reservoirs Database Inputs in GPFA-AB 
This document is intended to augment the “Natural Reservoirs Methodology” document, by providing 
more details on the original and modified database inputs for New York, Pennsylvania and West Virginia. 
Additionally, all research and literature that affected decisions for the reservoir data input are recorded 
here. This especially includes data for geologic formations in the Appalachian Basin.  This memo will 
accompany the Tier 2 Data submission for the Natural Reservoirs Quality Analysis task.   The Tier 2 
Thermal Analysis data upload will contain several attached files with this memo. 

Natural Reservoirs Database Inputs in GPFA-AB filename:  
Memo12_GPFA-AB_ReservoirsDataSelections 

 
Memo 13: Identifying Potentially Activatable Faults in GPFA-AB 
These analyses attempt to highlight the risk of induced seismicity related to a geothermal project. Absent 
a regionally complete map of deep faults, gravity and magnetic data are analyzed to extract a multi-scale-



DE-EE0006726 

Cornell University 

FY2015-16, Q8 

Memo 1: Page 6 of 10 

edge Poisson wavelet representation of the locations of rocks of laterally contrasting physical properties. 
Among these lateral rock property boundaries are a subset that are candidates for future fault slip, if fluid 
pressures change and if a plane of weakness is properly oriented in space. To narrow the focus of this 
analysis onto rock property boundaries of greater concern (e.g., faults with demonstrated propensity to 
slip), a second step was to identify the co-occurrence of rock-property-boundaries at depths of 3-4 km and 
seismic activity registered in earthquake catalogs or by EarthScope. One approach to exploring the 
likelihood that some of the faults in the region might be reactivated if subsurface pressures change is an 
analysis of tendency to slip, which is based on determination of the spatial orientation of a structure 
(plane of weakness) relative to the direction of the regional principal compressive stress. This method will 
produce interesting results that foster further investigation although at this stage the results will be of low 
reliability as indicators of the risk of induced seismicity. Collection of pertinent data during follow-up 
investigation is vital to create more reliable risk results. 

Identifying Potentially Activatable Faults in GPFA-AB filename: 
Memo13_GPFA-AB_IdentifyingPotentiallyActivatableFaults 
 
Memo 14: Seismic Risk Map Creation Methods in GPFA-AB 
This memo describes the methods used to process the seismic data gathered and generated for this project 
into a Risk of Seismicity. Detailed methodology used to convert the seismic risk data (i.e. distance to 
nearest earthquake, and angle to critical stress) into a two independent seismic risk maps is presented. 
This memo accompanies the Tier 2 Data submission.  

Seismic Risk Map Creation Methods in GPFA-AB filename: 
Memo14__GPFA-AB_SeismicRiskMapCreationMethods 
 
Memo 15: Utilization Analysis in GPFA-AB 
Task four of Phase 1 of the project assesses the utilization demand for geothermal heat.  This was done in 
two parallel efforts: 1) calculation of the Surface Levelized Cost of Heat (SLCOH) for Census Places 
exceeding a population threshold of 4,000 people and 2) identification of prospective users of geothermal 
heat, including larger commercial and/or industrial users. This memo is intended to accompany the Tier 2 
data submission: 

1) MATLAB code for interchange with GEOPHIRES 
2) Result table for Census Places  
3) Result table of Prospective Users 
4) Shape file of Map showing Census Places and Prospective User locations 

Utilization Analysis in GPFA-AB filename:  
Memo15_GPFA-AB_Utililzation_Analysis 
 
Memo 16: Risk Analysis in GPFA-AB 
This memo builds upon the 1 April 2015 memo entitled “Combining Risk Factors.” The relevant 
discussion from the previous memo is retained, when applicable.  One difference here is an emphasis that 
map colors for 3-color or 5-color maps should be related to the actual acceptability of a location 
measured on that risk index at the scale of the analysis.  They are not relative metrics providing just a 
comparison to other locations or projects, but absolute evaluations of project acceptability.  This makes it 
reasonable to consider the minimum value across risk indices as a criterion for project acceptability.  This 
memo outlines the required map data format for the individual risk factor maps, and the information that 
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will be required. That includes thresholds used for scaling.  The memo also describes some of the ways to 
represent uncertainty in the analyses and visualization tools that may be used in our final analyses.  This 
memo summarizes some methods that we thought would be applicable to combining risk factors, but it 
does not represent the final methods used in the analysis. The Memo 17 gives the final results and 
describes the methods used. 

Risk Analysis in GPFA-AB filename: Memo16_GPFA-AB_RiskAnalysis 
 
Memo 17: Combining Risk Factors in GPFA-AB 
This memo provides details and extended results related to the play fairway computations. The results 
include values used in converting each risk factor into the play fairway scale (scaled risk factor) and 
extended results on different methods of combining risk factors. The robustness of the different 
combination methods is briefly discussed. Calculations of uncertainty are discussed, including methods 
used to approximate the uncertainty in a scaled risk factor and a combined map. Detailed graphics for 
project locations are provided. The general principles of the combinations were outlined in the previous 
memo, but this document gives details on the computations and actual results from the analysis. 

Combining Risk Factors in GPFA-AB filename: Memo17_GPFA-AB_Combining_Risk_Factors 

Memo 18: Permits for Geothermal District Heating Project in GPFA-AB 
Permits will be required for any new drilling associated with a geothermal district heating project.  This 
memo summarizes the anticipated permitting requirements and associated effort for subsequent phases of 
the project.  

Permits for Geothermal District Heating Project in GPFA-AB filename: 
Memo18_GPFA-AB_PermittingGeothermalDistrictHeating 
 
Available Data in Tier 1, 2 and 3 to GTDA:   
This project has resulted in data submissions to the National Geothermal Data System (NGDS) via the 
Geothermal Data Repository (GDR) in all three supported Tiers.  The SOPO tasks addressed by these 
submissions appears below each explanation as well.   

Tier 1, Phase 1 Final Report and Associated Appendices 
A PDF of this Phase 1 Final Report including associated appendices and memos will be uploaded as a 
Tier 1 data submission.   

Task 6.0  Project Management and Reporting:  The three team leaders (Cornell, SMU, WVU) will 
interact bi-weekly to assure continued progress on the project. At each quarter's end, available team 
members will meet by conference call or in person to discuss project progress and needs.  Quarterly 
project reviews will be held with DOE staff by phone or webinar to present project status and verify 
milestones. One quarterly review will be made in-person at the Geothermal Technology Office peer 
review (tentatively scheduled for spring 2015 in Denver). 

Task 6 Deliverable A final report detailing all facets of the study and detailed 
suggestions for Phase II will be presented at the end of Phase 1. This report will be the 
basis for a competitive downselect process for Phase 2.  The raw data collected and/or 
new data generated as part of the project will be uploaded to the NGDS at the end of the 
Phase I, following USGIN metadata guidelines. 
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Tier 2, Thermal Quality Analysis Maps and Structured Data 
This zipped folder includes the raw data (bottom-hole temperature data retrieved from the NGDS and 
from the state geological surveys) and calculated data, such as corrected BHT values, formation thermal 
conductivity values, heat flow values, and depth-to-temperature values.  The submission also includes the 
applicable memos, describing the BHT correction methodology, outlier detection, thermal conductivity 
assignment, and thermal model calculations.  The folder includes shape file(s) of all points, georeferenced 
rasters, and image files of heat flow and depth-to-temperature maps, and a ‘read me’ file describing the 
contents of the zipped folder.     

Task 1.0 Thermal Resource Quality Assessment: The purpose of this task and its several subtasks 
are to research and assemble the available thermal data in the published literature as well as that 
thermal data available from non-published sources, to establish the data infrastructure for the project, 
and to carry out the assessment of the first of the proposed Risk Factors (RF1), Thermal Resource 
Quality. 

Task 1 Deliverable: Deliver an improved region-wide map of depths to 80 °C isotherm 
and a county map for four counties per state, as well as a Green-Yellow-Red-ranked 
thermal resource map for the region and for the four counties per state, as derived from 
all the considerations described in Task 1, including lithologies, updated conductivity, 
and updated basement heat flux model, etc. as well as the supporting data according to 
the Data Management Plan and thermal models for the New York (NY), Pennsylvania 
(PA) and West Virginia (WV) region of the Appalachian Basin. 

Tier 2, Natural Reservoir Quality Analysis Maps and Structured Data 
This zipped folder includes the raw data (reservoir thicknesses, depth, water viscosity, and area) and 
interpolated data, including the newly developed Reservoir Productivity Index (RPI).  The submission 
also includes the applicable memo, describing the RPI formulas assumptions and methodology.  The 
folder includes shape file(s) of all points, PDFs of the reservoir quality and reservoir quality uncertainty 
map images, and a ‘read me’ file describing the contents of the zipped folder. 

Task 2.0 Natural Reservoir Quality:  The purpose of this task is to develop the supporting database, 
to evaluate, and to map the distribution of potential geothermal reservoirs.  The result will be Ranking 
Maps and supporting data for natural reservoirs in a majority of the Appalachian Basin of WV, NY 
and PA. 

Task 2 Deliverable: Deliver reservoir quality maps, supporting data and related models 
for the NY, PA and WV region of the Appalachian Basin incorporating information such 
as reservoir quality and variability, porosity, permeability, and hydraulic conductivity. 

Tier 2, Risk of Seismicity Analysis Maps and Structured Data 
This zipped folder includes the raw data (historical record of earthquakes and fault data) and interpolated 
data, including the orientation as an indicator of fault reactivation.  The submission also includes the 
applicable memo, describing the assumptions, equations, and the primary physics behind the analysis.  
The folder includes shape file(s) of all points, PDFs of the earthquake history and fault orientation 
seismicity map images, and a ‘read me’ file describing the contents of the zipped folder. 

Task 3.0 Risk of Seismicity:  The purpose of this task is to review seismicity (excluding enhanced 
geothermal systems –EGS) as a Risk Factor and identify regions with enhanced likelihood for 
inducing unintended seismic activity during preparation of a reservoir, or during the course of 



DE-EE0006726 

Cornell University 

FY2015-16, Q8 

Memo 1: Page 9 of 10 

geothermal heat production.  The result of the task will be maps for the study area in the Appalachian 
Basin in NY, PA and WV of faults and of faults that are active. 

Task 3 Deliverable: Deliver risk map, supporting data according to the Data 
Management Plan, and related models, for the NY, PA and WV region of the 
Appalachian Basin for induced or reactivated seismicity, incorporating fault positions and 
seismicity activity.  

Tier 2, Utilization Variability Maps and Structured Data 
This zipped folder includes the raw data (census bureau population data, EIA heat demand and power 
consumption, and the American Community Survey building size), and output sites with surface levelized 
cost of heat (SLCOH) for 248 Census Places.  The submission also includes the applicable memo, 
describing the assumptions and modifications to the GEOPHIRES software.  The MATLAB program 
used is included (executable as well as script).  The folder includes shape file(s) of all points, PDFs of the 
SLCOH map image, and a ‘read me’ file describing the contents of the zipped folder. 

Task 4.0 Utilization Variability:  The purpose of this task is to identify regions in the Appalachian 
Basin with the capacity to utilize low-grade geothermal heat and the related variability of demand. 
The result of the task will be utilization maps for the region of the Appalachian Basin in NY, PA and 
WV and estimates of Levelized Cost of Heat for a small set of communities. 

Task 4 Deliverable: Deliver maps for spatial variability of population and heat demand, 
and a ranked map for utilization using supporting data according to the Data management 
Plan, for the NY, PA and WV region of the Appalachian Basin. Deliver estimated 
Levelized Cost of Heat (SLCOH) for two communities in each state.  

Tier 2, Combination of Risks Play Fairway Maps and Structured Data 
This zipped folder includes the applicable memo, describing the methodology and assumptions and any 
modifications to the input data (such as combining the two seismicity risk elements into a single value).  
The folder includes a shape file of all points, georeferenced rasters, image files of combined risk maps 
using multiple approaches, and a ‘read me’ file describing the contents of the zipped folder. 

Task 5.0 Risk Matrix Analysis:  The purpose of this task is to merge the common risk segment 
maps described above, and to produce a common Risk segment map.  This will be the compilation of 
factors and the most favorable combinations of multiple risk factors from the Risk Factors evaluated 
in Tasks 1-4.  A risk matrix will be applied to combine the four sets of risk factors and will identify 
up to six “most promising Play Fairways” within the Appalachian Basin in NY, PA and WV. 

Task 5 Deliverable: Deliver common risk assessment map, which delineates up to 6 Play 
Fairways within the NY, PA and WV region of the Appalachian Basin based upon the 
compilation of the spatial variability of the risk factors assessed in Tasks 1-4.  The 
models and available supporting data, according to the Data Management Plan, will also 
be delivered.   

Tier 3, Geologic Reservoir in New Revised Content Model Format 
The results of our Natural Reservoir Quality analysis is also being submitted as Tier 3 data submission 
utilizing a significantly reworded Geologic Reservoir content model. The previous content model for 
describing Geologic Reservoirs, originally developed by the Texas Bureau of Economic Geology was 
adapted to accommodate not only this team’s new project analysis and metrics, but project data from 
other geothermal play fairway analysis projects beyond oil and gas extraction geographies. 
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Tier 3, Heat Flow Updates in Content Model Format 
The new heat flow calculated values are being made available as a Tier 3 standardized data formatted 
submission.  (Note: These were submitted via the SMU Node of the NGDS at geothermal.smu.edu, rather 
than through the GDR). 

 



Low Temperature Geothermal Play Fairway Analysis 
for the Appalachian Basin (GPFA-AB)  

Statement of Project Objectives 
 

This document contains the Statement of Project Objectives for our project including the primary tasks, 
subtasks and milestones for DOE Contract Award Number:  DE-EE0006726. 

 

1. Task 1.0: Project Organization, Data Review, and Thermal Resource Quality Assessment: The 
purpose of this task and its several subtasks are to research and assemble the available data in the 
published literature as well as that data available from non-published sources, to establish the data 
infrastructure for the project, and to carry out the assessment of the first of the proposed Risk Factors 
(RF1), Thermal Resource Quality. 

1.1 Subtask 1.1:  Literature Review and Database Assembly 
1.1.1 Assemble Data (thermal, well logs, etc.) from the National Geothermal Data System 

and other project files 
1.1.2 Review literature, including porosity, permeability and reservoir information relevant 

to portions of the Appalachian Basin within New York, West Virginia and 
Pennsylvania 

1.1.3 Work with State Geological Surveys to select wells for detailed analysis 
1.1.4 Work with State Geological Surveys to compile the detailed analysis for the subset of 

wells 
1.2 Subtask 1.2: Data Management and Analysis Infrastructure.  Select and assemble required 

hardware, data infrastructure and software needed to assess, display, compile, spatially analyze, 
share back-up and otherwise manage the information collected and utilized throughout the 
project.  

1.3 Subtask 1.3: Thermal Reservoir Modeling and Analysis 
1.3.1 Combine the existing maps of the three states (NY, PA and WV) and use this as the 

baseline (note: “baseline” below refers to this current state of knowledge) 
1.3.2 Subdivide basement provinces using potential field data 
1.3.3 Compile thermal conductivity values for Appalachian basin lithologies 
1.3.4 Combine in one dataset the many thousands of wells in all three states that were used 

in producing the existing maps, apply a uniform numerical approach, apply basement 
heat flow appropriate to the basement provinces, apply thermal conductivities 
appropriate to the Appalachian basin formations, krige and analyze semi-variograms, 
and produce a set of region-wide temperature-at-depth maps that improve on the 
baseline. 

1.3.5 Establish uncertainty levels for the regional thermal resource maps  
1.3.5.1 Select approximately 100 test wells based on criteria of data quality, of locations 

that span the full range of thermal quality predicted by the existing maps, and of 
proximity to the small set of existing wells for which there are thermally 
equilibrated temperature profiles 

1.3.5.2 Develop location-specific thermal models that utilize the full suite of geological 
properties of the approximately 100 individual wells 
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1.3.5.3 Validate the well-specific temperature estimates by comparison with existing 
equilibrated thermal profiles, where available; iterate thermal model methods if 
comparison is not judged adequate. 

1.3.5.4 Compare the well-specific results to the combined pre-project baseline maps as 
well as to the newly improved three-state temperature maps. 

1.3.5.5 Decide whether or not to continue using the compiled pre-project maps, or the 
then-current uniform maps, or to revise the model on which the maps are computed 
and repeat the prediction and uncertainty analysis. One of the decision criteria will 
be based upon the standard error of prediction expressed as a percentage of the 
predicted value, and its absolute magnitude relative to the required precision of the 
economic analysis. 

1.3.5.6 If the uncertainty on the maps is judged to be unsatisfactory, team will create a 
new set of region-wide maps based on the test well set only, with corresponding 
analysis of spatial uncertainty. 

1.3.5.7 Based on a map of the depth to 80 °C rock temperatures, for which the shallower 
depths designate the most favorable resources, select four counties per state with 
the most favorable thermal resource. 

1.3.6 Evaluate thermal resources in four counties per state with most favorable thermal 
resource: 

1.3.6.1 Estimate temperature field based on thermal modeling of full geological data for 
approximately 10 wells per county. 

1.3.6.2 Use kriging and semi-variograms to analyze uncertainty associated with thermal 
field maps of most favorable counties. 

1.3.7 Create maps of entire region ranking thermal quality 
1.3.7.1 As a project team, assign thresholds for depths to 80 °C corresponding to 

Green/Yellow/Red classes based on current knowledge of technical and economic 
thresholds. 

1.3.7.2 Create maps using these depth thresholds. 
  

Task 1 Deliverable: Deliver an improved region-wide map of depths to 80 °C isotherm and a 
county map for four counties per state, as well as a Green-Yellow-Red-ranked thermal resource 
map for the region and for the four counties per state, as derived from all the considerations 
described in Task 1, including lithologies, updated conductivity, and updated basement heat flux 
model, etc. as well as the supporting data according to the Data Management Plan and thermal 
models for the NY, PA and WV region of the Appalachian Basin. 

 

2. Task 2.0:  Natural Reservoir Quality:  The purpose of this task is to develop the supporting 
database, to evaluate, and to map the distribution of potential geothermal reservoirs.  The result will 
be Ranking Maps and supporting data for natural reservoirs in a majority of the Appalachian Basin 
of West Virginia, New York and Pennsylvania. 

2.1.  Collate from prior reports and NGDS and/or state databases the spatial and depth distribution 
of known hydrocarbon reservoirs and saline aquifers and record the information in GIS 
databases:  
2.1.1. Determine locations as well as rock and fluid properties of historical conventional 

reservoirs; 
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2.1.2. Compile, from carbon sequestration inventories and from prior studies conducted in 
support of analyses of the potential for injection wells, the locations, depths and 
properties of saline aquifers with high pore volume;  

2.2.  Characterize, based upon the collated information, case studies of each major category of 
natural reservoir  
2.2.1. Identify categories of natural reservoirs based on rock and fluid properties 
2.2.2. Extract data for reservoir quality and variability from databases 
2.2.3. Produce database tied to reservoir categories of porosity and, where reported in prior 

databases, the permeability, hydraulic conductivity and fluid pressure  
2.3.  Create ranking categories of reservoir as best, worst, and intermediate capacity for production 

2.3.1. Use the GIS 3D locations of potential natural reservoirs to identify reservoirs at < 4000 
m. Restrict further analysis only to this depth range. 

2.3.2. Classify the potential reservoir categories by porosity, permeability and pressure 
criteria to identify the reservoirs with greatest potential for high flux of natural 
reservoir water during production and recirculation 

2.3.3. As a project team, assign weights to i) the values of thickness of each reservoir category 
at a specific location, as well as for b) the reservoir category itself. Select a combination 
of thickness and reservoir category weights that serves as a threshold, below which it 
is judged that an insufficient production rate of formation fluids is plausible. This 
decision will be informed by Task 4. 

2.4.  To create a regional map, first rank areas that fall below the threshold noted immediately above 
as Red. Then for all other depths and regions, combine the 3D distribution of thickness and 
category(ies) of the available reservoirs with their weighting factors to create a grid of the 
location-specific suitability of potential reservoirs. The project team will decide upon the most 
suitable algorithm for this combination of factors. Divide the gridded values into the upper half 
(to be designed green) and the lower half (to be designated yellow). 

2.5.  Produce maps of Green/Yellow/Red conditions for the three-state area. 
  

Task 2 Deliverable: Deliver reservoir quality maps, supporting data and related models for the 
NY, PA and WV region of the Appalachian Basin incorporating information such as reservoir 
quality and variability, porosity, permeability, and hydraulic conductivity and other information as 
described in Task 2. 

 

3. Task 3.0: Risk of Seismicity:  The purpose of this task is to review seismicity (excluding enhanced 
geothermal systems –EGS) as a Risk Factor and identify regions with enhanced likelihood for 
inducing unintended seismic activity during preparation of a reservoir, or during the course of 
geothermal heat production.  The result of the task will be maps for the study area in the Appalachian 
Basin in NY, PA and WV of faults and of faults that are active. 

3.1.  Compile fault maps 
3.1.1. Extract fault locations from reports and literature, recording detection method used in 

original report; 
3.1.2. Locate additional faults using potential field data  
3.1.3. Accounting for scale differences in the data that underlie the methods, use differences 

among maps of faults identified by potential field methods and NYS existing detailed 
maps, to estimate the likelihood a fault is missed by the potential field methods. 
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3.1.4. Extract locations of faults detectable with similar criteria across the 3-state area 
3.2.  Determine distribution of active seismicity at shallow depths: 

3.2.1. Based on earthquake catalogs compile hypocenters  
3.2.2. Create map of ongoing (2014-15) microseismicity shallower than 6 km based on, or 

extracted from data recorded by, EarthScope TA eastern US array. 
3.3.  Create maps of risk of activation or reactivation of faults 

3.3.1. Create maps of distances to known faults, with uncertainties 
3.3.2. Create maps of distances to locations of seismically active faults, with uncertainties 
3.3.3. Review the rapidly evolving literature on the relationships between reactivation of 

faults, reservoir properties, distance to the well site, and categories of fluid 
management at the well site 

3.3.4. As a project team, adopt risk criteria for distances of a geothermal well from a fault 
with designations as unacceptable risk (Red), intermediate (Yellow), and acceptable 
risk (Green). The criteria will account for the length of the fault and for properties that 
are typical for the category of the closest reservoir 

3.3.5. Produce maps illustrating areas classified as Green/Yellow/Red 
 
Task 3 Deliverable: Deliver risk map, supporting data according to the Data Management Plan, 
and related models, for the NY, PA and WV region of the Appalachian Basin for induced or 
reactivated seismicity, incorporating fault positions and seismicity activity and other information 
as described in Task 3. 
 

4. Task 4.0:  Utilization Variability:  The purpose of this task is to identify regions in the Appalachian 
Basin with the capacity to utilize low-grade geothermal heat and the related variability of demand. 
The result of the task will be utilization maps for the region of the Appalachian Basin in NY, PA and 
WV and estimates of Levelized Cost of Heat for a small set of communities. 

7.4 Develop maps of variable population density and demand for heat. 
7.4.1 Review of US census data to extract population densities across 3 states; 
7.4.2 Review of climate or surface temperature data to develop the spatial distribution of 

seasonal heat demand; 
7.4.3 Combine population density, heat demand and seasonal demand to develop an index 

for annual heat demand. 
7.5 Use the (GEOthermal energy for Production of Heat and Electricity (“IR”) Economically 

Simulated) model (GEOPHIRES) to conduct parametric analysis of the economics of 
developing integrated geothermal utilization systems as a function of reservoir 
performance, demand requirements, and financial factors such as capital costs, and debt 
and equity rates of return. 
7.5.1 Update model for inflation and regional effects 
7.5.2 Integrate current well drilling costs database and infrastructure capital costs 
7.5.3 After a first draft of a CRS map is created, in anticipation of decision-making based on 

the finalized CRS map, select two communities in each state, one in a favorable 
(Green) and one in an unfavorable (Red) area, and for those communities estimate 
Levelized Cost of Heat (LCOH). The basis for selection of these few communities will 
depend on the availability of information about i) demand requirements in terms of 
temperatures, heat flux, and capacity factors, ii) the sub-surface geological features at 
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those locations, and iii) quality of existing infrastructure for implementing a district 
network as well as a number of social factors such as community interest. 

7.6 Assign ranks to the proximity of a community or other heat consumer to a potential 
geothermal reservoir. 
7.6.1 Use GEOPHIRES to test the sensitivity of the LCOH to the distance of a potential well 

field to a consumer end point 
7.6.2 As a project team, decide upon the thresholds of distance  and of heat demand to rank 

as Green/Yellow/Red 
7.6.3 Create a map displaying the Green/Yellow/Red ranks 
 

Task 4 Deliverable: Deliver maps for spatial variability of population and heat demand, and a 
ranked map for utilization, as described in Task 4, and supporting data according to the Data 
management Plan, for the NY, PA and WV region of the Appalachian Basin. Deliver estimated 
Levelized Cost of Heat (LCOH) for two communities in each state. 
 

5.  Task 5.0:  Risk Matrix Analysis:  The purpose of this task is to merge the common risk segment 
maps described above, and to produce a common Risk segment map.  This will be the compilation of 
factors and the most favorable combinations of multiple risk factors from the Risk Factors evaluated 
in Tasks 1-4.  A risk matrix will be applied to combine the four sets of risk factors and will identify 
up to six “most promising Play Fairways” within the Appalachian Basin in NY, PA and WV. 

5.1 Adopt Common Risk Segment (CRS) calculation standard 
5.1.1 Examine choices in available software or customize software 
5.1.2 Run sensitivity analyses with GEOPHIRES to clarify the relative importance of the 

four risk factors in the viability of a low-temperature geothermal energy project, and 
the nature of threshold effects for those factors 

5.1.3 As a project team, assign weighting factors for each risk category to develop a simple 
composite risk value, as well as considering an appropriate range of non-linear total 
risk functions (including the product of the individual risk factors or their compliments) 

5.2 Create maps of individual risk values of each Risk Factor (RF) 
5.2.1 Equalize spatial resolution of maps; 
5.2.2 Create gridded fields of weighting factor for each of risk categories 

5.3 Map spatial variability of geothermal resource from natural reservoirs 
5.3.1 Run risk analysis for matrix of risk factors from Tasks 1-4. 
5.3.2 Map spatial variability of combined and weighted information on resource, reservoirs, 

faults, and usage 
5.3.3 As a project team, assign thresholds for Green/Yellow/Red ranks 
5.3.4 Compare preliminary LCOH estimates for six communities to the current 

Green/Yellow/Red ranks for consistency. 
5.3.5 Run risk analysis calculations for matrix utilizing alternative weightings as appropriate 

based on expert input. 
5.3.6 Identify zones which are the most favorable identified play fairways. 

 
Task 5 Deliverable: Deliver common risk assessment map which delineates more than 6 Play 
Fairways within the NY, PA and WV region of the Appalachian Basin based upon the compilation 
of the spatial variability of the risk factors assessed in Tasks 1-4.  The models, and available 
supporting data according to the Data Management Plan, will also be delivered.   
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Task 6.0:  Project Management and Reporting 
 
Task 7.0: Commercialization / Market Transformations 
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FINAL PHASE 1 RESEARCH REPORT – 
METHODOLOGIES FOR GPFA-AB 
 
The Phase 1 Final Report contains a discussion of the methodologies used for each of the major project 
tasks in GPFA-AB, including process flow charts.  This document provides further details and references 
a series of research memos that were written throughout the course of the project.  These memos provide 
the reader with a still deeper understanding still of the hypotheses, methods, analyses, etc. for various 
topics.  
 
DISCLAIMER 
The information, data, or work presented herein was funded in part by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 
 

Methodology Task 1, Thermal Analysis:   
Analysis of abundant oil and gas bottom-hole temperatures (BHTs) and sparse equilibrium temperature 
data (Spicer, 1964; Whealton, 2015, 2016) is the foundation for the geothermal resource assessment. As 
of October, 2014 over 40,000 BHT records were available from the National Geothermal Data System 
(NGDS) for New York, Pennsylvania, West Virginia, and a 50 km buffer into neighboring Appalachian 
Basin states. The NY, PA, and WV data were all cross checked with state oil and gas datasets for 
additional BHT information. Overall, state databases provided redundant temperature-depth information, 
so the NGDS data was used nearly exclusively for BHT data in this project. This temperature data was 
merged into a single database with common field headers (see Thermal Model Memo for details). After 
eliminating data for quality control reasons, selecting to analyze only wells deeper than 1000 m except in 
one area which lacked any, and ensuring that each spatial location had only one data point, the data set 
included approximately 13,300 temperature-at-depth points, prior to spatial outlier detection tests. Spatial 
outlier tests were performed on each thermal property for which a map was made, and on average 
removed about 1000 additional points (see Outlier Memo for details). Ultimately for one region in 
northwestern Pennsylvania the 1000 m minimum depth cutoff proved to create a thermal mapping data 
gap whose area exceeded 7000 km2; for that area, BHT data as shallow as 750 m were used (see 
Interpolation Methodology Memo). 

BHT data are known to have many potential sources of error, including collection prior to the thermal 
field returning to equilibrium conditions post-drilling. A set of BHT correction equations were developed 
that reflect spatial variations in the observed data and the underlying geology; a detailed description is 
given in the BHT Correction Memo in the Catalog of Supporting Files and in Whealton (2016).   Broadly 
speaking, a set of wells were identified with a thermal log that was interpreted as being of better quality 
(closer to equilibrium) than the surrounding BHT data. There were 48 equilibrium logs available; these 
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were grouped into 24 clusters, and neighboring BHTs were corrected to the estimated equilibrium 
temperature profile.  Further analysis showed that the BHT corrections followed systematic patterns 
depending on geological province, and on that basis a small set of temperature correction functions were 
established and applied to all the remaining wells according to their geological province. 

Estimations of heat flow and the temperature field at depth requires knowledge of the “conductivity 
stratigraphy” at the >13,300 boreholes whose BHT data were used. We assigned lithologic units, 
thicknesses of each unit, and corresponding thermal conductivities to each borehole from the surface to 
the basement. To accomplish this in the time available, we used the AAPG (1985a, 1985b) COSUNA 
lithology charts and regional maps published by the Trenton Black-River Project (West Virginia 
Geological & Economic Survey, 2006) of the depth to basement, above which the COSUNA information 
was applicable.  Full details are given in the COSUNA Methodology Memo in the Catalog of Supporting 
Files and in Chapter 2 of Smith (2016).  In the absence of detailed information regarding the thermal 
conductivity values of the Appalachian basin sedimentary rocks, values of conductivity for similar rock 
compositions from the geologically similar Anadarko Basin were used.  Refer to both the COSUNA 
Methodology and Anadarko Basin Thermal Conductivity Memos for further details. 

To transform the depth-specific and well-specific corrected BHT data into uniform thermal metrics, a 
computer program was developed to calculate the surface heat flow, and the geotherm (i.e. temperatures 
at depth) for all wells with BHTs and stratigraphic information. This program is a steady state, 1-D heat 
conduction model (Jaeger, 1965) that was developed and tested in the open source software program 
Python 2.7.9 (see the Thermal Model Methods Memo for details). This model updates and improves upon 
previous work by Cornell and SMU as part of the Google.org and NGDS projects (Blackwell D. D. et al., 
2011; Stutz G. R. et al., 2012; Stutz G.R. et al., 2015). This model assumes that radiogenic heat 
production is constant and uniformly distributed in sedimentary rocks, and dies off exponentially in the 
basement crustal rocks as per Lachenbruch (1968). A constant mantle heat flow of 30 mW/m2 is assumed 
to be present throughout the region based on the average mantle heat flow for the stable continents, 
including the Appalachian Basin (Roy, Blackwell, & Decker, 1972). 

The inputs to the thermal model involve a variety of simplifications and assumptions. To evaluate the 
robustness of the output, Monte Carlo simulations were used to examine the variability of the predicted 
thermal properties as functions of the uncertainties of the input variables. One topic of broad uncertainty 
was the reliability of using the simplified conductivity stratigraphy based on the regional COSUNA 
lithologic simplification. To examine the consequences of this simplified method, we obtained well-
specific conductivity stratigraphy data for 77 wells, distributed widely across the study area (Tests of 
Simplified Conductivity Stratigraphy Memo). These well data and the COSUNA-based simplified data 
for the same wells were each subjected to Monte Carlo simulations, and the thermal predictions were 
compared.  

Using the results from the 1-D model, a local outlier analysis was run on each calculated thermal variable 
(Thermal Outlier Assessment Memo). The retained data were then subject to a spatial interpolation to 
generate the predicted mean and the standard error of the predicted mean for the resource, and create 
maps representing the thermal quality in a GeoTIFF format.  Within the Appalachian Basin, wells are 
clustered where there are oil and gas reservoirs, and sparse in areas with little to no oil and gas 
exploration. Therefore, interpolation algorithms must be able to handle predictions for sparse and 
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clustered data.  The spatial interpolation used in this analysis is so-called stratified1 ordinary kriging 
implemented in the open source language R in the package gstat (Pebesma & Wesseling, 1998; 
Interpolation Methodology Memo).  Lateral boundaries at depth within the region were defined based on 
natural geological boundaries, defined primarily by gravity potential field edges at depths from 7–15 km 
(Interpolation Methodology Memo). These geologic boundaries should enclose rocks with similar 
properties, and may represent small-scale “heat flow provinces” (Roy, Blackwell, & Birch, 1968) 
Statistically, lateral stratification/regionalization preserves this assumption by interpolating data 
separately for all provinces, which potentially have different data generating processes (e.g. differences in 
thermal conductivity, heat generation, mantle heat flow, etc.). 

The kriging algorithm considers the spatial autocorrelation in the variable to be predicted, with the 
expectation that points closer to one another are more similar in value than points farther away.  Semi-
variograms corresponding to this structure of spatial (semi)variance illuminate differences in the structure 
of spatial autocorrelation with increasing separation distance on spatial scales smaller than the entire 
Appalachian basin. This result justifies the decision to model BHT corrections and the thermal map 
interpolations on local, smaller scales rather than on a global, regional scale. The stratified kriging 
interpolations capture this variability to provide the predicted mean and the spatial standard error of the 
predicted mean for each thermal variable calculated using the thermal model. For interpolations, the 
spatial correlation range (distance) was used as the maximum searching distance for nearest neighbor 
points – beyond this range there is no modeled spatial correlation. In addition to the searching distance 
restriction, a minimum of 5 points were required to make a prediction at any location within the basin. As 
a result of these interpolation restrictions and the 1000 m cutoff depth (or 750 m in one area), some areas 
on the thermal maps do not have predictions.  

Maps were prepared that express the regional variations in the surface heat flow, the depths to an 80 °C 
surface and to a 100 °C surface, and the temperatures at depths of 1500 m, 2500 m, and 3500 m. The 
depth to 80 °C map and the surface heat flow maps have been updated to reflect changes in methodology 
that developed since the 2015 report was submitted. All other maps are products from the 2015 report.  

A leave-one-out cross validation was performed for each of the interpolated thermal variables, with the 
result that about 98% of the values of left-out points were contained within 3 standard errors of the 
predicted mean for that thermal resource (see the Tests of Simplified Conductivity Stratigraphy Memo for 
the results of the cross validation in each of the 12 selected counties. These results are also from the 2015 
data submission). Another evaluation of the interpolation performance was through comparison of 
equilibrium temperature logs at 1.5 km to the predicted mean at 1.5 km (Figure 18 in main body of the 
report). 

The mapped heat resources were ranked by 3-level (Green/Yellow/Red) and 5-level (Green/Greenish-
yellow/Yellow/Orange/Red) divisions.  The thresholds could be selected based on either general 
economic considerations, in that costs for geothermal energy projects rise as the depth needed to reach the 
temperature of interest increases, or based on the temperature requirements of a given end-use technology 
(Thermal Resource Thresholds Memo). For a 5-division scheme for maps showing the depth to a selected 
temperature, the threshold to least favorable (red) conditions is set at a production depth that would cost 
approximately $10 million to drill and complete a well, which for current estimates of drilling costs 

                                                        

1  “Stratified” in this geostatistical context means an analysis regionalized by lateral boundaries. To other 
geoscientists, that terminology should not be confused with strata meaning vertical layering rather than lateral 
boundaries. 
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corresponds to an average depth of about 4000 m. The succession of thresholds for improved quality of 
the thermal resource were selected in approximately $2 million cost increments. For a 5-division scheme 
for maps showing the temperature at selected depths, thresholds were selected based on the end-use 
temperatures, or favorable values of the geothermal gradient at the depth of interest (e.g. 1.5 km). 
Thresholds are different for each depth considered because the favorability in temperature changes with 
depth. The threshold to least favorable (red) conditions are set at or below 50 °C, the minimum useful 
temperature considered for this project. The most favorable (green) conditions are set between 90 °C (for 
1.5 km depth) and 150 °C (for 3.5 km depth). Thresholds in between these depths are selected based on 
end use temperatures for certain projects.   

Measurements of Thermal Conductivity  

Specific to thermal conductivity, the Appalachian Basin did not have sufficient data available during 
Phase 1 to select representative values for each lithology encountered in the basin. The Anadarko Basin 
thermal conductivity samples were chosen as representative to the Appalachian Basin because of the 
similarities between the paleo-burial depth and age of the two basins. Thermal conductivity is strongly 
influenced by depth of burial (decrease in porosity), and these basins reached similar burial depths.  
During the past year, original samples from Carter et al. (1998) were rerun at SMU to confirm our 
understanding of certain formation values differing by more than 10% in the Carter et al. (1998) paper 
(see Anadarko Basin Thermal Conductivities Memo).  The thermal conductivity of a formation, when 
measured on a divided bar, have had reported differences between samples of ±5% to ±10% depending on 
the formation (Gallardo & Blackwell, 1999; Carter et al., 1998).  This reexamination of Carter et al 
(1998) data highlighted how the mineralogy of the rock sample can change even at the meter scale, 
thereby impacting the thermal conductivity on scales smaller than are of interest for this stage of the 
project.   For this project, formation thermal conductivity on average is of interest, so the values from 
Carter et al. (1998) and available Appalachian Basin thermal conductivities were subject to a Monte Carlo 
simulation to obtain formation-specific average thermal conductivities and measures of uncertainty 
variance. These values were used to construct the COSUNA based thermal conductivity stratigraphy for 
use in the 1-D heat conduction model. In the thermal model, over the entire well the thermal conductivity 
is weighted by formation thickness and harmonically averaged as part of the heat flow and geotherm 
calculation.  In an effort to move away from Anadarko Basin thermal conductivities, we recommend that 
during future assessment studies additional thermal conductivity measurements from core samples for the 
formations of interest in the Appalachian Basin be collected to confirm that our assigned values are 
appropriate, or to change them. The thermal conductivities of Appalachian basin samples can be analyzed 
at SMU or WVU.   

Methodology Task 2, Natural Reservoir Quality: 
Task 2 for this project involves the mapping and characterization of natural reservoirs within the 
Appalachian Basin region of New York (NY), Pennsylvania (PA), and West Virginia (WV).  Phase 1 of 
this project was limited to the analysis of existing data. Because drilling for oil and gas in the 
Appalachian Basin has taken place for over a century, the petroleum industry has vast amounts of data for 
reservoirs. For the purpose of Phase 1, only proven hydrocarbon reservoirs were considered; future work 
may include the consideration of rocks with properties suitable to be reservoirs but that have not been 
used to produce oil or gas. Methods are detailed in a pair of companion memos, one focused on the 
principles of developing reservoir quality indices (see Natural Reservoir Methods), and the second on the 
selection of data needed to calculate the reservoir quality indices (see Reservoir Data Section). 
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The oil and gas industry uses the term “field” to describe a group of wells that all penetrate into the same 
formation to produce oil or gas; therefore, all sources of data for this project used the term field.  
However, in the geothermal industry, the term reservoir is more commonly used to mean a given volume 
of permeable rock from which heat can be extracted using circulation of fluids. A field and a reservoir are 
essentially the same thing, but the perspective is shifted from the wells to the entire body of rock. All 
cases where the term “field” was encountered in our original datasets were changed to reservoir for the 
remainder of the project. 

After thermal quality, injection flow rate is most important factor affecting geothermal heat production 
(Bedre & Anderson, 2012). Given the purpose of this assessment, it was appropriate to select for ranking 
of reservoirs numerical thresholds of reservoir quality that measure the capacity to extract hot water from 
the reservoir. However, the production of fluid from a reservoir depends not only on the amount of in situ 
water in the reservoir but also on engineering and operational selections. Consequently, this evaluation of 
natural reservoirs sought to utilize one or more quality metrics that are firmly grounded to in situ 
geological capacity of the reservoirs and that also include the well-field design and field management to 
express the producible fluids from those reservoirs.  

The natural geological properties encompass permeability, thickness (hydrocarbon pay thickness), 
temperature, depth, and area. Among the operational selections could be the use of a working fluid to 
transfer heat from rock to surface-based heat exchangers that is not water. For instance, supercritical 
carbon dioxide has been investigated as an alternative working fluid (Brown, 2000; Pruess, 2007). The 
chief well-field attributes and operational factors are the diameters of the well bores, the distance between 
production well and the injection well, and the pressure drop created by pumping a well. 

We adopted three metrics (see details in Memo 11 Natural Reservoir Methodology): 

• a Reservoir Fluid Capacity that is a geological quality description, which is the product of 
permeability and thickness of a reservoir 

• a Reservoir Productivity Index which combines natural reservoir properties with well-
field attributes, for the case that the working fluid has the viscosity of water or brine 
(RPIw) 

• a Reservoir Productivity Index which combines natural reservoir properties with well-
field and operational attributes, if the working fluid has the viscosity of supercritical 
carbon dioxide or nitrogen (RPIg). 

A Monte Carlo simulation combines the reservoir parameters and their uncertainties to calculate a 
distribution, mean, and uncertainty for each reservoir's RFC, RPIw and RPIg.   

The oil and gas industry, from which we collected the majority of our data, does not need to produce or 
inject fluids at an ongoing basis of geothermal magnitude (e.g., >300,000 gpd or 30 kg/s). Therefore the 
industry does not report maximum fluid flow rates from their wells. Nevertheless, some of the publicly 
available records include the initial production rate, which we treat as an approximation of a maximum 
potential fluid flow rate and, with these sparse data, we designed a validation test. 

This project analysis of natural reservoirs included more parameters than previously reported in the 
existing National Geothermal Data System (NGDS) content model for Geologic Reservoir Analysis, 
developed by the Texas Bureau of Economic Geology. Instead of simply adding a field called RPI to the 
existing content model for Geologic Reservoirs, we updated the entire content model and added flexibility 
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for numerous types of analysis projects to provide relevant reservoir data.  Researchers can now use the 
content model to report “Reservoir Favorability”2 and describe the units and methods associated in their 
analysis – in our case RPI in kg/MPa-s.  This is just one example of many such updates; the revised 
NGDS Geologic Reservoir Content Model is now available on USGIN (U.S. Geoscience Information 
Network, 2015) for others to use. 

Key Assumptions, Reservoir Favorability: 
• Horizontal homogenous porous media flow approximation for all reservoirs 
• Hydrocarbon production thickness is a proxy for geothermal reservoir thickness 
• Reservoirs in New York (which did not have porosity data associated with them) were assigned 

the same porosity value across similar geologic formations 
• For each geologic formation, a single set of permeability data or porosity-permeability 

relationships were assumed to apply to all reservoirs within that formation 

Primary Steps, Reservoir Favorability: 
1. Compile all existing datasets from the oil and gas industry 
2. Amalgamate the data across the three states, including reconciling differences in data collection 

styles/methods and inputting missing values where needed 
3. Research porosity and permeability values for all reservoirs in NY; research porosity-

permeability relationships, or average permeability values where relationships were unavailable, 
for reservoirs in PA/WV. 

4. Create polygons in GIS for NY reservoirs using well locations. 
5. Research geothermal reservoir metrics and develop a useful favorability index for this project’s 

reservoirs (RFC, RPIw, RPIg) 
6. Develop an uncertainty index for reservoir data source and quality, and assign values to all 

reservoir’s parameters. 
7. Determine best metric to illustrate reservoir uncertainty in map-view. Choice was Coefficient of 

Variation (standard deviation divided by mean)  
8. Conduct a Monte Carlo Simulation to calculate the distribution, mean, and uncertainty of the 

RFC, RPIw, and RPIg for each reservoir. 
9. Display results for the mean RFC, RPIg, RPIw, and uncertainty in a GIS. 

Strengths of Reservoir Favorability Determination Process: 
• The Reservoir Fluid Capacity (RFC) metric compares any and all reservoirs in a basin to each 

other using reservoir properties only. 
• Compares reservoirs based on properties that are important to flow rate 
• Temperature plays no role in determination of RFC and only enters into RPI through its influence 

on viscosity of the working fluid. Our strategy is to maintain independence of the reservoir and 
                                                        

2 The Content Model defines ReservoirFavorability as “Calculated expression of the reservoir's favorability for 
geothermal applications. Examples of suitable parameters include flow rate, productivity, etc. Chosen parameter 
description and units need to be provided in methodology field. Uncertainty and methodology are required if 
ReservoirFavorability is provided.”  ReservoirFavorabilityUncertainty is defined as “An expression of the 
confidence in the ReservoirFavorability value. Best practice to include units and assumptions for calculating 
uncertainty within ReservoirFavorabilityMethodology.” ReservoirFavorabilityMethodology is defined as “The 
method for calculating ReservoirFavorability is stated here. Required if ReservoirFavorability is provided, to 
explain units and calculation of ReservoirFavorability. Also provide units and method for calculating 
ReservoirFavorabilityUncertainty.” 
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temperature maps, to be combined only at the end of the project when all risk factors are 
combined. 

• The Uncertainty Index, constrained by typical variation in reservoir rocks (heterogeneity), 
acknowledges the differences in quality and source of data from state to state, formation to 
formation, and reservoir to reservoir. 

• Coefficient of Variation compares the uncertainty of each reservoir to all other reservoirs, in a 
normalized manner. 

• Monte Carlo Simulation provides a distribution of values for each reservoir quality metric, given 
the assigned Uncertainty Index of each reservoir parameter, thereby eliminating the ‘one-
solution’ obstacle to a complex problem. 

Limitations of Reservoir Favorability Determination Process:   
• Many reservoirs overlap in map view, so maps were made at different depth intervals to better 

display results. 
• The RPI equation applies to porous media formations only. A comparable equation for fractured 

reservoirs could not be derived. Nevertheless, the validation work of this project shows that the 
RPI equation performs well for both porous media and fractured reservoirs, when the RPI result is 
compared to natural gas production data from a small set of reservoirs. This validation is 
described below. 

• Relative to NY and PA, it appears in the final maps that the typical reservoir in PA covers less 
area. This highlights the probability that some differences between states in the perceived 
coverage by reservoirs results from different practices by the PA and WV state agencies and our 
team for NY data for creation of polygons to express oil and gas field boundaries.  

Mathematical components of Reservoir Favorability Determination: 
The petroleum industry often uses a term called the well productivity index (PI) to quantify the 
productivity of a given oil or gas well producing from a reservoir that is dominated by matrix, or 
intergranular, flow. The PI is defined as the volumetric flow rate of a well divided by the pressure drop 
from the reservoir to the producing well, shown as follows: 

!" =  !∆!  !!

!"!! = !"#$
!"# !

!!
                    Equation 1      

where Q is flow rate (m3 /s), ∆P is the pressure drop from the reservoir to the production well (Pa), k is 
permeability (m2), h is reservoir thickness (m), µ is the fluid viscosity (Pa-s), D is the distance between 
the injection and production well (m), and rw is the wellbore radius (m) (Gringarten, 1978).  

The PI has also been used to characterize the productivity of well doublet geothermal reservoirs, for both 
EGS reservoirs and sedimentary aquifer reservoirs (Gerard et al., 2006; Sanyal & Butler, 2009; 
Augustine, 2014; Cho et al., 2015; Hamm et al., 2016). The PI metric was adapted to this project by using 
it as an approximation of a reservoir’s productivity, rather than just a well pair. The metric is identical to 
Equation 1 but is called the Reservoir Productivity Index (RPI). Unlike a situation in an oil or gas field 
for which data specific to a given well would be used, in this study the parameters used are average 
reservoir values. Additionally, the final index value is expressed as a mass flow rate (kg/s) instead of  a 
volumetric flow rate, so that RPI of an incompressible liquid working fluid can be compared fairly to the 
RPI of a compressible gas as the working fluid. 
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Equation 1 was applied to two different choices of possible working fluids: water RPIw and supercritical 
carbon dioxide RPIg. The differences between RPIw and RPIg are the respective inputs for viscosity and 
permeability. 

The reservoir fluid capacity (RFC) was chosen as a favorability metric not only because it is comprised of 
only geologic parameters. This metric provides the opportunity to compare the quantitative favorability of 
each reservoir relative to the other reservoirs based on its natural reservoir qualities only. The RFC, 
shown as F below in units of mD-m, is a simple equation comprised of only permeability k in 
milliDarcies (mD), and thickness H in meters: 

!"# = ! ∗ !                         Equation 2 

Equation 1 for RPIw and RPIg and Equation 2 for RFC are used as the model in a Monte Carlo 
Simulation to predict the uncertainty associated with each reservoir (see Natural Reservoir Memo). 

At the conclusion of the analysis, the RPI model results were evaluated against volumetric gas production 
rate data for four reservoirs in New York. For each reservoir the RPIw and RPIg was compared to 
cumulative initial gas production flow rates from all wells in the reservoir based on gas production data in 
the New York ESOGIS database. The gas production data were converted to kilograms per second (kg/s) 
using the ideal gas law, the molecular weight of methane, and a conversion from days to seconds under 
the assumption that hydrocarbons flowed out of the reservoirs continuously over the course of the day. 
The final mass flow rates of methane were scaled for pressure drop that accounts for up to 1 MPa of 
parasitic pressure losses along the wellbore (see details in Natural Reservoir Memo). A Monte Carlo 
simulation was also run to predict the range of possible outcomes, using raw average permeability values 
and published natural gas viscosity values. Results from the gas volume productivity evaluation were 
compared to the stochastic RPIw and RPIg values for the same reservoirs (discussed below). 

Potential Sources of Error in Reservoir Favorability Determination: 
o RPI equation has many unrealistic assumptions: porous media, homogeneous rock, 

horizontal flow 
o Average permeability values taken from literature not accurate 
o Porosity-permeability relationships inaccurate 

Software Used in Reservoir Favorability Determination: 
o QGIS 2.6 
o MatLab R2015a 
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Results of Sensitivity Analyses for Reservoir Favorability Determination: 
Permeability is the primary variable affecting RPI; thickness is the second most important variable 
(Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Sensitivity Analysis for Reservoir Productivity Index for water as the working fluid 
(RPIw, above) and supercritical carbon dioxide (RPIg, below). k refers to permeability; H refers to 
thickness of a reservoir; µ  refers to fluid viscosity.  

 

 

 

 

 

 



DE-EE0006726 

Cornell University 

Revised October 2016 

Methodologies: Page 10 of 32 

 

 

Figure 2:  The distribution of reservoirs in the Appalachian Basin ranked by the Reservoir 
Productivity Index using water (left) or supercritical carbon dioxide (right) as the metric. Index 
values (horizontal axis, in kg/MPa-s) are the most like (P50) values of the 100,000 Monte Carlo 
realizations at each location. 

 
Primary Conclusions of Reservoir Favorability Determination: 
Most reservoirs in the Appalachian Basin have a low calculated RPIw and RPIg (Figure 2), likely due to 
low permeability in the geologic formations (see sensitivity analysis tornado plot above, Figure 1). 
Stimulation would likely be required to use low-permeability geologic formations.  

There are several geologic formations that have good potential as geothermal reservoirs. These include: 
the Oriskany and Newburg Sandstones in WV; the Elk Group Formation, Devonian Unconformity Play, 
and Galway Sandstone in PA; the Trenton-Black River Dolomite and Onondaga Reef in NY. 

When gas production data were compared to the stochastic RPIg and RPIw predictions, gas volume 
productivity matches closest with the stochastic RPIg result, as expected (Figure 3). For the Quackenbush 
Hill (fractured dolostone in the Black River Formation), Wilson Hollow (fractured dolostone in the Black 
River Formation), and Bockhahn (porous sandstone in the Galway Formation) reservoirs, the gas volume 
productivity lies within one standard deviation of the predicted RPIg. The gas production from Quinlan 
Reef reservoir (reef limestone in the Onondaga Formation), however, plots between the results for RPIg 
and RPIw. The gas production volumes lower than the RPIg for the Quinlan Reef reservoir may be due to 
the fact that oil was also produced from the reservoir but initial production data for oil are unavailable. 
Alternatively, the original estimates of reservoir permeability or thickness for Quinlan Reef were 
overestimated.  



DE-EE0006726 

Cornell University 

Revised October 2016 

Methodologies: Page 11 of 32 

Despite the fact that the RPI metric is derived from Darcy flow through porous media, the metric 
compares well against gas production data not only for porous reservoirs like the Bockhahn reservoir of 
the Galway Formation, but also for both naturally fractured reservoirs like the Quackenbush and Wilson 
Hollow reservoirs of the Black River Formation. However, the metric may not accurately predict the flow 
in a fossiliferous, vuggy porous media like the Onondaga Reef Limestone which is likely to be dominated 
by interparticle flow rather than typical intergranular flow (Jennings and Lucia, 2003); this may also 
explain the discrepancy between the RPI metric and gas production data in the Quinlan Reef reservoir.  

 

FIGURE 3. Results of RPI validation for the following reservoirs (a) Wilson Hollow and (b) 
Quackenbush Hill, which both currently produce gas from the Trenton–Black River hydrothermal 
dolomite; (c) Quinlan Reef, which produced gas from the Onondaga pinnacle reef limestone; and (d) 
Bockhahn, which currently produces gas from the Galway Sandstone Formation. In each panel, the gas 
production data are the blue open circle data point, which is the initial gas production (mcf/d) converted 
to kg/MPa/s using an average pressure drop of 3 MPa. Error bars represent drawdown of 2 MPa and 4 
MPa. The orange and green open circle data points are the results for RPIg and RPIw respectively, with 
error bars representing one standard deviation from the Monte Carlo Simulation. 

There are probably many potential reservoirs not displayed on the Reservoir maps (see main body of 
report) because they did not produce oil or gas, but instead are water-filled or dry porous formations. 
There is a need to map out and characterize dry reservoirs in a next phase, or perhaps to geologically 
extrapolate the possible existence of undrilled reservoirs. 
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Methodology Task 3, Seismic Analysis: 
We considered recorded natural seismicity to be a primary indicator of the potential for inducing 
seismicity in any geothermal developments. To establish the locations and magnitudes of historical 
events, we combined all relevant data from two high quality seismic catalogs.  

The first catalog, from the USGS National Earthquake Information Center (NEIC) provided hypocenter 
locations from 1965 to the present. A well-known weakness of this source of earthquake data stems from 
the relative scarcity of recording seismometers for the Appalachian Basin region of the country. This 
weakness appears as a relatively high “completeness magnitude” for this data source due to large 
distances (on average) from events to recorders – implying only larger earthquakes could be identified on 
enough stations to estimate locations and magnitude. Nevertheless, this catalog – due to its long time span 
– turned out to provide the majority of earthquakes actually used in our analysis. A major benefit of 
earthquake events included in this catalog stems from them having been analyzed by expert seismologists 
to classify the sources as actual earthquakes – as opposed to seismic energy generated from mine or 
quarry blasting. If an event from our region was categorized as an earthquake in the NEIC, we used it. 

The second catalog, the Array Network Facility (ANF) Seismic Bulletin from the National Science 
Foundation’s EarthScope Transportable Array (TA) rolling deployment provided event locations in our 
region from approximately the beginning of 2011 through the end of May 2015.  The array of broadband 
seismometers was deployed to temporary sites – with approximately 70 km spacing – and retrieved on a 
rolling schedule during this time period, so the regional event coverage varied with time. While we did 
find some events usable for our project from this source (red events in Figure 5 of the Identifying 
Potentially Activatable Faults Memo), the lower magnitude catalog completeness we had anticipated in 
the early stages of the project did not, in fact, play a large role. An unanticipated drawback of this source 
of earthquake data came from the fact that the ANF bulletin reports all events recorded by the TA, 
regardless of their source. As described in Astiz et al. (2014), this leads to the inclusion of blasting 
sources of energy in addition to the naturally occurring earthquakes in which we are interested. Indeed, 
this contamination led us to initially incorrectly identify seismic energy from the West Virginia coal 
mining regions and elsewhere as naturally occurring earthquakes. With the advice of Beatrice Magnani 
(SMU), we ameliorated this contamination problem by the rather crude means of simply eliminating TA 
events from 07:00 to 18:00 (local times) from our analysis – due to Federal mining regulations requiring 
blasting during daylight hours only. Clearly, this crude decontamination strategy might have eliminated 
some actual earthquakes. However, just due to raw probabilities from the daily timespans, the odds of 
keeping a true earthquake event from the TA are 13 in 24 – hence we might have lost a little under half of 
the true TA recorded earthquakes.  

The resulting combined catalog retains all recorded earthquakes with epicenters in our region of interest -- 
regardless of depth, magnitude, or any other seismic attribute.  For consistent quality control, no attempt 
was made to include either historical (pre-instrumental) seismicity or events from other catalogs such as 
the ISC. Events from the NEIC (green) and those not rejected by the decontamination procedure from the 
TA (red) are shown in Figure 7 of the Identifying Potentially Activatable Faults Memo.   

As described in great detail in the Identifying Potentially Activatable Faults Memo, we used Poisson 
wavelet multiscale edge (“worm”) analysis of gravity and magnetic grids for a consistent mapping and 
identification of regional structures on which we anticipate seismicity could potentially occur. Briefly, 
worms are closely related to the traditional horizontal gradient analyses of potential fields, but a physical 
interpretation arising from the wavelet technique (e.g. Boschetti et al., 2001; Hornby et al., 2002) allows 
their classification at depth as candidate faults (see the Identifying Potentially Activatable Faults Memo  
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for more detail on the relevant mathematics). The Python based software to calculate worms is open 
sourced (Horowitz and Gaede, 2014). 

We employed two different methods to estimate seismic risk for our region: 

1. The first method focuses on proximity of potential fault zones, whether ancient or not, to known 
earthquake epicenters, and used both the gravity and magnetic worms as well as the located 
earthquakes. For this, the map distances between locations of earthquakes and the worms are the 
criteria with which to assign risk levels.  The underlying principle is that geological structures in 
close proximity to earthquakes could unequivocally be classified as potentially active faults. This 
first method made no attempt at using orientations of the worms – only proximity. The result of 
this technique is plotted in Figure 7 in the Identifying Potentially Activatable Faults Memo where 
all worm points within 5 km of an earthquake location are classified as highest risk; from 5 to 10 
km classified as moderately high risk; from 10 to 15 km classified as moderate risk; and from 15 
to 20 km classified as moderately low risk. Those distance ranges were selected rather arbitrarily, 
but we judged them to provide a reasonable tradeoff between prudence and an overabundance of 
caution – not wanting to sterilize too large a region due to recorded earthquake activity. In the 
spirit of a play fairway analysis, we anticipate these risk categories to be used simply as a guide 
to more detailed analysis for any prospective regions.  A clear drawback of this technique is that 
it can only identify active faults based on seismicity from approximately 50 years of instrumental 
records. This 50 year timespan is of insufficient length to be a representative sampling for 
earthquake cycles on the order of hundreds of years. However, the fact that these locations are 
unequivocally sites of active seismicity should play a significant role in determining prospectivity 
given that seismicity would impact the societal attitude toward acceptability of any candidate 
geothermal project site. 
 

2. The second method performed in essence a “slip tendency” analysis for the orientations of worms 
in the regional stress field orientations. This method is an attempt to fill in some of the spatial and 
information gaps that diminish the utility of the first method.  Regional stress field orientations 
were interpolated to each gravity and magnetic worm point using the technique described in 
Heidbach et al. (2010) – which modifies the directional statistics approach of Mardia (1972) to 
provide a weighted interpolation. Both the estimated orientation and an estimate of errors are 
available at every worm point via this method. Worm strike and error estimates were also 
calculated at every gravity and magnetic worm point according to Mardia’s (1972) techniques. 
From these two orientations and errors, we could then use the Byerlee’s (1978) law coefficient of 
friction (0.85) to derive the worm orientation in the regional stress field most favorably oriented 
for slip. Angular ranges in increments of 5 degrees around these favorable orientations were then 
used to classify worm points for seismic risk. Once again, this can only be a qualitative index of 
risk due to the fact that the actual magnitudes of the state of stress are unknown at our worm 
points – we only know the orientation with respect to σ1. See the Identifying Potentially 
Activatable Faults Memo for more details. We appreciate that this index is a “slip tendency” used 
in other GPFA projects to identify prospective areas, due to fault activity reworking fault gouge 
to create fresh porosity (and presumably permeability). However in our case, the very same 
mechanics represent a double-edged sword. Proximal to population centers, seismic risk due to 
this slip tendency might be considered by stakeholders to be unacceptable. Away from population 
centers, high slip tendency might indeed be a good attribute because of its relationship to 
permeability. Because we are operating under an assumption of direct use geothermal projects, 
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we anticipate any prospectivity in our region would be proximal to populations, and therefore on 
balance a work orientation that corresponds to a high tendency to slip presents more of a 
detriment to a candidate project than a benefit. Software to perform this analysis against World 
Stress Map and worm data stored in the GIS database PostGIS are available via a Git repository 
under https://bitbucket.org/geothermalcode/. 
 

An additional attribute – possibly relevant to increasing the footprint of the reservoir analysis – can also 
be calculated from the same information used for slip tendency. If we define “dilation tendency” to be 
locations where worms are nearly normal to σ3 (i.e. parallel to the σ1 direction), we have an index for the 
potential locations of mode-I fracture openings. As used in several other GPFA projects, these may well 
be good locations to explore for fractured reservoirs. We leave further fleshing out and validation of this 
idea to future studies. 

The two different methods described in the paragraphs above have quite different qualitative character. 
There is no consensus regarding to which of the two approaches offers more practical utility.  
Mathematically, the first “earthquake proximity” method represents a sufficient condition for seismic risk, 
while the second “slip tendency” method represents a necessary condition – at least under the 
assumptions inherent in applying a Byerlee’s law model to the real world. Neither method is 
simultaneously necessary and sufficient – which would be a logical prerequisite for a completely reliable 
seismic risk prediction. In the face of this dilemma, we combined the risk estimates from the two by 
averaging the risks– resulting in Figure 23 in the main report. In our judgment, this combined risk map is 
likely to be more reliable than either stand-alone method. This is because it emphasizes those worms 
proximal to earthquakes that also have high slip tendency. Those are sites near which it would be prudent 
to avoid perturbing the ambient effective stresses by injecting fluids.  The additional improvement in the 
spatial footprint of seismic risk due to the slip tendency method in the combined map is also of benefit 
since it flags areas of concern where geothermal prospects would be wise to perform a detailed state-of-
stress analysis from local data.    

Methodology Task 4, Utilization Analysis: 
The Utilization effort for the Geothermal Play Fairway Analysis of the Appalachian Basin (GPFA-AB) 
included two broad types of data:  1) residential – community ‘Places’ and 2) site specific users with high 
heating demands such as universities, industrial plants, government facilities, etc. to be considered as part 
of future studies.  Below is a description of the data collected, the programs used, and the generalized 
results of the data processing for the residential – community Places.  For the step-by-step descriptions of 
each parameter and the actual programs, see the Catalog of Supporting Files of this report for the 
Utilization Analysis Memo. 

Steps in Determining the Surface Levelized Cost of Heat   
The foundation source code used for the utilization risk assessment is the program GEOPHIRES, 
(GEOthermal Energy for Production of Electricity and Heat Economically Simulated) (Beckers K. F. et 
al., 2013; Beckers et al, 2014; Beckers K. F., 2015). The software uses data about the subsurface 
characteristics and the surface characteristics as inputs to calculate Levelized Cost of Heat (LCOH). 
Because we have characterized the subsurface as part of other tasks (thermal resources and natural 
reservoir quality), we modified GEOPHIRES to focus strictly on the remaining elements: demand for heat 
as calculated from population and climate data, and surface costs associated with delivering that heat to 
those in demand.  Thus, in our implementation, the final output is a Surface Levelized Cost of Heat 
(SLCOH). The SLCOH includes the surface piping, heat exchange equipment (residential and/or 
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commercial), operations, upfront capital cost, and maintenance costs over the lifetime of a 30 year 
project. A MATLAB3 program serves as an interface between the Microsoft Excel files of collected input 
data and the GEOPHIRES program. The GEOPHIRES program can also be used to include the below 
ground parameters, such as fluid temperature, flow rate, and drilling costs, but these were not included in 
this cost estimate because they were incorporated in the Natural Reservoir and Thermal Resources 
sections of the project.   

1. The U.S. Census Bureau maintains a database of information that includes state, county, and 
county subdivision, under the broader term ‘Place.’ A Place is used to identify all individual 
cities, towns, villages, boroughs, universities, and other Census-Designated Places (CDP’s) 
defined as “settled concentrations of population that are identifiable by name but are not legally 
incorporated” (Census Bureau, 2012). The population and scope of a single Place may vary from 
the whole of New York City proper, with a population of over 8,000,000, to the smallest villages 
with populations as low as 10. In the New York, Pennsylvania, and West Virginia area we are 
using the 2010 Census data collection that includes 3,355 Places.  These were downloaded via the 
census FactFinder website (http://factfinder.census.gov). 

2. Starting from the 3,355 places in New York, Pennsylvania, and West Virginia using ESRI 
ArcGIS, the broader Place data were linked to their county and county subdivision. In order to 
complete this task, shapefiles of the Census Places and county subdivisions were loaded into 
ArcGIS. By using a spatial join and having the program find the Places within the county 
subdivision, this resulted in joining the attributes tables of the two files, allowing for the 
information for Places to have corresponding county subdivision data. Finally, all sites were 
checked and any places without a successful join had data manually added. This process was 
repeated to relate places with county information. 

3. The place list was next limited to only those within this project’s Appalachian Basin outline.  We 
used the Golden Software program Mapviewer and ArcGIS for a comparison to confirm accuracy 
of locations within the project boundary. This reduced the number of possible Places for the 
project to 1,697.  

4. For this Play Fairway Analysis project, a minimum population threshold of 4,000 residents per 
Place was applied for all three states, to focus on those Places where a sufficient number of users 
more likely justifies the initial capital investment associated with a district heating system.  There 
were 1,449 Places with populations of less than 4,000. Furthermore, to take into account the 
possibility that neighboring Places whose boundaries are located within 50 m distance of one 
another might develop jointly a district heating system, we merged such individual Places into 
composites, referred to informally as “Cooperating Places”. Together the Places and Cooperating 
Places totals 255; for these the SLCOH was analyzed. In order to have the Places with fewer than 
4,000 people appear as red (unfavorable) on the final maps, each of them was assigned the same 
arbitrarily high SLCOH of $100/MMBTU. The actual input data associated with these places 

                                                        
3 http://www.mathworks.com/products/matlab/ 
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would lead to a different SLCOH and can still be calculated for future analyses as appropriate.  
The population threshold can be set as low as 1,500 residents per Place, and in doing so, makes 
the majority of the Places meet the criteria of good enough to consider. We determined the 4,000 
resident level for population to be of value in focusing the attention to sites most likely to be first 
users of this regionally new energy concept. 

5. The next parameter is the building density and heating demand per building (i.e. detached single-
family, attached single-family, 2 unit buildings, 3-4 unit buildings, 5-9 unit buildings, 10-19 unit 
buildings, 20-49 unit buildings, and 50+ unit buildings).  These detailed data are included within 
the Census Factfinder under “American Community Survey” using the 2010 5-year estimates and 
code B25024, representing the number and type of housing units per residential building 
category. The Energy Information Agency (EIA) performs a Residential Energy Consumption 
Survey (2009) that we used to determine average square footage of each designated unit and 
related heating load on a Census region basis.   

6. Within many Places are commercial buildings, which can be put into 12 categories: 1) 
Accommodation, 2) Food, & Other Services, 3) Administrative and Waste Management and 
Remediation Services, 4) Arts, Entertainment, and Recreation, 5) Educational Services, 6) Health 
Care & Social Assistance, 7) Information Geographic Area Series, 7) Manufacturing, 8) Other 
Services, 9) Professional Scientific & Technical Services, 10) Real Estate & Rental and Leasing, 
11) Retail Trade, and 12) Wholesale Trade.   

a. In order to determine the heating loads for commercial sites within our Place dataset, we 
combined the energy consumption for building types, the square footage of a building, 
and the type of commercial application based on the 12 categories above.  Three datasets 
were used: the EIA’s 2006 report of Commercial Buildings Energy Consumption Survey 
(CBECS) for the floor space, the US Factfinder 2007 ‘Economic Data’ for categories, 
and, the EIA manufacturing energy consumption database available at 
http://www.eia.gov/consumption/manufacturing/. 

b. From these files, the number of establishments and number of employees were collected 
for each “economic place”. Unfortunately, the term “economic place” did not equate to 
that of the census definition of Place.  The “economic place” can be related to the census 
classification of “county subdivision”, which we did have linked to each Place.  
Following the methodology of Reber (2013) and Tester et al. (2015), in the instance 
where a single “county subdivision” (i.e. “economic place”) contained multiple Places 
(typically around metropolitan areas) the data on commercial establishments for that 
county subdivision was divided amongst the Places within that county subdivision based 
on the relative population of each Place. In addition, due to the potentially identifiable 
nature of the reported economic data, some employment sizes were represented by a 
letter which stood for a range of values (ex.  “A” meant an establishment had less than 20 
employees, “B” meant an establishment may have between 20 to 99 employees, “C” 
means 100 to 249 employees, etc.). For these sites, the average of the range rounded up to 
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the next integer was used for the model (ex. “A” would have 10 employees, “B” would 
have 60 employees, “C” would have 175 employees, etc.). This allowed for the 
MATLAB/GEOPHIRES model to have a numerical value to perform the calculations.  

7. Another dataset included was the location of roads (Road shapefiles from the Topologically 
Integrated Geographic Encoding and Referencing [TIGER] dataset). The total length of roads 
within each Place was used as a method to estimate the required piping length required to service 
a given location (Reber, 2013) and Tester et al. (2015). Based on Reber’s conclusions, the 
GEOPHIRES program uses 75% road coverage as a proxy for the length of pipes needed to 
provide adequate piping density to reach all buildings for geothermal district heating system. 

8. The MATLAB script estimated the cost of a system for a lifetime of thirty years. The program 
uses a fixed annual charge rate (FACR), which allows the user to specify several factors, 
including discount rates.  As reported by Shaalan (2001), this annual fixed-charge rate “represents 
the average or ‘levelized’ annual carrying charges including interest or return on the installed 
capital, depreciation or return of the capital, tax expense, and insurance expense associated with 
the installation of a particular generating unit.” A FACR of 6% was used for this Play Fairway 
Analysis effort. According to the U.S. Department of Commerce it calculated an effective 
discount rate of 3% in 2011 for Federal and Public energy projects.  Therefore 1% was also added 
to this value, resulting in a discount rate of 4% applied to SLCOH.  

9. The GEOPHIRES result output of SLCOH is a spreadsheet (.csv format).  The output was 
grouped by state and then sorted based on the population size and the resulting SLCOH in the 
units of dollars per one million BTU (British Thermal Unit), $/MMBTU.  For all Places with a 
population of less than 4000 the SLCOH was assigned an arbitrary but high value of 
$100/MMBTU.  This allowed retention of smaller communities in the workflow in anticipation of 
assessments subsequent to the present study.  Later improvements to these cost estimates for the 
entire Place list will be straightforward, since the GEOPHIRES and MATLAB programs allow 
updates for a few or many sites with the same amount of effort.   

For the resulting 255 Places (and Cooperating Places) assessed, the best case (least expensive SLCOH) is 
7 $/MMBTU and the highest (most expensive SLCOH) is 59 $/MMBTU. The Places were differentiated 
into three thresholds with the best case scenario for the SLCOH between $5 and $13.5, good between 
$13.5 and $16, and low or unlikely potential as $16 to $25 SLCOH.  The distribution of the 255 Places is 
displayed in Table 1 of the main report, except for values of SLCOH over $25 since it is considered not 
currently economically viable. In addition, there were 1,442 places assigned an arbitrary value for 
SLCOH of $100 to separate out low populations.    

A second set of values were assigned for the five-threshold combined layer risk assessment.  Here the 
values were $5 to $12 (green - best), $12 to $13.5 (greenish yellow), $13.5 to $16 (yellow), $16 to $20 
(orange) and $20+ (red - worst).  At the level of this Phase 1 project there is not enough site knowledge, 
even at the Place level, to assign increased levels of significance in the dollars amounts for the SLCOH.  
These were developed for the consistency of the combined risk task input files (see Catalog of Supporting 
Files for the Combining Risk Factors Memo).  
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For a comparison with current costs of energy, the FERC price of gas for New England states during the 
winter of 2014 was $11.75/ MMBTU (DOE Federal Energy Regulatory Commission, 2013). This is only 
the price for the fuel, not all the additional infrastructure necessary for the heating/cooling of a building 
taken into consideration as it is within the SLCOH.		

Error estimates for the Utilization risk factor were not calculated. Rather for the level of detail of Phase 1, 
the entire area is given a uniform uncertainty of 5% based on changes in population and cost. There are 
inherent uncertainties for Census tract data that are similar for all of the data, such as movement between 
tracts or building occupancy. The Census Bureau already includes within their Place data a correction, 
which takes into consideration the weights for nonresponse and the sampling error (U.S. Census Bureau, 
2000).  The state populations of NY and PA grew 1.9% and 0.7% respectively between 2010 and 2015 
and WV decreased by -0.1% during the same time period (U.S. Census Bureau, 2015).  The cost of 
surface infrastructure and equipment is based on the cost estimates used by Reber (2013), Reber et al. 
(2014) and Tester et al. (2015) that were best estimates at that time.  Since 2013 the Social Security 
Administration has given a cost of living increase of 1.5% in 2014 and 1.7% in 2015 (Social Security 
Administration, 2015). Until we determine a site specific project and are able to include the below-ground 
information, the incompleteness of this economic analysis completely overshadows the impacts of these 
listed errors in the pricing.  Utilization risk for the SLCOH can change, but at the Phase 1 level of this 
project the calculations for the overall high-density heat demand of an area will not significantly change.   

In fact, the Utilization demand for the heat is potentially the best known risk factor of the GPFA 
Appalachian Basin project. During later projects a research team can work within one or more narrower 
areas of interest to differentially look at the sites under consideration. On a one-by-one basis an analysis 
of individual site uncertainty becomes necessary for prospective development locations. Items such as 
Government regulations (EPA), tax incentives (state, local), green awareness/desire of industry and/or 
community, areas of high economic growth, building codes, local competition of infrastructure materials, 
cost of electricity/fossil fuels, etc., must all to be considered during refined analysis stages for individual 
sites.  

Methodology Changes and Improvements 
An improvement on the Utilization programing included an updated shell interface for the MATLAB 
code to allow repeated iterations of the GEOPHIRES model with a single command. This MATLAB shell 
module is responsible for (1) reading all required inputs from an input *.csv spreadsheet; (2) performing 
preliminary calculations including estimating temperature and demand profiles, reinjection temperatures, 
required mass flow rates, surface infrastructure equipment sizes and costs, and pumping costs; (3) 
executing the GEOPHIRES software package with the appropriate inputs and rerunning it if need be to 
ensure accurate results; (4) storing pertinent variables, including the GEOPHIRES output LCOH, and 
writing them to an output spreadsheet; and (5) iterating the entire workflow for each town, community or 
other ‘Place’ of interest in the study group.  

Results of the SLCOH Ranking   
For the Surface Levelized Cost of Heat analysis, we started with 3,355 U.S. Census Places for the three 
states. Of these Places, 1,697 were located within the project area. Of those Places 1,449 had populations 
of less than 4,000, thus leaving 255 Places for the Utilization assessment. The lower the SLCOH of a 
project Place, the better will be overall project economics. The SLCOH is based on a 30 year system 
lifetime. 
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The top sites for each of the three states based on the Place analysis methodology described above are 
listed in Tables 2-4 of the main report. The results for West Virginia (Table 2, main report) include the 
smallest populations with lowest SLCOH. The low SLCOH combined with the fact that the region also 
has several wood drying sites appearing on the Prospect List of possible industrial users gives sites within 
West Virginia the best ranking for Utilization. Morgantown, with West Virginia University interested in 
converting its district heating system, has one of the higher rankings for the entire state (Table 2, 
Morgantown-Westover City, SCLOH of 11.2 $/MMBTU). Another site of interest includes Kingwood 
(population 2,939 residents), site of Camp Dawson, ranked in the lower half of the WV results, yet it is 
still a good candidate because of the existing district heating system and interest of converting it to 
geothermal. 

The top ten Places in New York have populations well above the 4000-person threshold (Table 3). The 
largest cities in the study region of New York are Buffalo in Erie County (261,000 pop) and Rochester in 
Monroe County (211,000 pop), and their dense housing led to an overall low SLCOH placing them 
among the top Places. The top counties for New York also include dairy processing sites as well as 
numerous colleges and universities such as Buffalo State College and University of Rochester (file within 
Geothermal Data Repository submission #623, GPFA-AB_Phase1ExamplesSitesByIndustryList.xlsx). 
Within the top locations for the state of Pennsylvania (Table 4 in the main report) are communities with a 
mixture of populations intermediate between those of New York and West Virginia. The counties with 
favorable SLCOH for Places also include many college campuses, e.g., Luzerne County Community 
College and King’s College in Luzerne County; Seton Hill University in Washington County; Carnegie 
Mellon University and Slippery Rock University in Allegheny County (file within Geothermal Data 
Repository submission #623, GPFA-AB_Phase1ExamplesSitesByIndustryList.xlsx). Pennsylvania has 
two of the largest populations within the Appalachian Basin project with Pittsburgh in Allegheny County 
(305,000 pop) and Erie in Erie County (102,000 pop). The city of Pittsburgh has multiple green initiatives 
such as Sustainable Pittsburgh and District 2030.	Although Pittsburgh itself did not rank among the top 10 
communities with respect to SLCOH, three of its suburbs did: Dormont Borough, West View Borough, 
and Bellevue Borough.	

Implications of SLCOH Results 
All three states have numerous census Places with sufficient population to lead to initial estimates of 
surface infrastructure and operation costs that appear to be within reach of geothermal district heating 
resources.  New York has some of the highest average prices for electricity in the country, particularly in 
the residential sector, as reported by the Energy Industry Association (EIA) (Table 1). New York has the 
highest residential and commercial rates of the three states and West Virginia has the lowest, and 
nationally is among the states with least expensive electricity. The comparative costs of electricity to the 
equivalent heating capacity from geothermal energy may change in the future as the states develop and 
execute policies to control carbon dioxide emissions that add to electricity prices. WV uses the coal 
mined in the state that is now going to be impacted by the new 2015 EPA Clean Power Plan (EPA, 2015). 
Whereas West Virginia has a stated goal to reduce their carbon dioxide emissions 29% by 2030 from their 
2012 level (EPA – WV, 2015), the West Virginia coal industry is working actively against such federal 
and state plans (Coal Forum, 9.28.15). Pennsylvania plans to reduce their CO2 by 23% and New York by 
10% (EPA, 2015). 
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Table 1:  Comparison of Retail Electricity Prices for New York, Pennsylvania, and West Virginia, and a 
comparison between these local costs and the National Average Rate, expressed as a percentage.	

			
2014 Average Retail Price of Electricity 

(cents per kilowatt-hour) 
  State Electrictricy Price 

as % of National Price 
      US NY PA WV 
 

NY PA WV 
All Sectors 

 
10.45 16.25 10.29 7.65 

 
156 98 73 

Residential 
 

12.50 20.04 13.34 9.33 
 

160 107 75 
Commercial 

 
10.75 16.11 9.72 7.99 

 
150 90 74 

Industrial  
 

7.01 6.50 7.42 5.87 
 

93 106 84 
Transportation 

 
10.27 13.70 7.70 9.11 

 
133 75 89 

  
        

  
Regional Cost Higher than National Average-More Favorable to Alternatives 

 
  

Regional Lower than National Average-Less Favorable to Alternatives Based on Cost 
 

  
  

        
  

Source: http://www.eia.gov/electricity/data/ 

    
  

  
        

  
Note:  West Virginia, while below the national average, sources nearly all of its electricity from coal. 
 

Limitations of LCOH Approach – A Case for ‘Manual Prospecting’ 
The purpose of the SLCOH analysis was to identify areas where efforts to inform residents, businesses, 
and governmental agencies would be most beneficial, due to the potential for utilization of geothermal 
district heating. However, relying on a single bulk data analysis to gauge demand for geothermal district 
heating within the study area would be inadequate. Indeed, an area may be completely missing from the 
‘top five’ list and nevertheless be a viable candidate for a low temperature geothermal project. There are 
numerous situations where population distribution is not the only, or even the primary, predictor of 
demand for geothermal district heating. For instance, with less than 3,000 residents, the town of 
Kingwood in Prescott County, West Virginia is unlikely to justify a geothermal district heating system as 
a community – but just outside Kingwood is Camp Dawson, a state owned, federally funded Army 
Training Site.  Camp Dawson is home to various West Virginia National Guard and Reserve units, as well 
as a Youth Challenge Program (WV-ANG, 2015). Spread over 4177 acres, Camp Dawson hosts active 
and reserve military training exercises, operates a conference center with auditorium and classroom 
facilities, provides a variety of lodging (hotel rooms and suites, multi person barracks, cottages, etc.) and 
dining options for large groups, and more. In addition to the recognition that Camp Dawson has 
economies of scale that may prove to make it economical to utilize a geothermal district heating system, 
their energy selection criteria are unique from many municipalities: they value any reduction in 
dependence on the local utility grid because of the national security benefit and they operate an 
environmental office charged in part with finding opportunities to preserve the environment. While not a 
federally owned facility, the federal funding certainly encourages implementation of Executive Order 
(EO) 13693, Planning for Federal Sustainably in the Next Decade (U.S. Executive Order, 2015). Further, 
a number of projects have previously studied the geology, hydrology, and ecology of Camp Dawson 
(Weston Solutions, 2014), which may expedite moving forward to the next stages of project preparation.   
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To address the likelihood of commercial businesses, industries, government agencies, and universities to 
be interested yet outside of the 255 Places assessed for their SLCOH, the team also identified over 165 
prospective candidate locations, like Camp Dawson, which are included as one of the files uploaded to the 
Geothermal Data Repository (file within Geothermal Data Repository submission #623, GPFA-
AB_Phase1ExamplesSitesByIndustryList.xlsx). The list of >165 include industrial applications for heat 
(wood drying, dairy processing), large commercial and/retail facilities, university campuses, resorts, etc.  
Additionally, federally owned or operated facilities and Native American Tribal lands were included in 
the compilation.    

Steps for Inclusion of Site Specific Industrial Sites 
Low temperature direct use geothermal energy has been used for numerous industries, including 
aquaculture, green houses, and food processing such as dehydration and dairy processing (Lienau et al., 
1994).  For the Appalachian Basin region and the anticipated temperatures at depths no more than 3 km 
below the surface, potential users of the geothermal heat occur in the following industry categories: paper 
mills, wood drying kilns, dairy processing (includes yogurt and milk pasteurization products), college and 
university campuses, and select military locations. Typical temperature ranges for these applications are 
listed in Table 2 .  

Table 2:  Site-Specific industries of interest and required temperature ranges. 

Industry	 Temperature	Range	

Dairy		 Butter/Yogurt	production		80	–	90	°C	
Traditional	pasteurization		72	–	75	°C	

Wood	Drying	 43	–	82	°C	
Paper/Pulp	Mills	 66	-	150	°C	
University/College	Campus	 100	-	150	°C	
Military	Bases/Stations	 100	-	150	°C	

 

Each industrial site was located using a Google Map search for each category, except for the locations of 
the diary processing sites found on the Dairy Plants USA website. All of these potential industrial users 
have a component of their process(es), which could benefit from incorporating a geothermal element into 
their system, either by preheating or reducing electrically heated steps. Similarly, sites of special use that 
include short-term housing for large numbers of people for which space heating of large buildings and 
residences would be suited potentially to a district heating system were considered, which led us to 
compile locations of military installations and colleges. The cumulative list for the three states of these 
industrial and special use sites has been submitted to the Geothermal Data Repository as the file “GPFA-
AB_Phase1ExamplesSitesByIndustryList.xlsx” within data submission #623. The locations of the subset 
of these industrial and special use activities that occur within the Appalachian Basin regions of the three 
states, 165 compiled for this study, were then located relative to the combined favorability of the three 
risk factors of geological origin (thermal, reservoir, seismic risk) (see Figure 44 of Main report).  

Permits 
As part of the Phase 1 research, we looked into the Permitting process in order to understand the amount 
of time and expenses necessary for future studies of narrower regional location whose purpose would be 
preparation for a pilot study at a specific location. As a scenario for what would need to be permitted, we 
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assumed that a direct-use deep geothermal heat production system will involve drilling at least two 
boreholes.  Geothermal energy extraction is not established in the study area, except for geothermal heat 
pumps, creating limited levels of legislative clarity concerning the deeper geothermal resource.  For 
example, in Pennsylvania and West Virginia it has not been designated if geothermal energy is a mineral 
right or a surface right.  In New York, it is not legislatively designated as a mineral, but it is at least listed 
as a type of drilling under the oil and gas permitting section. Future efforts are need to engage in 
preparatory planning of the permitting process of deep geothermal wells with the appropriate agencies to 
educate them and then assist them in expanding their forms and the permitting process. 

The permitting process includes Federal, State and Local laws to follow and / or permits to file.  At the 
Federal level, all projects must comply with the National Environmental Policy Act (NEPA).  If 
applicable, the Clean Air Act of 1970, Clean Water Act of 1987, Endangered Species Act and National 
Historic Preservation Act must also be followed. 

Granting of permits to drill wells is a state function, except on federal land in which case it is a federal 
function carried out by the Bureau of Land Management.  In New York, geothermal wells >500 feet are 
permitted in the same manner as oil and gas wells.  There are no clear guidelines for geothermal wells in 
Pennsylvania and West Virginia.  Whereas it is expected that permitting of deep (>1 km) geothermal 
wells in all three states will follow the permitting process for oil and gas wells, verification of any 
additional permitting needs to occur early in follow-on studies. The three state oil and gas permitting 
agencies include: the New York Department of Environmental Conservation Division of Mineral 
Resources, the Pennsylvania Department of Environmental Protection Office of Oil and Gas Management 
and the West Virginia Department of Environmental Quality Office of Oil and Gas.   

State drilling permits involve many forms and documents including maps, spacing units, land permission, 
proposed drilling program, environmental assessment, nearby water users, nearby coal leases, reclamation 
plans, bond, fees and workers’ compensation plans. 

In addition to a drilling permit, permits for water removal and reinjection may also be required. States 
may regulate water removal, though much of the existing information concerns drinking water. The US 
EPA regulates re-injection of brine. Regulations such as building codes, local zoning and local roads must 
also be followed. Additional permits are required for stimulation procedures if needed to initiate 
production from wells.   

During follow-on projects, early in the work it is recommended to begin meeting with the state permitting 
agencies to determine which of the permits referenced above will apply to one’s project, determine the 
appropriate sequence of various forms that need to be submitted, the associated fees etc. This project team 
has already met with professionals in the U.S. Geological Survey, New York State Energy Research and 
Development Authority, and the geological surveys of each state. Yet many more contacts with agencies 
whose responsibility includes permitting will be needed during the permitting process.   

Submission of drilling permits will occur at the stage that specific sites are targeted for pilot studies that 
include drilling. Permitting is a process that can take many months to years to accomplish. Groups 
interested in pursuing deep direct-use geothermal energy projects will need to begin this process as early 
as possible and with as much fore-knowledge as possible.  
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Methodology Task 5, Combination of Risk Analysis:   
Once all of the risk factors were defined, they could be combined into a general measure of favorability, 
referred to as a play fairway metric (PFM).  The method is fairly general in that risk factors are converted 
to the same scale using thresholds developed by each risk factor group, and then the scaled values are 
combined into an aggregate measure of favorability. We expanded the analysis to provide both three- and 
five-color maps; the five-color scheme was an attempt to include more resolution in the analysis. More 
discussion of the methods of combining the risk factors is given in the memo Combining Risk Factors.  
 

Steps in the Analysis 
1. Scaled the risk factors (RFs) from the original values based on thresholds specified by each risk factor 
group, which resulted in scaled risk factors (SRFs) that are non-dimensional. The SRF had a lower bound 
of 0 and an upper bound of 3 or 5, depending on the number of thresholds. Points between thresholds 
were scaled linearly, so the SRF is continuous on the interval 0-3 or 0-5. Values outside of the acceptable 
range, for instance temperatures that are too low for direct-use heating, were assigned a value of 0. If a 
value was above the highest needed for use, for instance a high productivity reservoir, then it was given 
the highest value of 3 or 5, depending on the map. Reservoirs were scaled linearly in log-space because 
the thresholds were based on orders of magnitude. 
 
2. Used several methods to calculate the aggregated play fairway metric (PFM). The methods of 
combining the risk factors included the following: average, geometric mean, and minimum. Combined 
risk maps based on these PFMs were produced for combinations of all four risk factors and for two 
special cases of three risk factors only. One of the three-risk factor cases illuminates the spatial variability 
of ‘geologic risk factors’ that include Thermal, Reservoir and Seismicity factors. The other three-risk 
factor case investigates a ‘no natural reservoirs’ set that includes Thermal, Seismicity and Utilization 
factors and illustrates the spatial variability of conditions that would be pertinent if considering the option 
of using EGS (enhance geothermal system) techniques to create a reservoir. 
 
3. Employed uncertainty values estimated by the geologic risk factor groups, and a general estimate of 
uncertainty applied uniformly to the utilization risk factor. The range of the mean and the range of the 
uncertainty values for each risk factor were used to develop an interpolation table of the uncertainty in the 
SRF based on Monte Carlo simulation. The uncertainty in each SRF map was estimated based on 
interpolating within the tables that were specific to each risk factor. This method was used as an 
alternative to completing separate Monte Carlo simulations for each raster cell, which is computationally 
impractical for a region of this size at 1 km2 resolution. The interpolation table method was reasonable for 
converting the uncertainty in the risk factor (RF) to the uncertainty in the scaled risk factor (SRF). The 
uncertainty in the PFM was then estimated using a first-order Taylor Series approximation of the PFM as 
a function of the individual SRFs. See equations below. More details are provided in the memo 
Combining Risk Factors.   
 
4.  Illustrative project locations were selected for more in-depth analysis and graphical representation. The 
first step was to extract the values for a single cell associated with the project location. The values of cells 
were extracted and the distance to the nearest project location was calculated. The maximum average 
value of the four risk factors within 10 km of a project location was selected as the values for that project 
location. The analysis consisted of estimating the distribution of the PFM for each location based on 
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10,000 Monte Carlo replicates. This allows project locations to be compared, with their estimated 
uncertainty, which is informative for decision makers. The main report contains a parallel axis plot 
(Figure 27), which shows the SRFs for each of nine illustrative locations. This represents most of the 
information for a project location and can show tradeoffs from one location to another. Figure 28 in the 
main report shows the box plot of the same nine illustrative locations for the three geologic risk factors.  

Summary of the Strengths and Limitations of the Process 
Any attempt to combine different dimensions of a project, without a complete physical and economic 
analysis for a site, necessarily involves critical approximations. Strengths of the simple 4 risk factor 
analysis are that it provides several maps that could represent different ways a decision maker might 
consider combining the different factors. The values of each factor can also be represented spatially, 
which gives insight into where different factors are favorable. Thus potential users with a variety of 
perspectives on which risk factor is most important to themselves can readily identify potentially 
favorable locations. Once a few especially attractive locations are identified, the decision maker can use 
the files that accompany this report to obtain additional site-specific information including the uncertainty 
distribution of the four risk factors and of the combined metric, or they can commission additional studies 
to provide necessary data and further analysis. 
  
This analysis is limited in several ways. First, the combined PFMs are only relative representations of 
favorability because there is no unified and comprehensive economic model. Second, the selection of 
thresholds between values that are here represented as favorable (green), intermediate (yellow) or poor 
(red) for the individual risk factor metrics as well as for the combined metric scores were in most cases 
not dictated by knowledge accrued through prior deep geothermal direct use projects, which is the goal of 
this play fairway analysis, but instead from reasoning based on other situations. If there were information 
on the economic costs of seismic insurance, for instance, then this could be incorporated into a single 
model, but this is not feasible in a preliminary screening analysis. Third, we have implied equal weighting 
to the four risk factors, but some risk factors might have disproportionate impact on the economics of a 
project. 
 
Because experience-based values of thresholds are lacking, the thresholds likely signify differing degrees 
of risk from one risk factor to another. For instance, a value of 2 in thermal may not imply the same level 
of favorability as a value of 2 for seismic. The thresholds used in scaling are relative rankings and are 
reasonable measures of general favorability, but they will cause the resultant combined PFMs to only 
represent relative favorability. 
 
The uncertainty of the many parameter values combined in the analysis is often not verifiable and, in 
those cases, uncertainty was assigned based on professional judgment of the people who developed the 
risk factor. Therefore, our estimates of the uncertainty of the combined metric is also uncertain and 
represents the assessment of the developers as to the relative precision of different factors. A goal for 
future research should be to improve the characterization of uncertainty. 
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Mathematics Used, Including Formulas and Calculation Methods 
All of the calculations are for values of the scaled risk factors (SRFs) where 0 is the least favorable. 
 
The methods of calculating the aggregated play fairway metric (PFM) were: Average, Geometric Mean, 
and Minimum. The equations are given below, where SRF is the scaled risk factor (scaled [0,3] or [0,5] 
depending on the resolution of the thresholds) and n is the number of risk factors. Generally, n=4 for the 
maps but in a few cases n = 3 when one risk factor is omitted.  
 

!"!!"#$!%# =  !! !"!!!
!!!                                       Equation 3 

 

!"!!"#$"%&'(_!"#$ =  !"!!!
!!!

!                          Equation 4 
 

!"!!"#"!$! = min !"!!, !"!!,… , !"!!             Equation 5 
 
The uncertainty for the combined maps can be approximated using a first-order Taylor series expansion 
along with the variance assigned to each risk factor RFi, assuming that each risk factor is independent of 
all other risk factors considered. This method is only applicable for the average and geometric mean 
functions because these are “smooth” functions. The Taylor series approximation is not a good 
representation of the minimum of several values unless 1 factor is always the minimum value. Other 
closed-form solutions for the variance of the minimum of four values from different distributions are not 
readily available. Because the distribution of each SRF is different, no general analytic results are 
provided for the uncertainty of the minimum. In order to obtain uncertainty in the minimum maps, we 
opted to run a Monte Carlo analysis with 10,000 replicates only for 5-color combined risk maps. These 
are provided in the main report. These maps are computationally expensive to produce relative to the 
uncertainty maps for the geometric mean and the average. 
  
The equation used in the Taylor series approximation is given below, where m is the mean value of the 
SRF and the variance of each SRFi is approximated by interpolating a table derived from Monte Carlo 
analysis, as described above. 

Var !"# =  !"#$ !
!"#!!

!
Var !"!!!

!!!           Equation 6 

 
Note that the distributions of the PFM at the individual project locations were derived from Monte Carlo 
simulation for that specific site, rather that using the Taylor series approximation in Equation 6. The same 
Monte Carlo analysis methodology was used for these sites as was used for making a map of the 
uncertainty in the minimum of the risk factors. 
 

Potential Sources of Error 
There are several sources of error. First, the calculations of a PFM will not exactly represent the 
favorability of the location. Second, the calculated values are only as good as the input, so errors from the 
input risk factors will probably propagate through the SRF calculated and into the PFM calculations.  
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Software Used, Including Version and Hardware Requirements 
• R: A Language and Environment for Statistical Computing, version 2.15.1 (2012-06-22, “Roasted 

Marshmallows”) 
Packages: sp, raster, rgdal, rasterVis, maps, maptools, xlsx, rgeos, RcolorBrewer, pracma, 
rootSolve, Hmisc, maps, prettymapr 

 
• ArcGIS, version 10.2.2 and 10.3.1 
 

Robustness of Different PFMs 
The memo Combining Risk Factors gives some results for the robustness of the different PFMs. We 
would like the results to provide generally the same ranking for each site, regardless of which PFM 
function was selected. The three PFM functions (average, geometric mean, minimum) were calculated 
and extracted for each of the census “Places” and “Cooperating Places” that had a population greater than 
4,000, indicating a reasonable utilization target. Generally, the relative rankings for the functions are 
similar (see Figure 53 of memo 17, Combining Risk Factors). In particular, the average-to-geometric 
mean and geometric mean-to-minimum relationships reveal similar relative rankings at nearly all 
locations. This comparison reveals that the relative rankings of individual places could be the same even 
if the choices of color thresholds that express the favorability on the differing maps lead to map patterns 
that look different depending on the function. 
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Abstract

Bottom-hole temperature (BHT) corrections are a subject of great
interest to those interested in using non-equilibrium temperature data
from well log headers. This article develops BHT corrections for New
York, Pennsylvania, and West Virginia, using generalized least squares
regression (GLS). It is shown that GLS regression can give more rea-
sonable estimates of the BHT correction than traditional least squares
when spatial clustering is present. Additionally, a nonlinear function
for BHT corrections is proposed that explicitly avoids negative cor-
rections at shallow depth and avoids the instabilities of extrapolated
high-order polynomials.

1 Introduction

Bottom-hole temperature (BHT) corrections have been of continued interest
for several decades because researchers want to use BHT datasets, which are
often large and freely available; however, BHTs are notoriously problematic
because they generally represent a temperature field that was disturbed by
the drilling process (Deming, 1989). As a result, BHT corrections, both
from theoretical models of the heat transfer in the well and from empirical
comparison of data, have been developed.

This paper derives empirical BHT corrections for portions of New York,
Pennsylvania, and West Virginia. The method of deriving the temperature
correction dataset required spatial clustering of points, which meant that the
alternatives to ordinary least squares fitting could be explored. Additionally,
in part of the region there was available information on borehole fluid so sep-
arate models should be fit based on the expected drilling technology. Lastly,
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we provide a functional form that avoids problems with the correction being
negative at shallow depths or unstable in deeper data.

2 Literature Review

Empirical temperature corrections have generally been polynomials of depth.
For instance, Kehle (1973) presents a quartic function of depth and the cor-
rection presented by Harrison et al. (1983) is often taken as a quadratic.
Other examples include Förster et al. (1997) who report a linear function
and Scott (1982) who presents linear to cubic polynomials.

Polynomials are typically well-behaved over the range of the data, but
extrapolation of quadratic and higher-order models beyond the dataset can
cause the BHT correction to become unstable: shallow trends can reverse.
Another problem with polynomials is that the fitted equation is often neg-
ative at shallow depth, which is generally considered unreasonable because
drilling should not substantially increase the temperature.

Several BHT corrections have been used in the area of interest (NY, PA,
and WV). Hendry et al. (1982) did not correct BHTs in their study of West
Virginia, Hodge et al. (1981) presented results for western NY with and
without a BHT correction. Aguirre (2014) used the Harrison correction in
her study of PA and western NY based on the work of Frone and Blackwell
(2010), who evaluated the correction based on it generally moving the data
closer to the Spicer (1964) wells. Frone and Blackwell (2010) recommended
capping Harrison correction and using the peak value for deeper BHTs and
Shope (2012) noticed that Harrison correction seemed less accurate than un-
corrected BHTs for wells shallower than 1,000 m in NY and PA. No studies
have tried to systematically look at the region to determine where the cor-
rections are more or less accurate.

3 Regions, Data, and Clusters

The analysis uses data from New York, Pennsylvania, and West Virginia,
mainly areas within the Appalachian Basin. Figure 1 shows the area and
features discussed in this section. The region was partitioned into three
areas based on data divisions and geologic features or the data sources. The
first region was is the Rome Trough in PA, a rift (Shope, 2012), which curves
from the south-west corner of PA towards northern PA (Repetski et al.,
2008). The second region is the Allegheny Plateau, which is north of the
Rome Trough and extends into western NY. West Virginia is considered as a
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separate region because the data came from a separate source with di↵erent
characteristics.

The data used for the Rome Trough and Allegheny Plateau are based
on data collected for Whealton (2015). This dataset includes much of the
information listed on well log headers including bottom-hole temperature
(BHT), depth, and fluid recorded as in the borehole (Whealton, 2015). Data
from West Virginia are from the National Geothermal Data System (NGDS)
(Saucer, 2011).

All of the datasets contained raw BHTs, so the equilibrium temperature
had to be estimated from “reliable” temperature logs. The Spicer (1964)
temperature profiles are considered equilibrated because they are from wells
drilled with older technology that does not disturb the temperature field as
much (Frone and Blackwell, 2010). These were supplemented with temper-
ature logs identified as close to equilibrium, mainly wells explicitly noted as
air-drilled with at least several hundred meters of temperature log (Wheal-
ton, 2015). The Spicer wells were the only source of equilibrium profiles in
West Virginia and were the majority of equilibrium profiles for the Allegheny
Plateau. The equilibrium temperature profile was estimated for each “reli-
able” log by a linear gradient, which was estimated after removing tempera-
ture inversions and shallow portions of the log that did not appear to follow
the same trends as the deeper well log.

The estimated equilibrium wells were used to define spatial clusters. In
West Virginia, the clusters were defined by taking a 0.05�bu↵er around each
of the Spicer wells, therefore a single BHT could be in multiple clusters.
The West Virginia clusters are also almost exclusively defined in the Rome
Trough portion of the state (see Figure 1). In the Rome Trough and Al-
legheny Plateau clusters are defined based on averaging two or more reliable
temperature profiles and then taking BHTs close to the averaged wells, but
without crossing the boundary of the regions. In this scheme a BHT can
only belong to a single cluster.

The regression datasets are defined by taking all BHTs and correcting
them to the estimated equilibrium temperature-at-depth for that cluster.
This assumes that over small areal extents the equilibrium temperature at
depth does not change significantly. The depth used in the Allegheny Plateau
and Rome Trough was the minimum of the depth of the driller, depth of
the logger, and bottom logged interval as reported on the well log header
because the depth of the BHT measurement is generally not recorded. A few
points were assigned a di↵erent depth because the BHT seemed consistent
with much deeper data from that cluster and the unusual values could be
attributed to incorrectly entered data for one of the depths. In West Virginia,
the depth of the measurement was used, when possible, otherwise the true
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vertical depth was used.

Figure 1: Map of NY, PA, and WV with the Rome Trough (Repetski et al.,
2008) and spatial clusters used in analysis. Data sources:Bureau
(2014),Saucer (2011); software: QGIS Development Team (2009)

4 Definition of Drilling Types

The data collected by Whealton (2015) included information on the fluid
recorded in the borehole, which we used as a proxy for the well’s drilling
technology. The main categorization is into air-wells versus mud-wells. The
classification scheme defined air-wells as those where the fluid listed on the
well log header was air, gas, foam, soap, dusted, dry, or some combination
of those. Mud-wells are classified as containing mud, gel, polymer, water
(fresh, salt, brine), formation fluid, produced fluid, or some combination of
those fluids. The categorization is defined to try and separate fluids that
have mostly air in the borehole from those where water or other high heat
capacity fluid is present. Additionally, some wells could not be categorized
because no fluid was recorded or the fluid listed was empty or none.

The West Virginia dataset does not contain information on the type of
fluid present in the borehole (Saucer, 2011).
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5 Regression Statistical Models

Least squares regression assumes that the error (residual, di↵erence in true
and predicted BHT correction) are independent and identically distributed
with zero mean. If the dataset contained paired data where each BHT is
matched to an equilibrium temperature from the same well at the same
depth, such as a drill-stem test, then this assumption might be valid. This
assumption is also likely valid when all points are corrected to a region-wide
estimate of the temperature-at-depth.

Because of spatial clustering, it is likely that all observations from a given
cluster will be too high or too low relative to the region-wide average. Hence,
observations in a cluster are “biased” on average. One possible reason for the
di↵erences is that drilling practices vary enough in the clusters so that there
are systematic di↵erences. Another potential cause is that the estimated
equilibrium temperature for the clusters was imperfect, so errors in the esti-
mation and extrapolation of equilibrium temperature could cause systematic
tendencies for a cluster. Many of the well logs used to estimate equilib-
rium temperature were o↵set from each other but showed roughly the same
gradient.

With clustering, the error between an observation and the region-wide
model has two components: a cluster-specific “bias” and a random noise
term. The cluster-specific “bias” represents how the points in a cluster
are systematically di↵erent from the region-wide model. Several statisti-
cal models could be used to address the cluster-specific “biases” including
using least-squares coe�cient estimates with cluster-robust standard errors,
least squares estimation of a model with cluster-specific constants and use
of an average constant, and feasible generalized least squares. More details
on these approaches can be found in an Econometrics text, such as Greene
(2012, Ch. 11) or Kmenta (1986, Ch. 12), under methods used for panel
data. The method used here is generalized least squares (GLS) which should
increase e�ciency for small datasets.

In GLS the goal is not to minimize the simple sum of squares errors, as
in least squares regression, but to weight observations in a way that accounts
for shared “bias” and their inherent noise. More details are provided in
Appendix A. If the cluster “biases” are fairly small compared to the noise in
the data, then the result will look very similar to a least squares fit and the
fitting procedure will tend to treat the points as fairly independent; however,
when the “biases” are large compared to the noise, each cluster is nearly
treated as a separate point because additional points in a single cluster are
highly discounted when fitting the model.
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6 Regression Results

The regression results are reported for each of the three separate regions
defined above. The fitted models for each region are summarized in Table 1.
All depths are in meters and all BHT corrections are in �C.

6.1 West Virginia

West Virginia dataset included 187 points and did not have information on
drilling fluid, so the comparison is between fitting a linear model (first-order
function of depth) with least squares versus generalized least squares. Figure
2 shows the data and fitted lines and Table 1 shows the fitted coe�cients.
The models di↵er by minor amounts over the range of the data. Because the
GLS model should be more e�cient, it is recommended as the base model
(Equation 1) but the temperature correction should be capped at 15�C (2,606
m). Although the regression dataset does not contain data to this depth,
some alternative datasets that contained deeper observations did indicate
corrections of about 15 �C. Generally, data used in studies is deeper than
the depth at which the temperature correction becomes positive (305 m), so
practically it is positive over the range of interest.

�T

West V A

= �1.99 + 0.00652z, 305m < z < 2606m (1)

6.2 Rome Trough of PA

The Pennsylvania Rome Trough dataset had 181 points. Regressions are
plotted in Figure 3. The results do not conform to the expected model of
BHT corrections, which is positive and increasing with depth. This behavior
was regardless of the fitting procedure or whether the data was split based on
fluid. Because of the lack of a credible model for this region the conservative
approach is to apply no temperature correction. This recognizes that our
knowledge of this region is not su�cient to justify any correction.

�T

Rome Tr.

= 0, z > 0m (2)

6.3 Allegheny Plateau

The Allegheny Plateau dataset of 121 points has some of the largest signal
in all of the data analyzed, as can be seen in Figure 4. When a linear depth
model was fit to the data the correction was negative until about 1,100 m.
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Figure 2: Plot of West Virginia data with ordinary least squares (OLS) and
generalized least squares (GLS) fits for a linear model. Points
are color-coded based on the cluster definition, which is based on
spatial bu↵ering of the Spicer wells. The Spicer well number is
used as the identification of the cluster.

7

teresajordan
Typewritten Text
Memo 2: p.



Figure 3: Plot of Rome Trough data with ordinary least squares (OLS) and
generalized least squares (GLS) fits for a linear model and GLS
fits for the air and mud wells. Points are color-coded based on the
cluster definition in Figure 1.

There is little reason to believe in negative BHT corrections and it was more
an artifact of the model, so a model of the form shown in Equation 3 was fit
since it is always positive (if the initial coe�cient is positive) and it behaves
linearly for large depths. The curved transition zone is controlled by the
exponent in the model. An exponent of 3 was used because it su�ciently
matched the curvature of the data and it was conservative on the very shallow
temperature corrections.

There are alternative models that could have been fit to the data. For
example, the exponent parameter could be be set to a di↵erent value. This
was experimented with a little when fitting the mud model and the impact
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was minor. The weighted sum of squares changes from 64.1 to 66.5 when
changing the exponent from 2 to 5, and the predicted correction at 4000 m
changes from 38.9 to 36.8 �C. Another possibility is to include an additive
constant so that the correction will not cross at the origin. When this was
included it was about 5 �C and this would likely cause arbitrary signals to
appear in shallow counties, so it was not included. Lastly, a limiting case
of the model is for the exponential parameter being infinite, which will be a
model that is zero until it reaches a threshold depth and increases linearly
after that. This form has a kink in the middle which causes problems with
local minima when fitting the parameters and seems less physically plausible.

The nonlinear model showed that it was sensitive to the locations of points
for the air-model. Inclusion or exclusion of points, especially in the curved
portion of the function, could cause the fitted model to changed from that
shown in Figure 4 to one where the correction is nearly linear starting at a few
hundred meters. We chose the dataset that had more points to help define
the transition region because this was a larger sample and the results were
more consistent with the physical intuition of the the relationship between
air and mud BHT corrections.

The models for di↵erent drilling fluids showed that there was no statis-
tically significant di↵erence (test statistic of 0.49 on �

2 with two degrees of
freedom, p-value of 0.78 � 0.05). One explanation for the lack if di↵erence
is that the air-model is not well controlled in the upper linear portion of the
curve; the standard error of the slope parameter is over twice as large for
the air model as it is for the mud-model. The air model is only supported
for depth shallower than approximately 2,500 m whereas the mud model has
data much deeper. Note: the highest air data (around 2700 m, 38 �C) was
removed from fitting in all air-models because it was a rogue observation.

The recommended models for this area is the the air- or mud-model
(Equations 3 and 4), as applicable when the drilling fluid is known, or a
weighted sum of the air- and mud-models when the fluid is unknown. The
air and mud corrections should be capped at 15.4 and 37.8 �C, respectively.
For unknown wells, the weighting should represent the probability that the
well is air or mud.

�T

Alle. P t. Air

= 0.0104((10903 + z

3)1/3 � 1090), z < 2500m (3)

�T

Alle. P t. Mud

= 0.0155((16603 + z

3)1/3 � 1660), z < 4000m (4)

Although the coe�cients seem very similar, the standard errors using GLS
are quite di↵erent. For instance, in the Allegheny Plateau fit using least
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squares the standard error of the slope and shift parameter are 0.00412 and
340, respectively. The GLS estimates of the standard errors for the two
parameters are 0.00324 and 1710. Generally, the least squares estimated of
the coe�cient standard errors are much smaller because the estimates are
based on the data being independent and it does not discount observations
from the same cluster.

Figure 4: Plot of Allegheny Plateau data (121 points) with least squares
(OLS) and generalized least squares (GLS) fits for a nonlinear
model and GLS fits for the nonlinear air and mud wells. Points
are color-coded based on the cluster definition in Figure 1. The
GLS model is nearly hidden by the GLS mud model because their
parameters are very close (see Table 1).
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Table 1: Summary of fitted models. Selected models for each region are
denoted with ‘*’. Statistically significant coe�cients at the 5%-level
based on two-sided tests are in bold. GLS, OLS, and LS stand for
generalized least squares, ordinary least squares, and least squares
respectively. The measure of fit, cR2 is defined in Equation 12. All
depths, z, are in meters and all temperature corrections are in �C.

Model �T Equation cR2

West Virginia
OLS Linear �2.13 + 0.00601z 0.09
GLS Linear* �1.99 + 0.00652z 0.08

Rome Trough
OLS Linear 7.24� 0.00317z 0.04
GLS Linear 9.03� 0.00380z 0.03
GLS Linear Air 12.2� 0.00500z 0.05
GLS Linear Mud 7.74� 0.00338z 0.0
Used* 0

Allegheny Plateau

LS Nonlinear 0.0221

⇣�
1900

3 + z

3
�1/3 � 1900

⌘
0.55

GLS Nonlinear 0.0159

⇣�
1710

3 + z

3
�1/3 � 1710

⌘
0.50

GLS Nonlinear Air* 0.0104
⇣
(10903 + z

3)1/3 � 1090
⌘

0.25

GLS Nonlinear Mud*
0.0155

⇣�
1660

3 + z

3
�1/3 � 1660

⌘
0.52

7 Conclusions

This paper derived BHT corrections for NY, PA, and WV using alternative
methods to traditional least squares regression. The benefits of using GLS
methods with spatial clusters are present were clearly shown in the Allegheny
Plateau, where a traditional fitting technique would cause the estimated
BHT corrections to be much higher because it did not recognize that the
data were drawn from a few clusters and instead treated all observations
equally. In the Rome Trough of PA there is not su�cient understanding of
the system generate a BHT correction. In neither the Rome Trough of PA
nor the Allegheny Plateau were the di↵erences in drilling fluid statistically
significant, but because the air data was over a much more limited interval in
the Allegheny Plateau the air-model could not be extrapolated to the depth
of the mud wells. In WV, the impact of clusters did not change the fitted
model much and the data looks consistent with a linear model.
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A GLS Estimation and Definition of Statis-

tics

The first step in generalized least squares is estimation of the data covariance
matrix. This is done with a model where there was a constant for each cluster
c, as shown in Equation 5, where �T is the temperature correction, f(., .) is
a function of dependent variables x and parameters �, �

c

is cluster-specific
constant, " is the error term, and subscript i is for the observation.

�T

i

= f

�
x

i

, �

�
+ �

c

+ "

i

(5)

From this model the variance of the cluster-specific “bias” and the vari-
ance of the noise term must both be estimated, as shown in Equations 6
and 7, respectively. In these equations, the true parameters � and " from
Equation 5 were substituted with u and e, respectively, to show that the
fitted model only gave estimates of the true parameters. These equations
assume at all of the clusters will be equally noisy (homoscedastic) (Greene,
2012, Sec. 11.6.2). Although this assumption could be changed so that a
separate value of s

e

is estimated for each cluster, many clusters have 10 to
20 points and estimates of variances on such small samples are themselves
quite variable.

s

2
u

=
1

C

CX

c=1

(u
c

� ū)2 (6)

s

2
e

=
1

n

nX

i=1

e

2
i

(7)

Next, the data covariance matrix for an individual cluster c can be con-
structed as shown in Equation 8, which will have o↵-diagonal elements of s2

u

and on-diagonal elements s2
e

+ s

2
u

(Greene, 2012, Sec. 11.5, Eq. 11-31).

S

c

= s

2
e

I+ s

2
u

1 10 (8)
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Lastly, the data covariance matrix of the entire dataset can be constructed as
shown in Equation 9 (Greene, 2012, Sec. 11.5, Eq. 11-32). This is essentially
a matrix of matrices with the on-diagonal matrices being the estimated data
covariance structure of a given cluster. The o↵-diagonal matrices are zero
because these observations are from separate clusters and should be uncor-
related on average, hence there is no covariance structure to this portion of
the dataset.

S =

2

64
S1 0 · · ·
0 S2
...

. . .

3

75 (9)

Now that the covariance structure of the data is estimated, the model can
be fit by minimizing the “weighted” sum of squared errors. Weighted is used
loosely because it employs a diagonal data covariance matrix whereas this
problem has a matrix with on- and o↵-diagonal elements that are non-zero.
Therefore, this procedure is called generalized least squares to di↵erentiate it
from weighted least squares. The problem formulation is shown in Equation
10, where the estimated model parameters are b and e is an n-by-1 vector of
estimated residuals. The result is a single value, which was minimized using
an optimization software (R Core Team, 2012, ’optim’).

b = min
�

e

0
S

�1
e (10)

When separate drilling fluids were considered, Equation 5 included separate
predictors for each fluid but the cluster constants were the same for both
fluids. The assumption is that the “bias” in a cluster is for the individual
cluster and it should not depend on the type of fluid present. In the fitting
of the final model the data covariance matrix was partitioned based on the
drilling fluid and the model was fit to each fluid one at a time.

The model parameter covariance matrix is estimated using Equation 11.
This is based on the second-order terms of a Taylor Series expansion of
the objective function about the solution. The square root of the diagonal
elements of this matrix represent the standard error of parameters.

Var (b) =

✓
@f(X)

@b

◆0

S

�1

✓
@f(X)

@b

◆��1

(11)

The measure of fit used in this analysis is a pseudo R2, referred to as
cR2 and defined in Equation 12, where SSE and SST are the sum of squares
error (sum of squared residuals from regression) and sum of squares total in
the real, un-weighted space. The regression procedure will not maximize this

13
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metric because least squares estimates minimize SSE, and for generalized
least squares this value is not bounded on [0,1] unlike traditional R2.

cR2 = 1� SSE

SST
(12)

Throughout the analysis normal and �

2 approximations, which are techni-
cally accurate only for large (asymptotic) samples, will be used when testing
hypotheses and reporting p-values. The reason is that the simple degrees of
freedom adjustments in linear ordinary least squares regression problem are
not easily defined and the parameter covariance structure of the nonlinear
models are only approximate.
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 
 
From:  Zachary Frone 
 
Date:   April 30, 2015 
 
Subject:  Anadarko Basin Thermal Conductivity Measurements 
 
 
The Appalachian Basin Geothermal Play Fairway Analysis (AB-GPFA) team must determine 
which thermal conductivity values (K) to use for each formation in the thermal model. Data from 
Carter et al. (1998) from the Anadarko Basin (Oklahoma) is used due to the large number of 
measurements (n=275) and the similar ages and burial histories of the basins. The raw data from 
Carter shows large variations in K of sandstone, and generally smaller variations for other 
lithologies (Figure 1). Variations in sandstone samples do not show any systematic change with 
density or porosity (Figure 1).  
 

 
Figure 1: Original data from Carter et al. (1998).Sh: Shale, Ls: Limestone, GW: Greywacke, 
Dol: Dolomite, Anh: Anhydrite, Slt: Siltstone, SS: Sandstone.  
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Data from Carter et al. (1998) included measured K, density, and porosity values, along with 
core descriptions and grain size data. The original sampling methodology seems to have been to 
collect 3 samples over narrow 3-10 foot intervals. In order to see if the variability in the original 
K data is valid, a sub set of 18 samples were measured again. The 18 samples are from 6 wells, 
with 3 samples from each well. The 3 samples from each well are generally within 1-2 feet of 
each other, with two exceptions. All were selected to test whether the small scale variation in 
thermal conductivity that was measured was real. See table 1 for sample names, depth, lithology, 
and K.  
 
All samples were prepared following the same procedure as Carter et al. (1998). The samples are 
weighed and measured dry, and a dry density is determined. The samples are then loaded into a 
vacuum/pressure cylinder where they are placed under vacuum for several hours to days to draw 
air out of the pores, followed by high pressure (~3000 psi) H2O for up to 24 hours to saturate the 
cores. The samples are removed from the cylinder and then reweighted to determine a wet mass. 
The porosity, a parameter needed to calculate the thermal conductivity, is then calculated from 
the difference in the wet and dry masses and the volume of the core. 
 
Once prepared, samples were run on a divided bar for 25 minutes each, with a temperature 
reading collected every 15 seconds. Each sample was run twice (once on each side of the bar) 
and the last 5 minutes of data were used. Thermal conductivity values are then calculated for the 
cores. 2 of the 18 cores were not run due to fractures and chipping of the cores. The results from 
the rest of the cores are shown on Table 1. All but two samples have values that are within ±6% 
of the values reported by Carter et al. (1998). 
 
This data show that in general, the values from Carter et al. (1998) can be trusted and that there 
can be small scale (sub-meter) changes in thermal conductivity within a single lithology. Also, 
the range in values for sandstone appears to be real. The cause of this variation is unknown 
currently, but is likely caused by changes in mineralogy. Two methods to test this would be XRD 
or XRF analysis of the cores. XRD requires powdered samples so the cores would have to be 
destroyed. XRF analysis can be completed on cores and allows for multiple measurements along 
the length of the core. Changes in elemental composition measured by XRF could provide 
insight into why there are variations in thermal conductivity in cores from the same formation.  
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Table 1: Samples selected for re-measurement  

Sample Name Depth (ft) Lithology Carter K Value 
(W/m/K) K1 K2 % difference 

Dannehl 8609 8609 SH 1.38 1.46 1.43 4.71 
Dannehl 8610 8610 SH 2.39 2.38 2.45 1.05 
Dannehl 8611 8611 SH 1.46 1.53 1.51 4.11 

Smallwood 8646 8646 SS 2.92 BROKEN   
Smallwood 8647 8647 SS 5.06 4.64 4.87 6.03 
Smallwood 8648 8648 SS 4.35 3.9 3.72 12.41 

Lloyd 5195 5195 LS 1.81 BROKEN   

Lloyd 5196 5196 LS 2.19 2.5 2.47 13.47 
Lloyd 6157 6157 LS 2.88 2.84 2.9 0.35 

Nightingale 10217 10217 SS 4.10 4.31 4.31 5.12 
Nightingale 10219 10219 SS 2.43 2.54 2.45 2.67 
Nightingale 10235 10235 SS 4.33 4.08 4.28 3.46 

Brewer 7015 7015 SS 4.45 4.15 4.23 5.84 
Brewer 7016 7016 SS 2.72 2.65 2.6 3.49 
Brewer 7017 7017 SS 2.27 2.15 2.14 5.51 
Scott 10834 10834 SS 2.71 2.56 2.57 5.35 
Scott 10835 10835 SS 3.24 3.28 3.17 0.46 
Scott 10836 10836 SS 4.21 4 4.13 3.44 
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 

From:  Jared Smith, Teresa Jordan, and Zachary Frone 

Date:   Original from July 31, 2015. Updated September 20, 2016 

Subject:  Assignment of thermal conductivity stratigraphy to individual wells using 
COSUNA columns 

Applicability: The methods described in this memo were used to compute and assign thermal 
conductivities and thicknesses to stratigraphic units. The resulting thermal 
conductivity column is called the thermal conductivity stratigraphy. This 
stratigraphic information was assigned to individual wells in the 1-D heat 
conduction model to calculate the surface heat flow, temperatures at depth, and 
depths to temperatures of interest. Further details are provided in Smith (2016). 

 

Definitions 

COSUNA column  Generalized representation of a vertical sequence of units in the subsurface, 
identified by general lithology and correlated to geologic age. 

COSUNA section  Geographic area in which the COSUNA column was defined by AAPG 
(1985a; 1985b).  

Unit   A member, formation, or group. These are nested ranks. In general, the 
uniformity of lithology is greatest at the rank of member and decreases 
progressively through formation and group. 

Group (Gp.) A sequence of formations and/or members within a single named unit. 

Formation (Fm.)  A sequence of members in a single named unit. 

Member (Mbr.) A layer, named or unnamed, in a group or formation.  

 

Introduction 

The Appalachian Basin Geothermal Play Fairway Analysis team needs to have a method for 
assigning lithologic unit thicknesses and corresponding thermal conductivities to locations of 
wells that have bottom-hole temperature (BHT) measurements. The resulting column of unit 
thicknesses and thermal conductivities is called the thermal conductivity stratigraphy. This 
information is needed in order to calculate the surface heat flow and temperatures at depth using 
the 1-D heat conduction model (see Memo 8: Well database organization and thermal model 
methods).  
 
The American Association of Petroleum Geologists (AAPG 1985a; 1985b) Correlation of 
Stratigraphic Units of North America (COSUNA) columns have been used in previous studies in 
the Appalachian Basin (Aguirre, 2014; Shope, 2012; Stutz, 2012; Frone and Blackwell, 2010). 
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The COSUNA columns provide representative geology for broad sub-regions of the basin, 
within which the geology is fairly consistent (Fig. 1). Because a single COSUNA column applies 
to a broad area, yet the total thickness of the sedimentary rocks varies across any one of those 
areas, it is also necessary to scale the COSUNA column unit thicknesses to the specific location 
of the well whose thermal conductivity column is sought. A linear scaling of each unit was used 
to match the COSUNA column thickness to the sediment thickness (WVGES, 2006) at the 
location of each well. This approach allows for a rapid assignment of thermal conductivity 
stratigraphy to about 20,750 wells when a well-by-well geological analysis would be implausible 
to complete in the timeframe of this study. A well-by-well detailed geological analysis has been 
determined for 77 spatially distributed deep wells in the region. For these wells, the generalized 
COSUNA column approach is compared to their detailed stratigraphy (see Memo 5: Tests of 
simplified conductivity stratigraphy by Monte Carlo analysis). 
 
COSUNA Column Data 

The areas of the COSUNA sections vary greatly throughout the basin, with the 21 smallest 
sections (min ~970 km2, mean ~ 1960 km2, max ~3300 km2) concentrated in the eastern margin 
of the basin along the Appalachian Mountains, and the largest 25 sections (min ~4430 km2, mean 
~ 13900 km2, max ~29300 km2) dispersed in the remaining portion of the basin (Fig. 1). 

Each COUSNA column provides a vertical sequence of named units, unit age (Ma), unit 
thicknesses (m), and by color indicates the dominant lithology (Fig. 2). Additional, often more 
detailed lithologic information from the USGS mineral resources website (USGS, 2014) was 
coupled to the COSUNA units on a state-specific basis.  

A range of unit thickness is reported for most units, and a single “normal” thickness is reported 
otherwise (Childs, 1985). The normal thickness is interpreted as an average thickness, but this 
may not be the case. Some columns are incomplete and do not include some Lower Paleozoic 
units. Other columns do not have reported thicknesses for some units. For COSUNA sections 
with missing data, if cross sections within the COSUNA section were available, the missing units 
and approximate thicknesses were added from the cross sections (Table 1). If cross sections were 
not available, the suspected missing information was documented (Table 2) and the columns 
were used as provided by AAPG (1985a; 1985b). 

Summary of Desired Products 

The goal of this analysis is to assign a thermal conductivity stratigraphy to each well in the 
dataset. To arrive at this product, the time-based COSUNA columns are transformed into 
thickness-based columns with lithologically distinct rock units for the assignment of 
conductivities. Therefore, unit lithology and thickness are the primary information to extract 
from COSUNA columns and organize into a useful format. The methodology for extracting this 
information is presented in the following sections. 
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Figure 1: Map of the regions, referred to as sections, whose generalized 
sedimentary rocks are described by single COSUNA columns. The sections used in 
this study are labeled by state, followed by the number of the column and, where 
needed, the cardinal direction in parenthesis. For Virginia, cardinal directions 
indicate separate columns for the eastern and western side of the North Mountain 
Fault or the Pulaski Fault. For Ohio, the cardinal direction indicates on which 
COSUNA sheet (North [N] or South [S] Appalachian Basin) the column can be 
found. The sediment thickness derived from the Trenton-Black River Project 
(WVGES, 2006) is shown for reference. COSUNA sections that intersect the Rome 
Trough (Repetski et al., 2008) require adjustment and addition of some missing 
units (discussed below). Figure from Smith (2016). 

Figure 2 (left): Digitized West Virginia 9 COSUNA Column (AAPG; 1985a) and 
geological ages from Smith (2016). Time progresses upward from the bottom. 
Colors: Blue – carbonate; Pink – evaporite; Grey – Shale, mudstone, siltstone; Tan 
– Interbedded sandstone, siltstone, shale; Teal – Chert; Yellow – Sandstone. 
Column shows examples of units occupying portions of the column (top), and of 
multiple units in the same time period (Shale\Chert in the middle of the column). 
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Method for Extracting Thickness from COSUNA Columns  

The pictorial COSUNA column information is transformed into a spreadsheet that records as 
rows the individual named units of the COSUNA column. Spreadsheet columns are assigned 
subsidiary information about each rock unit. An effort was made to preserve as much detail as 
possible from the COSUNA columns. Groups and formations were split into the individual 
formations/members that comprised the group/formation, when possible. If a group/formation 
was all the same rock type (e.g. all limestone) then a single row in the spreadsheet was used to 
represent the group/formation, and all formations/members composing the group/formation were 
listed in the row, ordered from the geological top downward. Occasionally the minimum and 
maximum thicknesses of the formations/members did not sum up to the group/formation 
minimum and maximum thicknesses. In this case, the reported minimum and maximum 
thickness for each formation/member was listed in a separate row.  

Rome Trough Units 

The COSUNA columns reported knowledge that existed up to the date of publication in 1985, 
and they are spatially simplified such that lateral variability, which likely occurs across 
individual faults or folds, is not necessarily represented (Childs, 1985). In some cases, 
knowledge of structural features today known to be important, such as the Rome Trough, were 
not integrated into the early 1980’s COSUNA data compilation. For the Rome Trough (Fig. 3), 
knowledge of the thicknesses of the deeply buried Appalachian basin sedimentary units evolved 
significantly as the spatial extent of very deep drilling increased and as deep penetration 
reflection seismic data progressively moved into the public domain. Thus, the COSUNA 
columns characterize well the Lower Paleozoic units of the Kentucky sector of the Rome 
Trough, but lack this information for parts of West Virginia and Pennsylvania. Therefore, an 
early step in this project’s methods was to adjust several COSUNA columns to account for the 
Rome Trough units and associated thicknesses (Table 1). The Rome Trough was located within 
only a portion of each of the COSUNA sections listed in Table 1, so the addition of these units 
only applies to the portion of the COSUNA column located within the Rome Tough (Fig. 1). The 
thickness change represents the additional thickness of Lower Paleozoic strata present in the 
Rome Trough portion of the COSUNA column. 
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Figure 3: Map illustrating the location of the Rome Trough (light brown shading) from Repetski 
et al. (2008). There is little disagreement among researchers about the location of the 
southwestern half of the Rome Trough (southern Pennsylvania, West Virginia, and Kentucky). 
However, there is a high degree of uncertainty about location and magnitude of this deeply 
buried feature in central and northern Pennsylvania, as well as in southernmost New York (e.g., 
Harper, 2004).   
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The COSUNA columns are as much as 1775 m thicker on average in the Rome Trough than 
outside of the Rome Trough (Table 1). This thickness change might occur: 1) over a horizontal 
distance of a kilometer if the trough at this location is bounded by a single major fault, 2) across 
a series of hundred-meter-scale steps spanning a width of 10-30 km via a series of minor faults, 
or 3) progressively across a wide ramp (Fig. 3). Ideally the style of the structural border zone 
would be known and dictate the thickness of strata assigned to each well. But that information is 
not known or not available, and a simplified strategy is needed for interpolation of thicknesses 
across the borders of the Rome Trough. Because the sediment thickness map governs the 
thickness transition across the Rome Trough boundary via scaling of the COSUNA columns, it is 
more important to capture the lithologic differences in and out of the Rome Trough with the 
COSUNA columns than it is to have a separate thickness scaling factor for columns of the Rome 
Trough based on, for example, distance to the Rome Trough boundary. Therefore the method 
adopted is to use a sharp division of column thickness across the Rome Trough boundaries, and 
allow the scaling of sediment thickness to account for the “true” thickness change. 

Addition of Missing Rome Trough Units 

The units added to each column are provided in Table 1. Column KY18 was unique in that it 
contained thicknesses of Rome Trough units, but a division for units in and out of the Rome 
Trough was not provided. For example, the thicknesses of units at the bottom of the column 
ranged from about 1700 m to 4700 m, which suggests that the KY18 section straddles one or 
more faults that comprise the borders of the Rome Trough (Fig. 1). Lacking information about 
the transition between these thicknesses, Equation 1 was used to assign the unit thicknesses in 
and out of the Rome Trough from the Brassfield Dolomite to the basal sandstone 

!ℎ!"# =
!"#$!%# + !"# – !"#$!%#

2  , In Rome Trough

!"#$!%# −  !"#$!%#−!"#2           , Not in Rome Trough
  [1] 

where Thick is the thickness assigned to the unit, average is the average thickness of the unit, 
max is the maximum thickness of the unit, and min is the minimum thickness of the unit. This 
equation is only used for Rome Trough units in column KY18. 
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Table 1: Rome Trough units and sources. Details for each unit are provided in the spreadsheet 
(COSUNA_Columns_NY-PA-WV-VA-OH-KY-MD.xlsm). Units to the left of forward slashes 
overlie units to the right of forward slashes. Units listed have been added to the bottom of the 
COSUNA columns, unless otherwise stated. The average thickness change is relative to the 
COSUNA columns without Rome Trough adjustment, unless otherwise stated. 

COSUNA 
Section 

Units Added to the Bottom of the 
Original COSUNA column 

Average 
Thickness 

Change (m) 
Sources 

PA17 Pleasant Hill Fm. / Waynesboro Fm / 
Tomstown Dolomite / Basal Sandstone 

+ 1635 Shope (2012) MS Thesis 

PA18 Waynesboro Fm / Tomstown Dolomite + 404 USGS Cross Section B-B' 
(Ryder, 1992) 

PA21 

Unnamed shale between Gatesburg Fm. 
and Warrior Fm.  
Beekmantown Fm. thickness increased 
within the Rome Trough. 

+ 577 
USGS Cross Section B-B' 
(Ryder, 1992) 

PA22 

None added.  
Lacking further information, maximum 
thickness was used as the “assumed” 
thickness for Rome Trough units only. 

+ 46.5 No cross sections found that 
pass through the Rome Trough 
portion of this COSUNA 
section. 

WV1 

Tomstown Dolomite (a.k.a. Shady 
Dolomite) between the Rome Fm. and 
basal sandstone. 
Adjusted thicknesses of the Conasauga 
Fm. and Rome Fm. 

+ 1309 
Plate 10A, Rome Trough 
Consortium Final Report (Harris 
et al., 2002) 

WV2 

Rome Fm. added between Conasauga Fm. 
and Tomstown Dolomite.  
Adjusted thicknesses of Conasauga Fm. 
and Tomstown Dolomite. 

+ 976 Plate 12A, Rome Trough 
Consortium Final Report (Harris 
et al., 2002) 

WV8 

Waynesboro Fm. and basal sandstone. 
Adjusted the Conasauga Fm. 
Increased Dunkard Gp. thickness in the 
Rome Trough (Ryder et al., 2008).  

+ 1775 USGS Cross Section E-E' 
(Ryder et al., 2008) and Plate 
14A, Rome Trough Consortium 
Final Report (Harris et al., 
2002) 

WV9 

Rose Run Sandstone / Copper Ridge 
Dolomite / Nollchucky Shale / Maryville 
Limestone / Rogersville Shale / Pumpkin 
Valley Shale / Waynesboro Fm. / 
Tomstown Dolomite / Chilhowee Gp.  
None of these units were on COSUNA. 
Few are exclusive to the Rome Trough. 

+ 1700 to 
original 
column.  
 
+ 1828 in 
the Rome 
Trough  

USGS Cross Section E-E' 
(Ryder et al., 2008) and Plate 
15A, Rome Trough Consortium 
Final Report (Harris et al., 
2002) 

KY18 
None added. See Equation 1. 
 

+ 1449 COSUNA column contains 
thickness ranges for each unit in 
the Rome Trough. 
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Figure 3: Depth sections of the Rome Trough in southwestern West Virginia (top) and 
northernmost West Virginia (bottom) that were constructed by Wilson (2000) based on seismic 
reflection data. Named units refer to ones that are readily recognized on seismic profiles; 
numerous intervening layers exist but are not labeled. Units deeper than roughly 4000 m are 
thicker within the Rome Trough than outside of it. The east side of the Rome Trough displays a 
change in thickness over a very short distance, from thin outside of the trough to thick within the 
trough, due to crossing the existence of a single fault zone. In contrast, the western margin 
displays changes across a gradual ramp (top) and a complex set of faults (bottom).  
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Unit Thickness Determination 

Sorting information from COSUNA columns into useful unit thicknesses is not a trivial task 
because the primary organization unit for COSUNA columns is geologic age, not stratigraphic 
unit. The simplest units to assign thicknesses to are those that are found uniformly throughout a 
given COSUNA section. However, it is common for a geological unit to occur in only a portion 
of the section, and for another age-equivalent unit (or units) to occur elsewhere in the section. 
Physically, this means that for the same time of deposition, more than one unit formed within the 
COSUNA section; however there is no guarantee that the thickness of these units will be equal 
during that time period.  

Multiple Units for the Same Time of Deposition 

Unequal unit thickness within a section at a time of deposition results from variations in 
sediment supply, subsidence, or post-depositional erosion. The width of the unit on the 
COSUNA column chart (e.g., Fig. 2) represents the approximate proportion of area within the 
corresponding COSUNA section occupied by that unit. In the case of equal or roughly equal 
thicknesses for each unit during a time of deposition, a weighted average of the unit thicknesses 
was taken according to the proportion of the column width occupied by each unit. The weighted 
thickness of each unit is then calculated from Equation 2	

Weighted Thickness = Thick! ∗ w!
!
!!! ,   0 < w ≤ 1		 	 	 	 [2]	

where wi are the weights that are determined from the proportion of the column width for unit i, 
and Thicki is the thickness of unit i. The weights in this equation must sum to the total extent of 
the unit(s) within the COSUNA section. For instance, for a single time period, if Gp. 1 was in 
10% of the column, Gp. 2 was in 20% of the column, and Gp. 3 was in 50% of the column, the 
sum of the weights would be 0.8, indicating that for this time period, units were only present in 
80% of the COSUNA section. If the lithology associated with these units was different, a note 
was made regarding the percentage of each rock type for this time period. 
 
In the case of unequal unit thicknesses or complexities in the arrangement of units for a time 
period of deposition (Fig. 4), the best effort was made to aggregate a sequence of 
formations/units into cohorts of roughly equal thickness. Finding cohorts of equal thickness 
solves the problem of having thicknesses specified for a portion of the section and not in others 
(e.g. Hampshire compared to Ohio and Chemung in Fig. 4). Equation 2 was applied to determine 
the weighted thickness when suitable cohorts were found. Then, the percentage of each rock type 
within the cohort was determined according to the thickness of the units within the column. For 
example, in Figure 4, since each rock unit occupies a different portion of the section and a 
different amount of time, 4 cohorts were established that each occupy approximately 25% of the 
section. The average thickness is determined from the average of the cohort thicknesses: 1) 817.5 
m Ohio/Java in 25% of the column, 780 m Chemung/lower Huron/Java in 25% of the column, 
767.5 m  Hampshire/Chemung/Java in 25% of the column, and 700 m Hampshire/Chemung in 
25% of the column. The average thickness is 766.25 m, and the average lithology is 59% 

teresajordan
Typewritten Text
Memo 4: p.



10	
	

interbedded sandstone, siltstone, and shale, 35% shale/shale, mudstone, siltstone, and 6% 
sandstone. 
 

 
Figure 4: Example of cohorts from West Virginia 3 COSUNA column. Four cohorts were made 
from this section of the column: 1) Ohio/Java, 2) Chemung/lower Huron/Java, 3) 
Hampshire/Chemung/Java, and 4) Hampshire/Chemung. These are listed in a single cell in the 
spreadsheet. Figure from Smith (2016). 
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Incomplete COSUNA Columns  

Some of the COSUNA columns state that older rocks are unknown, or it is clear that the columns 
do not include sedimentary rocks down to the basement rocks. These columns with missing 
information are listed in Table 2. Finding the thicknesses of the units that comprise the oldest 
sediment in these columns would be helpful to improve the accuracy of the COSUNA column 
approach. 

Table 2: COSUNA columns with unknown or missing deep sedimentary rock information.  

Column Missing Sediment Information 

PA22 Column does not reach basement rocks, but does have some Lower 
Paleozoic units present (e.g. Beekmantown Fm.). 

PA23 

Column goes to the Beekmantown Fm., undifferentiated, but states that 
older rocks are unknown. Even so, the minimum and maximum 
COSUNA thicknesses coincide well with the WVGES (2006) sediment 
thickness map. 

PA24 

There’s a split in the column, with one side having thousands of meters 
thicker sedimentary rocks than the other. It would be great to determine 
where geographically this split occurs so that two columns can be made 
for this section. The assumed COSUNA thickness is near the maximum 
sediment thickness by WVGES (2006). 

WV3 

Cambrian and older rocks are unknown in the column. Beekmantown 
Fm. is the oldest formation. It is possible that no information is missing 
because the maximum sediment thickness according to WVGES (2006) 
is contained within the COSUNA column thickness range. 

MD12 and 
MD13 

Juniata is the oldest formation. Older rocks are unknown. These columns 
have the most time missing of all the columns. In terms of thickness, as 
much as 3 km are missing based on the WVGES (2006) map.  

VA4 Possible formations missing based on sediment thickness map that ranges 
from 4.5 km - 7 km thickness (WVGES, 2006) 

VA24 Possible formations missing based on sediment thickness map that ranges 
from 4.5 km – 5.5 km thickness (WVGES, 2006) 
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COSUNA Column Scaling to Basement 

The COSUNA column thickness is at best an average of the sedimentary rock thickness within a 
section; however the actual sedimentary rock thickness within a section may vary greatly from 
the COSUNA derived thickness. Variations may occur due to missing units (Table 2), and due to 
variability in sediment thickness throughout the COSUNA section (Fig.1). To capture variations 
in the sediment thickness, the COSUNA unit thicknesses were scaled to the sediment thickness 
map developed by the West Virginia Geologic and Economic Survey (WVGES, 2006) according 
to Equation 3. Scaling is performed such that all units are adjusted linearly according to the 
fractional thickness between the assumed sediment thickness (WVGES, 2006) and the COSUNA 
column sediment thickness. For example, when the “true” depth to basement is less than the 
assumed COSUNA column depth to basement, the scaled unit thickness is less than the unscaled 
unit thickness, and vice versa. One problem with this approach is that, lacking further 
information about the missing units, the COSUNA column is (incorrectly) assumed to contain 
only those units reported by AAPG (1985a; 1985b). Another problem is that the scaled unit 
thickness can be less than the COSUNA-stated minimum possible unit thickness or greater than 
the COSUNA-stated maximum possible unit thickness. Correcting this problem would require a 
preferential scaling of units, such that some units would be adjusted first, and the remaining units 
scaled iteratively to match the “true” depth to basement. To avoid this complication, Equation 3 
is used as written, and all units are equally scaled. 

!"#$%&'()*+ℎ!"#$%&& = !"#$%&'(!")*+ℎ!"#$%&& ∗ !"#$%$&'!!"#$%&'&()
!"#$%&'()*!!"#$%&'&()  [3] 
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Thermal Conductivities 

Selected Published Values 

Carter et al. (1998) was the primary source used for thermal conductivity values because their 
samples were taken from the Anadarko Basin. The Anadarko Basin has a similar burial history as 
the Appalachian Basin, and thus would have comparable thermal conductivities due to an 
expected decrease in rock porosity as a result of prolonged burial. Carter et al. (1998) measured 
conductivity values on cores from the Anadarko Basin, and presented average values for the 
major lithologies in the basin. The average thermal conductivities from Carter et al. (1998) and 
the associated uncertainty about the average values are listed in Table 3. Thermal conductivity 
values for other lithologies not listed in Carter et al. (1998) are also provided in Table 3. 

Table 3: Thermal conductivities, uncertainty, and sample size. The uncertainty is the standard 
deviation about the mean. 

Lithology 

Average 
Thermal 

Conductivity 
(W-m-1-°C-1) 

Uncertainty, 
1 standard 
deviation 

(W-m-1-°C-1) 

Number of 
Samples Reference and Notes 

Sandstone 4.27 1.19 118 Carter et al. (1998) 
Siltstone 2.34 0.768 31 Carter et al. (1998) 
Shale / Mudstone 1.5 0.466 57 Carter et al. (1998) 

Black Shale 0.9 0.06  
From Cercone, Demming, and 
Pollock (1996)  

Conglomerate 4.13 0.396 5 Used Granite Wash from Carter 
et al. (1998) 

Chert 4.12 0.41  
Average of Chert and Flint 
from Horai (1971) 

Chemical 5.92 0.43  

Hematite in Clinton Group. 
Conductivity is an average of 
temperature dependent values 
for the mineral Hematite from 
0-200°C from Mølgaard and 
Smeltzer (1971) 

Limestone 2.91 0.371 56 Carter et al. (1998) 
Dolomite 4.5 0.412 5 Carter et al. (1998) 
Anhydrite 6.68 0.319 3 Carter et al. (1998) 

Salt / Evaporite 6 1  

Value for Halite at ~25°C, 
Thermal conductivity of Halite 
is highly temperature 
dependent. From Birch & Clark 
(1940) 

Gneiss 2.5 0.5  Clauser, 2011 
Marble 3.0 0.5  Clauser, 2011 
Quartzite 5.0 0.5  Clauser, 2011 
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Formation-Specific Thermal Conductivity 

Each formation in the basin was assigned a thermal conductivity based on the average of the 
thermal conductivities listed in Carter et al. (1998) (Table 3) for the lithologies present within the 
formation. The approximate ranking of lithologies (e.g. primary, secondary, etc.) within each 
formation was determined from the USGS as listed on the USGS Mineral Resources website, 
specific to each state (e.g for West Virginia: http://mrdata.usgs.gov/geology/state/fips-
unit.php?state=WV). Final thermal conductivity values for the formations were determined using 
a Monte Carlo analysis with 106 iterations, for which the percentage corresponding to ranks of 
the lithologies was varied. 

For each lithology in a given formation, a truncated normal distribution of conductivity values 
and a random percentage were assigned. The normal distribution was truncated at two standard 
deviations from the mean thermal conductivity for the lithology in order to prevent 1) 
egregiously large or small values of thermal conductivity for any lithology, and 2) negative 
values for lithologies with large uncertainty. The random percentage assigned to each lithology 
for each Monte Carlo replicate represents the percent of the formation composed from each 
lithology. The sum of the percentages is 100 for each replicate. The highest percentage is 
assigned to the major (primary) lithology as determined from the USGS, the next highest 
percentage was assigned to the secondary lithology, and so on. All lithologies had to be assigned 
a percentage of at least 5% in each Monte Carlo iteration. The distribution of conductivity values 
and the random weighting for each lithology were used to calculate the harmonic mean thermal 
conductivity for each replicate, which assumes that the different lithologies are horizontal layers. 
The reported value of thermal conductivity for each formation is the mean of the thermal 
conductivities for the 106 replicates. The reported uncertainty is the standard deviation of the 106 
values of the formation thermal conductivity. These are available in three files: 
NY_Conductivity_final.xlsx, PA_Conductivity_final.xlsx, and WV_Conductivity_final.xlsx. 

COSUNA Unit-Specific Thermal Conductivity 

The thermal conductivity for each unit in the COSUNA column was assigned based on the 
output of the Monte Carlo analysis if the formations composing the unit were available on the 
USGS website. If a formation was not listed on the USGS website, it was not subject to the 
Monte Carlo analysis and the COSUNA listed lithology was used instead, with the percentage of 
each rock type in the unit resulting from the COSUNA formation thicknesses (process described 
above in the Thickness Determination section). In this case, thermal conductivities from Carter et 
al. (1998) were used directly for each lithology. If only a group name was listed for the 
COSUNA unit, then the undifferentiated conductivity for the group was used, if available from 
the Monte Carlo analysis. If it was not available, then a simple average of the COSUNA 
lithologies was used. 

There is room for improvement with this method of assigning thermal conductivities to units. For 
example, a literature review for published values of thermal conductivity for each formation on a 
state-by-state basis could be conducted for more accurate values. The data from the ongoing 
West Virginia University thermal conductivity study (B. Anderson, personal communication, 
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2015) can be used to inform values to use for the Appalachian Basin. Adjustments in the thermal 
conductivity can also be made according to the depth of the unit.  

 

Related Files: 

1. Name: COSUNA_Columns_NY-PA-WV-VA-OH-KY-MD.xlsm 

Fields: 

Unit:  The group, formation, member, or cohort names. 

ColumnMin: The minimum thickness of the group, formation, member, or cohort based on the 
extent in the section (m) 

Min:  The minimum thickness of the group, formation, member, or cohort as listed (m) 

Max:  The maximum thickness of the group, formation, member, or cohort as listed (m) 

Min(avg):  The weighted average minimum thickness of the group, formation, member, or cohort 
from Equation 2 (m) 

Max(avg): The weighted average maximum thickness of the group, formation, member, or 
cohort from Equation 2 (m) 

Assumed:  The assumed thickness of the unit. This is the average of the “Min(avg)” and 
“Max(avg)” (m) 

Rock Type: The COSUNA listed rock type for the group, formation, or unit. 

Shope Conductivity: The conductivity assigned in Shope (2012). (W/[m °C]) Only applies to NY 
and PA columns. 

Beardsmore and Cull Conductivity: The conductivity assigned by using the Beardsmore and Cull 
conductivities (W/[m °C]) 

USGS Lithology: The lithology of the unit as listed on the USGS Mineral Resources website, 
specific to each state (USGS, 2014). 

 

Example: 

The assumed thickness accounts for the presence of multiple units during the same time period, 
units being in a portion of the section, and the minimum and maximum possible thickness of the 
unit in the section. For example, if a unit was listed as 5-10 m thick, but was present in only 50% 
of the column, then the “Column Min” would be 0 m, the “Unit Min” would be 5 m, the “Unit 
Max” would be 10 m, the “Min(avg)” would be 2.5 m, and the “Max(avg)” would be 5 m, and 
the “assumed” thickness would be 3.75 m. 
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Color Scheme: 

The rock types are color coded according to a key in the far right of each COSUNA column. The 
color red is reserved as meaning “questionable”. For instance, columns that do not have Lower 
Paleozoic rocks (Table 2) are highlighted in red at the bottom of the column.	

Rock Types Color 
Sandstone Yellow 
Shale, Mudstone, Siltstone Light Gray 
Interbedded Sandstone, 
Siltstone, Shale 

Light 
Brown 

Carbonate Light Blue 
Conglomerate Orange 
Evaporite Pink 
Metamorphic Dark 

Brown 
Volcanic Light 

Green 
 

2. Name: CarterConductivities.xls 

 Fields: See Table 3. 

 

3.  Name: AllCosunaSections.shp 

Attribute Metadata: 

COSUNA_ID: A unique 6-digit ID code has been assigned to each COSUNA section within the 
shapefile. The first two digits are the column number, the second two digits (01 or 02) indicate 
whether the COSUNA column may be found in the Northern Appalachian Region (AAPG, 
1985a) (01) or in the Southern Appalachian Region (AAPG, 1985b) (02), and the final two digits 
(00, 01, or 02) indicate whether the column is for the East column (01), West column (02), or not 
listed (00). Only Virginia COSUNA columns stated East and West because a geographic split in 
the geology occurred as a result of major faults. 

Name: The COSUNA Section name. 

 

4.  Name: TBRSedimentThickness 

Description: 

This is a map of sediment thickness derived from contours of the Precambrian basement that 
were developed by the Trenton-Black River (TBR) Project (WVGES, 2006). The Precambrian 
contours were relative to sea level, so the elevation of the Appalachian Basin had to be added to 
arrive at a sediment thickness map. The resulting map was selected over the more recent map 
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developed by Mooney (2011) because of the inclusion of the Rome Trough. A simple 
comparison of the TBR sediment thickness map to the actual sediment thickness in the favorite 
wells is provided in Figure A1. Based on these results, we are comfortable with the choice of the 
TBR sediment thickness map. 

 

Figure A1. Comparison of TBR sediment thickness (Map Depth) to the actual sediment 
thickness from the subset of wells that reached basement rock. A 1:1 line is shown for reference. 
Depth to basement is the same as sediment thickness. 
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Memo 5: Tests of simplified conductivity stratigraphy  
by Monte Carlo analysis in GPFA-AB 

 
Authors: Calvin Whealton, Teresa Jordan, Zach Frone 
 
Executive Summary 
 
Monte Carlo analysis was used to examine the implications of using the COSUNA 
approximations versus using more detailed information for a set of 77 wells chosen across the 
region. For each of the wells there were three cases for the stratigraphic columns: detailed 
stratigraphy with Carter conductivities, COSUNA stratigraphy with Carter et al. (1998) 
conductivities, and COSUNA stratigraphy with Beardsmore and Cull (2001) conductivities. All 
stratigraphic assumptions were tested with 50,000 Monte Carlo replicates with most parameters 
being modeled as triangular distributions. 
 
The results of the analysis are that the differences between the COSUNA stratigraphy with 
Carter conductivities and the detailed stratigraphy are generally minor when compared over the 
whole region. When comparing surface heat flow, if there is a systematic difference it is 
probably around 2-5 mW/m2, which is typically around 10% of the predicted value. The 
uncertainty of the two methods for a single well is also close on average, but the actual data 
shows more noise. When predicting temperature at 3 km, the two methods were typically within 
about 6 °C of each other when comparing their mean prediciton, which illustrates the robustness 
of the COSUNA approximation with Carter et al. (1998) conductivities for this region. 
 
Part 1: Acquisition of Detailed Well-Specific Conductivity 
Stratigraphy Columns 
 
Criteria for inclusion of a given well:  

• regional expert geologists (e.g., state geological survey staff or USGS geologists) have 
made available interpretation of formation tops for these wells 

• deep wells (as close to basement as possible in a given county) 
• widely and semi-uniformly distributed 
• BHT available and judged to be relatively reliable 

 
Data Sources 

• state geological survey reports and publications 
• Cornell, West Virginia University, and Southern Methodist University prior studies based 

on a given borehole 
• USGS cross sections and specialty reports 
• state well information sites (WV Pipeline, NY ESOGIS, PAIRIS-WIS) 
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Stages of selection work 
• from lists of deep wells and county names, looked up which ones have geological reports 

of depths to formation tops.  
• assembled list of >200 candidate wells 
• compared the candidates list to wells in NGDS and other sources of BHTs, omitting from 

the “candidates” list those for which there are not BHT data 
• after initially finding no matches of stratigraphically described deep wells and wells with 

reported BHTs for WV, went into WV Pipeline and well log headers, to add BHT 
information as another category of data for the WV candidates 

• the subset with BHTs plus stratigraphic data available became the adopted well data set 
 
State-specific information sources: 

• New York State  
o ESOGIS well files 

� formation ID’s that needed de-coding, and their lithologies: 
 

 

James Leone, NYSGS 
suggestion for Rickard 
identification scheme 

Rickard 1964 usage 

   

Irondequoit  

not used (seems 
inappropriate as this name 
used for a Silurian 
formation) 

DK Dunkirk shale Dunkirk shale 
PC Pipe Creek shale Pipe Creek shale 

SB 
Scraggy beds, marks 
Rhinestreet/Angola contact 

not used 

   

J 
marker bed within 
Rhinestreet 

not used 

CO 
marker bed within 
Rhinestreet 

not used 

BB 
marker bed within 
Rhinestreet 

not used 

RG Rhinestreet group? Roricks Glen 

DH 

Devonian Hamilton (not 
sensible given stratigraphic 
order in which DH occurs) 

Dunn Hill 
 

CQ Cashaqua shale Cashaqua 

SG Sonyea Group 
Sonyea Group (Cashaqua 
underlain by Middlesex) 

M Middlesex Middlesex 
GG Genesee Group Genesee Group 
WR West River shale (upper West River  
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formation in Genesee 
Group) 

PY Penn Yan shale Penn Yan 

HP 
a marker within the 
Genesee group 

not used 

G Geneseo shale Geneseo 

TULLY-GILBOA  

perhaps a lithologically 
mixed siliciclastic-
limestone 

 
o Sources consulted for lithologic information: 

o Hill, Lombardi, Martin, Fractured shale gas potential in New York: 
NYSERDA 

o Smith, G., 2002, Conneaut sequence, NYSERDA 
o Lugert et al., NYSERDA report 
o Young, W.H., Jr., and Krediler, W.L., 1957, NYSGA 
o Rickard, 1964, New York State Museum and Science Service Geological 

Survey, Map and Chart Series, no. 4 
o NY DEC SGEIS 

(http://www.dec.ny.gov/docs/materials_minerals_pdf/ogdsgeischap4.pdf) 
 
• Pennsylvania wells 

o file of formation tops provided by Michele Cooney of PA geological survey 
o Sources of lithologies:  

� U.S. G.S. Mineral Resources On-Line Spatial Data (for example, 
http://mrdata.usgs.gov/geology/state/fips-unit.php?code=f42115)  

 
• West Virginia wells 

o Pipeline (online data management system) 
� http://www.wvgs.wvnet.edu/oginfo/pipeline/pipeline2.asp 

o Sources of lithologies:  
• U.S. G.S. Mineral Resources On-Line Spatial Data (for example, 

http://mrdata.usgs.gov/geology/state/fips-unit.php?code=f54015) 
 
 
Part 2: Analysis 
 
Well Locations & Sediment Depth 
 
The wells for this analysis are located as shown in Figure 1. In total 77 of the original 78 wells 
were used because there was not a bottom-hole temperature (BHTs) for one well. One of the 
wells in West Virginia had two BHTs so these were analyzed separately. Figure 2 compares the 
sediment depth from the sediment thickness map versus those from the detailed stratigraphy for 
wells that penetrated the basement. Figure 2 shows that the map sediment depth is generally very 
close to the true sediment depth. 

teresajordan
Typewritten Text
Memo 5: p. 3



 
 

 

 
Figure 1: Map of well locations for the sensitivity analysis. The points are color-coded with blue 
being at basement and red not being at the basement. 
 

 
Figure 2: Plot of depth to basement from the sediment thickness map used versus from the depth 
to sediment for the detailed stratigraphy wells that reached basement. The black line is for 
perfect prediction (45°). New York wells are in thinner sediments and West Virginia wells are in 
thicker sediments. 
 
 
Stratigraphy Sources 
 
The stratigraphic columns can be divided into two types: detailed stratigraphy and COSUNA 
stratigraphy. More details are provided on both of these types are provided below. 
 
 

teresajordan
Typewritten Text
Memo 5: p. 4



 
 

COSUNA Stratigraphy 

 
COSUNA (Correlation of Stratigraphic Units of North America) columns provide an 
approximate stratigraphy for generally multi-county areas. Jared Smith converted the original 
COSUNA documents into spreadsheets that contained information for each of the listed units 
(more details in cu.app-basin-gpfa.us/cu/GIS/COSUNA/COSUNA_Documentation_final.docx). 
The variables of interest are the thickness and the conductivity variables. The thicknesses used 
are the “Column Min”, “Max”, and “Assumed”, which are used to define the lower bound, upper 
bound, and most likely values of a triangular distribution, respectively. 
 
There are multiple values of conductivities depending on which reference values one uses. In this 
analysis there are two values, the Beardsmore and Cull. and the Carter values. Carter values are 
for the Anadarko Basin, which is considered a sister basin to the Appalachian Basin. Beardsmore 
et al. values are essentially standard values for a given rock type, so they will not be as reflective 
of the burial history in the Appalachian Basin. 
 

 

Detailed Stratigraphy 

 
For the selected set of wells (part 1), the files contained depth to formation top, conductivity, and 
conductivity standard deviation. The conductivities are based on the values from Carter (see 
Memo on conductivities). The thickness of each unit was calculated as the difference of the 
depth to formation top of the unit below it and its own depth to formation top. In some cases the 
detailed stratigraphic information was not complete to the basement either because the well did 
not reach basement or because there were some intermediate layers that with unassigned depths. 
 
When the well did not reach basement, the thickness of the last recorded formation (depth of the 
formation top recorded) was estimated and the remaining depth to basement was assigned as a 
single unit. To estimate the thickness of the last recorded formation the depth to the formation 
top was multiplied by the assumed thickness of the formation in the COSUNA column and 
divided by the depth to the formation top in the COSUNA column. For instance, if the depth to 
formation top in the detailed stratigraphy was 2,000 m and the depth to the formation top in the 
COSUNA column is 3,000 m and the thickness in the COSUNA column is 30 m, then the 
estimated thickness in the detailed stratigraphy would be (2,000 * 30 / 3,000) = 20 m. The 
remaining thickness between the filled-in thickness and the basement is assigned a single 
thickness unit. For instance, if there were 500 m of missing thickness between the last formation 
top and the basement (evaluated from sediment thickness map), and the last formation was filled-
in with 20 m of thickness, then 500 – 20 = 480 m was assigned as a single unit. 
 
There were a few special cases for filling-in the depths. First, in some instances the thickness of 
the detailed stratigraphic column exceeds the thickness of the sediments from the map (depth to 
basement map layer). If the estimated thickness of the last formation layer caused the total 
thickness to be greater than the map sediment thickness, then the missing unit’s thickness was set 
to the difference between the formation top and the map sediment thickness. Secondly, when 
only the last unit has unknown thickness (for instance the Potsdam in much of NY), then its 
thickness was set to the difference of the map sediment thickness and the formation top.  Thirdly, 
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if the detailed stratigraphy divided individual groups (several units) into smaller units but the 
COSUNA column only listed only the group, then the thickness of the group was estimated and 
the missing unit thickness was the group thickness less the thickness of the other units in the 
group that were recorded. So if the estimated thickness of the group was 400 m and there were 
three units in that group, two with known thicknesses from the detailed stratigraphy of 100 m 
and 125 m, then the estimated thickness of the unknown unit would be 400 – 100 – 125 = 175 m. 
 
In a few cases there were missing thicknesses of intermediate units (defined formation tops 
above and below the units, but not of the unit or units in question). The first method of 
addressing the missing intermediate layers was to calculate the total missing thickness of the 
layers and then multiplying the total thickness by the percentage of thickness for each layer in 
the assumed COSUNA stratigraphy.  When the COSUNA stratigraphy did not provide enough 
information detailed stratigraphy columns in the same COSUNA section were used to estimate 
the missing intermediate thicknesses based on the percentage of the thickness. 
 
For each unit we assigned values for the conductivity and the standard deviation of the 
conductivity. These conductivities are based on the Carter conductivities from the Anadarko 
Basin, because those strata underwent similar extents of burial and are roughly as old as is the 
Appalachian Basin. 
 
Distributional Assumptions 
 
This section outlines the distributional assumptions for the parameters in the Monte Carlo 
experiment. UB, LB, and ML stand for upper bound, lower bound, and most likely (peak), 
respectively. Most distributions were chosen to be symmetric triangular distributions because 
they are bounded on reasonable ranges (no negative values) and they reasonably describe a 
peaked distribution. Most of the COSUNA thicknesses were also symmetric, but they were 
skewed when the column minimum thickness was not in the same range as the maximum 
thickness. 
 
Note that the uncorrected bottom-hole temperature (BHT) was used because the BHT corrections 
are not finalized at the moment and the verification that the model can reproduce the BHT down 
the borehole does not depend on the BHT measurement. 
 
Variable (units) Distribution Parameters Notes 
Bottom-Hole 
Temperature (°C) 
[uncorrected] 

Triangular-
Symmetirc 

UB = BHT + max(5, 0.1*BHT) 
LB = BHT - max(5, 0.1*BHT) 

Shallow data often has large 
spread, hence the 5°C 
minimum; Uncertainty 
increases with depth because of 
BHT correction uncertainty 

Surface 
Temperature (°C) 

Triangylar-
Symmetric 

UB = ST + 1 
LB = ST - 1 

Bounds set as +/- 1°C from the 
map value 

Mantle Heat Flow 
(mW/m2) 

Triangylar-
Symmetirc 

UB = 30*1.2 
LB = 30*0.8 

Mantle heat flow bounds are 
approximately the expected 
range 

Radiogenic Heat Triangular- UB = 1*1.2 Typical value is about 1, used 
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Production 
(μW/m3) 

Symmetirc LB = 1*0.8 20% as the bounds 

Detailed 
Stratigraphy 
Conductivity k 

(W/m-°C) 

Triangular-
Symmetric 

UB = k + 2*SD(k) 
LB = k - 2*SD(k) 

Using +/- 2 standard deviations 
(SD) of the conductivity 

COSUNA 
Stratigraphy 
Conductivity k 

(W/m-°C) 

Triangular-
Symmetric 

UB = 1.4*k 
LB = 0.6*k 

Using +/- 40% of the 
conductivity for the bounds 
because for the Carter values 
the standard deviation is about 
18% of the mean conductivity  

COSUNA 
Thickness (m) 

Triangular UB = Max 
LB = Column Min 
ML = Assumed 

Used column min and 
maximum values to defined 
bounds and the assumed value 
should be the most likely 

 
Monte Carlo Experiment 
 
The Monte Carlo experiment was designed to test whether there are any systematic differences in 
the COSUNA approximations and the detailed stratigraphy. This section outlines the generation 
of the replicates for all of the wells. 
 
For a well the replicates of for the detailed stratigraphy, COSUNA Carter, and COSUNA 
Beardsmore and Cull were all generated at once. Figure 1 represents the generation of the data. 
When possible, all of the random inputs were kept the same across the different stratigraphy 
assumptions. For instance, all of the Monte Carlo replicates for a single well used the same set of 
BHTs and surface temperature inputs. Additionally, both of the COSUNA variations used the 
same thickness values. Holding as many parameters the same across the variables allows for a 
paired test, which should have higher power. 
 
Replicate BHT Surface 

Temp 
… Detailed 

Conductivity 
COSUNA 
Carter 
Conductivity 

COSUNA 
Beardsmore 
and Cull 
Conductivity 

COSUNA 
Thickness 

    1  n 1  m 1  m 1  m 
1     …   …   …   …  
2     …   …   …   …  
…     …   …   …   …  
50000     …   …   …   …  
 
Figure 3: Representation of the generation of the generation of the replicates for the Monte Carlo 
experiment. The colors are for different blocks of data. There are n units in the detailed 
stratigraphy and m units in the COSUNA stratigraphy. 
 
Standard uniform variables were generated for all of the variables. The standard uniform 
variables were then converted into the distribution (see section “Distributional Assumptions”) 
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using the inverse cumulative distribution function for the variable. The seed for each well is 
separate and based on the depth of the well, which allows reproducibility of the results without 
causing all of the random variables across the wells to be linked. 
 
All of the output was calculated based on code developed by Jared Smith and Frank Horowitz 
(bitbucket.org/geothermalcode/jaredthermalconductivity, special functions for sensitivity 
analysis are in the branch ‘calvinSA’). 
 
Individual Well Statistics 
 
The statistics for an individual well are based on the 50,000 Monte Carlo replicates for the three 
stratigraphy assumptions of that well. The statistics calculated for the individual wells are: 
  
• Mean (average, measure of location) 
• Median (middle of the sorted values, robust measure of location, 50th percentile) 
• Standard Deviation (measure of spread) 
• Interquartile Range (IQR, robust measure of spread, difference of the 75th and 25th percentiles) 
 
These statistics include both standard and robust measures of location and spread. The units of 
all of these statistics will be the same as the units of the original output variable. 
 
For the analysis the surface heat flow and the temperature at 3 km are considered. The surface 
heat flow depends on the BHT, surface temperature, and the “average” conductivity between the 
BHT and the surface (the conductivity is calculated using a harmonic average accounting for 
thickness of formation). Temperature at 3 km represents a reasonable estimate of the depth range 
considered for development. 
 
Figure 2 shows some sample boxplots of the output of the Monte Carlo experiment for different 
wells. The top two boxplots are for Surface Heat flow and the bottom two boxplots are for 
temperature at three kilometers. 
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Figure 4: Examples of boxplots showing boxplots of the distribution of the results of 50,000 
Monte Carlo replicates for each well stratigraphy/conductivity assumption (each boxplot is 
50,000 points). Red is for the detailed stratigraphy, blue is for the COSUNA stratigraphy with 
Carter conductivities, and green is for the COSUNA stratigraphy with Beardsmore and Cull 
conductivities. The box is defined from the 25th to 75th percentiles with the middle line at the 
median (50th percentile). The whiskers extend up to 1.5 times the interquartile range. 
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Region-Wide Analysis 
 
The goal of this section is to examine whether there were any systematic differences when using 
the stratigraphic assumptions for surface heat flow or temperature at 3 km. The main questions 
addressed are: 

1. Are the any large systematic biases? 
2. Are there any large differences in uncertainty and how does depth impact this? 
3. Robustness in predicting temperature at depth? 

 
Systematic Biases 

 
Figure 5 shows plots of the mean and the median surface heat flow for the wells. The mean and 
the median for each point are calculated based on the Monte Carlo replicates for that point. 
Generally, the points seem to be clustered around the perfect prediction line (in black). If there is 
a systematic bias it is probably minor around 2-5 mW/m2. Comparing the two plots in Figure 5 
also shows that the distributions are fairly well behaved because the mean and median plots look 
very similar, indicating fairly symmetric distributions. 
 

  
Figure 5: Plots of mean (left) and median  (right) surface heat flow when using Detailed 
Stratigraphy and COSUNA Stratigraphy with Carter Conductivities. Points are color-coded by 
state (NY=red, PA=blue, WV=green). The black line is the 45° line for perfect matches.  
 
Differences Uncertainty (Spread) 

 
Figure 6 plots the uncertainty (spread) of the distributions of the Detailed Stratigraphy and 
COSUNA Stratigraphy with Carter conductivities against each other.  Generally, the two plots 
look very similar, which is an indication that the distributions are well behaved and do not have 
very fat tails. If the distributions were perfectly normal, then the interquartile range would be 
about 1.35 times the median, which explains the difference in scale of the two figures. The 
measures of spread seem to be noisier around the prediction line than the mean or median results, 
but they still seem to be clustered around the line. 
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Figure 7 shows that as the depth of the bottom-hole temperature (BHT) increases, the uncertainty 
in the surface heat flow decreases until around 2000 m, at which point it stabilizes. Part of the 
reason for this behavior is probably due to the assumption of the BHT distribution, which was 
fairly wide even at shallow depths to reflect that shallow data is often very noisy. As the BHT 
becomes deeper, the bounds are specified as a percentage of the BHT value, which means the 
uncertainty is instant relative to the BHT value. 
 

  
Figure 6: Plots of standard deviation (left) and interquartile range  (right) surface heat flow when 
using Detailed Stratigraphy and COSUNA Stratigraphy with Carter Conductivities. Points are 
color-coded by state (NY=red, PA=blue, WV=green). The black line is the 45° line for perfect 
matches.  
 

  
Figure 7: Plots of interquartile range (IQR) of surface heat flow for the Detailed Stratigraphy 
(left) and the COSUNA Stratigraphy with Carter conductivities  (right). The horizontal axis is 

teresajordan
Typewritten Text
Memo 5: p. 11



 
 

the depth of the BHT measurement. Points are color-coded by state (NY=red, PA=blue, 
WV=green). The black line is the 45° line for perfect matches.  
 
Robustness in predicting temperature at depth 

 

Figure 8 shows the differences in the predicted mean temperature at 3 km for the wells in the 
Monte Carlo study (mean of 50,000 replicates) for the assumptions of Detailed Stratigraphy and 
COSUNA stratigraphy with Carter conductivities. Generally, the COSUNA-Carter 
approximation is very robust in the sense that the estimated temperature at depth is within 6 °C 
of the Detailed Stratigraphy estimation. It is difficult to determine if there is any difference in 
spread when the Detailed stratigraphy is known at the depth of estimation (BHTs deeper than 3 
km) versus when only the upper portions of the detailed stratigraphy are known and missing 
units are appended to the detailed stratigraphy (BHTs less than 3 km).  
 

 
Figure 8: Plots of the difference in the predicted temperature at 3 km based on the depth of the 
BHT measurement. When BHT depth is greater than 3 km the detailed stratigraphy is know. 
When the BHT depth is less than 3 km only the upper portions of the detailed stratigraphy are 
known and the lower portions are assumed. 
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 
 
From:  Calvin Whealton and Jery Stedinger 
 
Date:   February 19, 2015 
 
Subject:  Outlier Identification Procedure 
 

 
 
The Appalachian Basin Geothermal Play Fairway Analysis (AB-GPFA) must determine 
which algorithm should be used to identify outliers in the geospatial datasets. Outliers 
pose a problem for non-robust regression schemes because they would have high squared 
residuals. Many regression techniques seek to minimize the squared residuals, so an 
outlier can have undue influence on the results of the analysis.  
 
This memo outlines the recommended outlier detection algorithm. Appendix 1 outlines 
the previous work on outlier algorithms for the NY and PA geothermal dataset. Appendix 
2 illustrates the sensitivity of the final results to algorithm parameters over a reasonable 
range of values. Appendix 3 provides Monte Carlo type I error rates for different 
distributions type I error rates when the distribution parameters are known. 
 
Outliers can be defined as “an observation (or subset of observations) which appears to 
be inconsistent with the remainder of that set of data” (Barnett and Lewis, 1994, p. 7). 
The following terms are defined below for use in the memo: 
 
• Global: relating to the whole dataset, irrespective of location 
• Local: relating to a subset of the data defined by a spatial relationship (e.g. 25 closest 
observations to the nearest point, points within 16 km of a point, etc.) 
• Sparse: areas where there’s insufficient data to evaluate a point to see if it is an outlier 
(e.g. only 4 local points if criterion is at least 25 local points) 
 
The asymmetric boxplot algorithm used by Aguirre (2014) calculates upper and lower 
bounds from the sample quartiles, as defined in equations 1 and 2. 
 
𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑄𝑄0.25 − 𝑘𝑘(𝑄𝑄0.5 − 𝑄𝑄0.25)      [1] 
𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 = 𝑄𝑄0.75 + 𝑘𝑘(𝑄𝑄0.75 − 𝑄𝑄0.5)      [2] 
 
where  

𝑄𝑄0.25 is the lower quartile, 
𝑄𝑄0.75 is the upper quartile, 
𝑄𝑄0.5 is the median,  
𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the lower bound, 
𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 is the upper bound, and 
𝑘𝑘 is a constant (standard value of 3). 
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Points outside the bounds are considered outliers. Aguirre (2014) calculates bounds both 
globally and locally, and only removed points which were both local and global outliers.  
She performed the global outlier test first, given the calculated values of 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 
𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙  computed for the entire region. This greatly reduced the number of times that the 
local outlier computation was required.  
 
We recommend that GPFA-AB group apply this asymmetric boxplot rule only locally 

with a value of the constant, 𝑘𝑘 = 3. Additionally, the definition of local should be 
changed to the nearest 25 points provided that the points are within 16 km of the point 
being tested. If there are not 25 points within 16 km, then no outlier test is performed. 
Requiring points to be both local and global outliers will bias cold areas to be warmer and 
warm areas to be colder. Also, using 25 points allows a reasonable comparison with 
expected identification rates for several null distributions (see appendix 3). Using the 
Cornell NY and PA dataset of 8919 observations (Cornell University 2014) with Harrison 
corrected gradient and the recommended algorithm parameters, 6.8% (607 observations) 
were in sparse areas (fewer than 25 points within 16 km); 7.1% of the total dataset (629 
observations) were removed as outliers (see appendix 2). 
 
Encl.: 
 
Appendix 1: Summary of Outlier Algorithms Used at Cornell 
Appendix 2: Sensitivity Analysis of Recommended Algorithm 
Appendix 3: Type I Error Rates 
References 
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Appendix 1: 

Summary of Outlier Algorithms Used at Cornell 

 

Work at Cornell University has used outlier detection algorithms to remove potentially rogue 
observations before spatial regression. Rogue observations could have a high squared residual 
value, which can allow rogue observations to unduly influence the fit of non-robust spatial 
interpolation techniques. 
 
Aguirre et al. (2013) broke the outlier analysis into global and local identification steps. For 
global analysis they considered a boxplot and asymmetric boxplot rules along with several other 
algorithms. Both of the boxplot-based algorithms use the quartiles of the data. The asymmetric 
boxplot rule was chosen because the global data seemed skewed and the asymmetric boxplot rule 
was robust to asymmetric data. They investigated several algorithms for local outlier analysis as 
well, but chose a method where the data was gridded in 16 km by 16 km blocks (other block 
sizes were also tested). In this early version of local outlier detection, local outliers were 
identified as more than three standard deviations from the block mean. The block standard 
deviation and the block mean were calculated for each block and only applied to points within 
that block. Although not explicitly mentioned, they do discuss that blocks with fewer than 20 
points were not effective.   
 
Aguirre (2014) continued to conduct global outlier analysis with the asymmetric boxplot rule. 
The final algorithm used the asymmetric boxplot rule for both local and global analysis. This 
allowed for a more robust local outlier detection algorithm because the standard deviation 
method used in her previous work was not robust. Only observations that were both local and 
global outliers and were in a box (32 km by 32 km) with 25 points were removed as outliers. 
 
Aguirre’s analyses are conservative because only points that are unusual both locally and 
globally are removed as outliers. If there is little signal (spatial trend) in the data then this is 
reasonable. Testing globally and then only testing global outliers to see if they are local outliers 
might reduce computation time, but the computational savings would be in the order of minutes. 
Given that the global outlier bounds differ by a factor of approximately 3, it seems that there 
could be signal of spatial variability in the data. If this were the case it would be best to use only 
a local analysis. Otherwise, “cold” areas will be biased warm because their coldest points will be 
both local and global outliers. Similarly, “warm” areas will be biased cold. Completing a local 
analysis would be robust to signal in the data, provided the local region is small enough. In the 
Cornell dataset about one quarter of the data comes from a single county in New York (Cornell 
University 2014). Given the large proportion of the data from a single county and the small 
variability within that one county, the global outlier test bounds could easily have been biased by 
this one county with Aguirre’s methods. Choosing points that were spatially representative of the 
area in our dataset might have been more robust for determining global outlier bounds. 
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Appendix 2 

Sensitivity Analysis of Recommended Algorithm 

 

In the algorithm that we recommend there are essentially two parameters: the points used for a 
local test and the maximum radius one at which one can take points. To test the sensitivity of the 
algorithm to these two parameters we ran the algorithm on the Cornell dataset of 8,919 
observations (Cornell University 2014). The variable tested was a gradient based on the Harrison 
correction (negative and past peak values used) and a uniform surface temperature of 9 °C. 
Figure 2.1 displays the results. Locations were projected from WGS84 into UTM 18N. 
 
Figure 2.1 shows that for a large number of points and a small maximum radius, very little of the 
dataset can be evaluated as outliers (bottom right). As the radius increases and the points 
criterion decreases a greater fraction of the dataset can be tested as outliers. The increase in the 
percentage of data considered outliers grows from the bottom right because more of the dataset 
can be tested. However, eventually the increase will stop because 2.3% of the data is considered 
as outliers in a global test (when the local area is large the test converges to the global test). For 
instance, when the point’s criterion was 1,000 and the radius criterion was 200 km, only 4.4% of 
the data was considered outliers. Note in the upper right hand portion of the graph the proportion 
of data removed as outliers is approximately twice what one would expect for normal data (6-8% 
versus 3% for normal, see table 3.1). The percentage of outliers identified is closer to what one 
would expect from a fairly fat-tailed kurtotic Student t distribution. 
 
Based on these results it seems reasonable to choose the points criterion as 25 and the radius 
criterion as 16 km. This will be close to the parameters used by Aguirre (2014), except in her 
algorithm the grid spacing was 32 km. When the 25 points and 16 km radius were applied to the 
test dataset, this left 6.8% (607 observations) in sparse areas. In total, 7.1% of the whole dataset 
(629 observations) were removed as outliers. It is likely that some of the data in sparse areas 
would be omitted for other reasons, including not enough points in the county or the points are 
outside our area of interest. 
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Figure 2.1: Plot showing the impact of the required number of points to evaluate a local outlier 
(horizontal axis) and the maximum radius at which points can be taken (vertical axis) on the 
percentage of the data set tested for local outliers (size of symbols) and the percentage of points 
considered outliers (color of symbol). The percentage of points considered outliers is relative to the 
number of points in the original dataset. The black circles represent 100% of the data being tested by 
the outlier algorithm. The recommended algorithm uses the 25 closest points within a maximum radius 
of 16 km. 
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Appendix 3 

Type I Error Rates 
 
The equations 1 and 2 given in the memo depend on 𝑘𝑘, which is a constant multiplied by the 
median-to-upper quartile or lower quartile-to-median range. Typically, one chooses an outlier 
criterion based on a specified type I error. Type I error is the probability that one incorrectly 
rejects the null hypothesis. In this example the null hypothesis is that the data is distributed 
according to the distribution listed. The type I error will be identifying a point as an outlier even 
though it is drawn from the specified distribution. Type I error rates in table 3.1 were calculated 
based on Monte Carlo calculation from 100,000 replicates of sample size 25. 
 
For the recommended value of 𝑘𝑘 = 3, if the data is normally distributed one would expect to 
identify about 3%  (see table 3.1) of the data as outliers. Thicker tailed distributions, such as the 
Student t, will have higher identification rates. Thin-tailed Beta(1,1) (uniform distribution) and 
Beta(2,2) have high type I error rates in table 3.1 compared to the values in table 3.2. For 
example, in table 3.1 the type I error for Beta(2,2) with 𝑘𝑘 = 1.5 is 8.29%, but if the distribution 
parameters were known exactly the type I error would be 2.49% as given in table 3.2. Beta(1,1) 
shows large differences between the two cases.  
 
Table 3.1. Type I error (%) for asymmetric boxplot test based on 100,000 replicates of sample 
size 25. Beta(1,1) is the uniform distribution. The argument for the Student t distribution is the 
shape parameter (also referred to as the degrees-of-freedom), which controls the thickness of the 
tails. Student t (∞) is the normal distribution. Upper and lower bounds used to define outliers are 
based on equations 1 and 2 in the memo. 
 

 Distribution 

k 
Normal Beta 

(1,1) 

Beta 

(2,2) 

Student 

t (2) 

Student 

t (4) 

Student 

t (6) 

Student 

t (8) 

Student 

t (10) 

1.0 19.76 10.79 15.84 25.25 22.63 21.71 21.22 20.94 
1.5 12.36 4.67 8.29 19.20 15.95 14.78 14.19 13.82 
2.0 7.86 2.14 4.26 14.97 11.44 10.24 9.62 9.23 
2.5 5.00 1.06 2.42 12.00 8.36 7.21 6.61 6.27 
3.0 3.26 0.56 1.36 9.81 6.32 5.16 4.64 4.34 
3.5 2.16 0.31 0.80 8.10 4.79 3.77 3.31 3.06 
4.0 1.45 0.18 0.49 6.84 3.68 2.79 2.40 2.18 
4.5 1.00 0.11 0.32 5.83 2.91 2.11 1.77 1.57 
5.0 0.70 0.06 0.21 5.02 2.32 1.61 1.32 1.17 
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Table 3.2. Type I error (%) for asymmetric boxplot test based on perfect knowledge of 
parameters (large sample). Beta(1,1) is the uniform distribution. The argument for the Student t 
distribution is the shape parameter (also referred to as the degrees-of-freedom), which controls 
the thickness of the tails. Student t (∞) is the normal distribution. Upper and lower bounds used 
to define outliers are based on equations 1 and 2 in the memo and the quantiles are calculated 
from the population distribution. 
 

 Distribution 

k 
Normal Beta 

(1,1) 

Beta 

(2,2) 

Student 

t (2) 

Student 

t (4) 

Student 

t (6) 

Student 

t (8) 

Student 

t (10) 

1.0 17.73 0.00 12.57 24.41 21.26 20.13 19.54 19.19 
1.5 9.18 0.00 2.49 17.80 13.77 12.30 11.54 11.08 
2.0 4.30 0.00 0.00 13.40 9.04 7.48 6.69 6.21 
2.5 1.82 0.00 0.00 10.37 6.05 4.58 3.86 3.43 
3.0 0.70 0.00 0.00 8.23 4.14 2.84 2.23 1.88 
3.5 0.24 0.00 0.00 6.67 2.90 1.79 1.30 1.03 
4.0 0.07 0.00 0.00 5.51 2.08 1.15 0.77 0.57 
4.5 0.02 0.00 0.00 4.62 1.52 0.76 0.46 0.32 
5.0 0.01 0.00 0.00 3.92 1.13 0.51 0.28 0.18 

 
 
 
  

teresajordan
Typewritten Text
Memo 6: p. 7



 

References 

 

 

Aguirre, G. A., Stedinger, J. R. and Tester, J. W. (2013). Geothermal Resource Assessment: A 
Case Study of Spatial Variability and Uncertainty Analysis for the State of New York and 
Pennsylvania. Procedings: 38th Workshop on Geothermal Reservoir Engineering. 
Stanford University. 

 
Aguirre, G. A. (2014). Geothermal Resource Assessment: A Case Study of Spatial Variability 

and Uncertainty Analysis for the States of New York and Pennsylvania. Master’s Thesis. 
Environmental and Water Resources Systems Engineering, School of Civil and 
Environmental Engineering, Cornell University. 

 
Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. 3rd ed. John Wiley and Sons: New 

York. 
 
Cornell University (2014). Cornell University Heat Flow Database (NY and PA). Southern 
 Methodist University Geothermal Laboratory. 
 http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm (Accessed 16 June 
 2014). 

 

teresajordan
Typewritten Text

teresajordan
Typewritten Text
Memo 6: p. 8



1	
	

To:  Appalachian Basin Geothermal Play Fairway Analysis Group 

From:  Jared Smith 

Date:   Original from August 19, 2015. Updated August 25, 2016 

Subject:  Selection of Thresholds for Thermal Resource and Thermal Risk Factor Maps 

Applicability: The methods described in this memo were used to develop the thermal resource 
and risk maps for this project. This memo discusses the steps to create thermal 
risk factor maps for the project. This memo also describes a method for objective 
selection of threshold values for any risk factor considered. 

 

Definitions 

Resource Map – Map representing a resource in the Appalachian basin. For example, these 
include depth-to-temperature maps, temperature-at-depth maps, reservoir 
productivity maps, etc. These may have continuous or discrete color scales. 

Risk Factor Map – A discrete color map submitted as a representation of the risk for the end user 
considered. A risk factor map reflects actual acceptability (favorability) of 
the resource. The most general risk factor map would be a single color 
scheme for all end uses considered in the project. An example of a more 
specific map would be a single color scheme for all end uses between 50 °C 
and 80 °C. Separate thresholds would be defined for each of these maps. 

 

Introduction 

Thresholds must be assigned for visualizing the resource maps and risk factor maps in a play-
fairway color scheme. A distinction must be made between thresholds for visualizing the thermal 
resource maps (e.g. temperature at depth and depth to temperature), and thresholds for 
visualizing the thermal risk factor maps. The resource maps may be viewed on any color scale 
desired that adequately displays the variability in the resource throughout the basin: the resource 
maps represent favorability relative to the predicted values of the resource in the assessed 
locations of the basin. The risk factor map must be placed on a color scale that represents the 
actual acceptability of developing the thermal field in an assessed location of the basin: the risk 
factor map represents favorability relative to the project(s) considered. For the thermal risk 
factor, the risk map represents the favorability of drilling to a depth and reaching a sufficient 
temperature for the project(s) considered. Therefore, the risk factor map thresholds should 
change based on the project considered. More detailed descriptions of Resource Maps versus 
Risk Factor Maps are provided in their respective sections. 
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To distinguish between resource maps and risk factor maps, the colors used to represent resource 
maps should not be exactly the same as colors used on risk factor maps (green/yellow/red) within 
reason. For example, it would be odd for temperature at depth to be on a purple/blue/pink color 
scale, so using green/yellow/red would be acceptable. Another distinction between resource 
maps and risk factor maps is that the resource map may be placed on a continuous color scale; 
whereas the risk factor must be on a discrete play-fairway color scale. 

Selection of Maximum, Minimum, and Threshold Values 

For a resource map the minimum and maximum values have little influence on the resulting map, 
other than bounding the color scale. On a risk factor map the minimum and maximum values 
define 0.0 and 3.0 or 0.0 and 5.0, and therefore are of great importance when calculating the 
commensurate risk metrics. For example, if the maximum value on a resource map is 100 and 
100 is advantageous, but threshold 2 (2.0) is a value of 1, and the maximum (3.0 on 3-color 
scale) is assigned (arbitrarily) a value of 1000, then 100 would be scaled to a value of 2.1 for the 
commensurate metric calculation. Thus, the minimum and maximum values on a risk factor map 
must be selected with care, and represent what is truly a minimum acceptable and maximum 
acceptable value, within reason.  

One way to assign the maximum and minimum risk factor values is to treat them as thresholds, 
for which any value below the selected minimum would be assigned a value of 0.0, and any 
value above the selected maximum would be assigned a 3.0 or a 5.0 depending on the color 
scheme. This formulation allows for an objective selection by asking “what is a value above 
which we could do any project?” and “what is a value below which we could accomplish 
nothing?” This formulation is more flexible than assigning a single value to 0.0 and 3.0 or 5.0. 

The threshold values determine the color divisions on all maps. The thresholds should be 
selected objectively, at least to a point of being defensible. As such, resource map thresholds 
could be determined based on the expected cost of drilling and completing a geothermal well (for 
depth-to-temperature maps) and potential end use temperatures (for temperature-at-depth maps). 
Risk factor map thresholds are to be defined based on the expected cost of drilling to depths for 
the project(s) considered. The most general risk factor map would consider all possible projects. 
An example of a more specific risk factor map would be a single color scheme for all end uses 
between 50 °C and 80 °C. Separate thresholds would be defined for each risk factor map. The 
thresholds used for the final risk factor maps are provided in the final section of this memo.  
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Threshold Selection for Resource Maps 

In determining the threshold values for the resource maps, some consideration was given to how 
much of the map area appeared a certain color. The main concern is that the resource map must 
display a variety of colors to maximize its utility. For example (using green/yellow/red) this does 
not mean that areas that are green are favorable to develop, and areas that are red are 
unfavorable: it only means that green areas are better than red areas.  

To ensure that visual comparison is simple between potentially many maps, only one set of 
thresholds could be used per resource, no matter the selected depth or temperature. For instance, 
the temperature at 1 km could use the same color scheme as the temperature at 4 km. Likewise, 
the Depth to 80 °C could use the same color scheme as Depth to 100 °C. 

For resource maps, no consideration was given to the use of different thresholds for different end 
uses. For example, one may be interested in a district heating project, and therefore sites would 
likely require temperatures above 80 °C to be considered. These end-use specifications are 
potentially important for risk factor maps (below), but are not reflected in the resource maps. 

The following section discusses how thresholds could be assigned to resource maps using a 
single set of thresholds. This approach was not adopted for final products, but it could be useful 
for other projects, or future phases of this project.  

Depth to Temperature Maps 

Threshold values for depth to temperature maps are selected based on the current state of 
knowledge about the average cost of drilling and completing geothermal wells (Beckers et al., 
2014). The main consideration was that the rate of change in the cost for drilling and completing 
a well is less for shallow depths. For instance, drilling a well 2 km instead of 4 km causes the 
average cost to increase by about $7 million; whereas drilling a well 4 km instead of 6 km, or 6 
km instead of 8 km causes an average cost increase of about $10 million.  

Other factors affecting the economics of geothermal operations including the price of competing 
heating fluids (e.g. natural gas), the natural permeability of the reservoirs at depth, the expected 
fluid production rate, and the expected temperature of the produced fluid were not taken into 
account to determine the threshold values; however each factor may aid in an economics-based 
objective selection of threshold values. 

Minimum and Maximum Depth 

The minimum depth is 500 m, which is approximately the minimum depth to a corrected BHT of 
50 °C in the region – the minimum useful temperature considered. This hot spot is located in 
Gilmer and Calhoun counties in West Virginia. Additionally, 500 m is the depth of the 
shallowest reservoir identified in this study. The maximum depth is 8750 m, which is the 
maximum predicted mean depth to 80 °C in the region considered, plus two times the standard 
error of the predicted mean. Again, these values may be adjusted with little effect on the resource 
maps, other than shifting the color scale values.  

Thresholds for 5-color Scheme for All Temperatures 
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Threshold 1 is set at an average cost of approximately $12 million to drill and complete each 
well. This corresponds to a depth of 4500 m. Clearly drilling to a depth of 4500 m would be too 
costly for low temperatures, and only in the very few hottest areas would it be beneficial to drill 
to deeper depths.  

Thresholds 2 through 4 were all selected in approximately $2 million increments, starting with 
threshold 2 at $8.2 million and 3500 m, to threshold 3 at $6.0 million and 2900 m, and finally 
threshold 4 at $3.9 million and 2200 m. To place the 2200 m threshold into a thermal 
perspective, the 50 °C minimum temperature considered in this project would correspond to an 
average gradient of about 18 °C/km. Therefore, even at the coolest temperature considered there 
would be a distinction between green, yellow-green, yellow, orange, and red areas on the map 
(though most of the area would appear green).  

Thresholds for 3-color Scheme for All Temperatures 

Threshold 2 on the 3-color scale is located between thresholds 3 and 4 on the 5-color scale. 
Threshold 1 on the 3-color scale is a $5 million increment from threshold 2. 

 

Temperature at Depth Maps 

Temperature at depth thresholds are selected based on the end-use temperatures considered in 
this project. The minimum temperature is 15 °C, which is the average annual ground temperature 
throughout the region (Gass, 1982), rounded up to the nearest multiple of 5. The maximum 
temperature is 250 °C, which is the maximum calculated temperature at 4 km depth for wells in 
the database, rounded up to the nearest multiple of 10. A depth of 4 km was selected because 
maps for temperature at depth were created up to 4 km depth. 

Thresholds for 5-color Scheme for All Depths 

Threshold 1 is 50 °C, which is the minimum useful temperature considered in this project.  

Threshold 2 is 75 °C, which is desirable to meet the legal minimum temperature of 72 °C needed 
for Grade A milk pasteurization by the High Temperature Short Time (HTST) method (USHHS, 
2011). HTST is typically used for high volume production of milk because of the short 15 
second heating time. Lower temperatures of 63 °C are acceptable for pasteurization if milk is 
heated for 30 minutes (USHHS, 2011), but this is more typical for at-home projects than large 
scale production. Other processes related to large scale milk pasteurization are possible at 
temperatures between 60 °C and 70 °C. 

Threshold 3 is 90 °C, which is a desirable temperature for direct-use of hot water for district 
heating.  

Threshold 4 is 150 °C, which is considered a minimum temperature for electricity generation in 
an Organic Rankine Cycle (ORC) geothermal power plant. 

Thresholds for 3-color Scheme for All Depths  
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Threshold 1 is 50 °C, which is the minimum useful temperature considered in this project. 
Again, threshold 2 on the 3-color scale is located between threshold 3 and 4 on the 5-color scale. 

Table 1a: Thresholds for 3-color scheme for depth-to-temperature thermal resource maps. 

3 – Color Scale 
Divisions 

Depth to Temperature 
Maps 
(m) 

Minimum 8750 
(too costly) 

Bad, unacceptable 
[8750, 4000) 

Threshold 1 4000 
(~$10.1 Million/well) 

Okay, acceptable 
[4000, 2500) 

Threshold 2  2500 
(~$4.8 Million/well) 

Great, advantageous 
[2500, 500] 

Maximum  500 
(shallowest reservoir) 

 

Table 1b: Thresholds for 3-color scheme for temperature-at-depth thermal resource maps. 

3 – Color Scale 
Divisions 

Temperature at 
Depth Maps 

(°C) 

Minimum 15 
(no need to drill) 

Bad, unacceptable 
[15, 50)  

Threshold 1 50 
(min useful temperature) 

Okay, acceptable 
[50, 120)  

Threshold 2 120 

Great, advantageous 
[120, 250] 

Maximum 250 
 

teresajordan
Typewritten Text
Memo 7: p. 



6	
	

Table 1c: Thresholds for 5-color scheme for depth-to-temperature thermal resource maps. 

5 – Color Scale 
Divisions 

Depth to Temperature 
Maps 
(m) 

Minimum  8750 
(too costly) 

Bad, unacceptable 
[8750, 4500) 

Threshold 1  4500 
(~$12.2 Million/well) 

Marginally acceptable 
[4500, 3500) 

Threshold 2  3500 
(~$8.2 Million/well) 

Okay, acceptable 
[3500, 2900)  

Threshold 3 2900 
(~$6.0 Million/well) 

Favorable 
[2900, 2200) 

Threshold 4  2200 
(~$3.9 Million/well) 

Advantageous 
[2200, 500] 

Maximum  500 
(shallowest reservoir) 
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Table 1d: Thresholds for 5-color scheme for temperature-at-depth thermal resource maps. 

 

5 – Color Scale 
Divisions 

Temperature at 
Depth Maps 

(°C) 

Minimum 15 
(no need to drill) 

Bad, unacceptable  
[15, 50) 

Threshold 1  50 
(min useful temperature) 

Marginally acceptable  
[50, 75) 

Threshold 2  75 
(milk pasteurization) 

Okay, acceptable 
[75, 90) 

Threshold 3  90 
(district heating) 

Favorable 
[90, 150) 

Threshold 4  150 
(ORC power plant) 

Advantageous 
[150, 250] 

Maximum 250 
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Thresholds for Risk Factor Maps 

The risk factor maps must combine temperature and depth in a meaningful way. These risk factor 
maps may be defined based on the overall risk of developing any project, or be more specific to 
selected end uses, such as technologies that require temperatures from 50 °C to 80 °C. 

The thresholds selected for risk factor maps give no consideration to the percentage of map area 
assigned to each color because the thresholds are objectively defined for acceptability. It is 
therefore possible for a risk factor map to omit some of the colors because that level of 
acceptability is not reached in the assessed area. 

Definition of risk factor thresholds can be determined from two methods (M1 or M2) by asking:  

M1) “What temperatures are being considered for this use map?” Thresholds for a thermal risk map 
would be assigned based on unfavorable, okay, and advantageous depths to reach those 
temperatures considered. 

M2) “At what depth are the interesting reservoirs that are being considered for this map area?” 
Thresholds describing thermal risk would be based on unfavorable, okay, and advantageous 
temperatures to be reached at those reservoir depths.  

Examples of thresholds for the thermal risk factor using each of these methods (M1 and M2) are 
provided in Table 2. Thresholds selected for use in the project are provided in the following 
section. In Table 2, the thermal gradient is used as a simple method of assigning thresholds, but 
using the thermal gradient does not account for complexities in thermal conductivity or heat 
generation with depth, or any economic factors that may want to be considered. 

Alternatively to M1) and M2), a map depicting overall thermal risk may be made from the 
combination of maps created at depth intervals. For example, taking the average of the 3-point or 
5-point scaled values for depths ranging from 1.5 km to 3.5 km in 1.0 km increments. The 
threshold values would be defined in temperature units and would be different for each depth 
considered because of a change in favorability of a temperature with depth. For example, 80 °C 
at 1000 m is great, but 80 °C at 5000 m is awful. These thermal maps could be combined with 
the reservoirs, which are defined on 0.5 km intervals, to create combined thermal and reservoir 
risk maps. This is an option for further communicating risk in Phase 2. 
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Table 2a: Example thresholds for 3-color scheme and point scale for thermal risk factor maps in 
Method 1 (above). M1 considers a single map for end use temperatures from 60 °C – 80 °C. 

3 – Color Scale 
Divisions and  
Point Value 

(0 = Worst, 3 = Best) 

M1)  
Depth to End Use 

Temperatures 
from 60 – 80 °C 

(m) 
All Values Above 
0.0: Unacceptable 

4000 
(~15 °C/km for 70 °C) 

Bad, unacceptable 
[0.0, 1.0) 

Threshold 1 
1.0 3000 

Okay, acceptable 
[1.0, 2.0) 

Threshold 2 
2.0  2000 

Great, advantageous 
[2.0, 3.0] 

All Values Below 
3.0: Very favorable  1000 

 

Table 2b: Example thresholds for 3-color scheme and point scale for thermal risk factor maps in 
Method 2 (above). M2 considers a single map for reservoirs between 2000 m and 3000 m. 

3 – Color Scale 
Divisions and  
Point Value 

(0 = Worst, 3 = Best) 

M2)  
Temperature at 

Reservoirs Depths 
from 2000 m– 3000 m 

(°C) 
All Values Below 
0.0: Unacceptable 

50 
(~15 °C/km for 2.5 km) 

Bad, unacceptable 
[0.0, 1.0)  

Threshold 1 
1.0 

80 
(~28 °C/km for 2.5 km) 

Okay, acceptable 
[1.0, 2.0)  

Threshold 2 
2.0 

120 
(~45 °C/km for 2.5 km) 

Great, advantageous 
[2.0, 3.0] 

All Values Above 
3.0: Very favorable 

180 
(~68 °C/km for 2.5 km) 
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Table 2c: Example thresholds for 5-color scheme and point scale for thermal risk factor maps in 
Method 1 (above). M1 considers a single map for end use temperatures from 60 °C – 80 °C. 

5 – Color Scale 
Divisions and  
Point Value 

(0 = Worst, 5 = Best) 

M1)  
Depth to End Use 

Temperatures 
from 60 – 80 °C 

(m) 
All Values Above 
0.0: Unacceptable 

5000 
(~$14.5 Million/well) 

Bad, unacceptable 
[0.0, 1.0) 

Threshold 1 
1.0 

4000 
(~$10 Million/well) 

Marginally acceptable 
[1.0, 2.0) 

Threshold 2 
2.0 

3000 
(~$6.4 Million/well) 

Okay, acceptable 
[2.0, 3.0) 

Threshold 3 
3.0 

2500 
(~$4.8 Million/well) 

Favorable 
[3.0, 4.0) 

Threshold 4 
4.0 

2000 
(~$3.3 Million/well) 

Advantageous 
[4.0, 5.0) 

All Values Below 
5.0: Very favorable  

1000 
(~$1 Million/well) 
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Table 2d: Example thresholds for 5-color scheme and point scale for thermal risk factor maps in 
Method 2 (above). M2 considers a single map for reservoirs between 2000 m and 3000 m. 

5 – Color Scale 
Divisions and  
Point Value 

(0 = Worst, 5 = Best) 

M2)  
Temperature at 

Reservoir Depths 
from 2000 m– 3000 m 

(°C) 
All Values Below 
0.0: Unacceptable 

50 
(minimum useful temp.) 

Bad, unacceptable  
[0.0, 1.0) 

Threshold 1 
1.0 

70 
(~25 °C/km at 2.5 km) 

Marginally acceptable  
[1.0, 2.0) 

Threshold 2 
2.0 

100 
(~35 °C/km at 2.5 km) 

Okay, acceptable 
[2.0, 3.0) 

Threshold 3 
3.0  

130 
(~48 °C/km at 2.5 km) 

Favorable 
[3.0, 4.0) 

Threshold 4 
4.0  

150 
(~56 °C/km at 2.5 km) 

Advantageous 
[4.0, 5.0) 

All Values Above 
5.0: Very favorable 180 
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Thresholds Used for Final Thermal Resource and Risk Factor Maps 

The resource maps made as products for this project did not use the method of resource threshold 
assignment described in this memo. Instead, resource maps were made by simply stretching the 
colorbar from the minimum to the maximum value recorded for the resource in the basin.  

Risk factor maps did follow the procedure outlined here for assignment of favorability 
thresholds. Lists of thresholds for each thermal risk factor map in 3 and 5 color scheme are 
provided below. Thresholds for the 3-color scheme are all located between thresholds in the 5-
color scheme. The risk factor maps for this project included Depth to 80 °C, Depth to 100 °C, 
Temperature at 1.5 km, Temperature at 2.5 km, and Temperature at 3.5 km. The Play Fairway 
Metrics that combined thermal, reservoir, seismic, and utilization risk factors were created using 
only the Depth to 80 °C risk factor map, as stated in the SOPO. Other Play Fairway Metric maps 
could be created using the other thermal risk factors, but time did not permit to perform these 
calculations in Phase 1. With additional time, Play Fairway Metrics could be computed using all 
of these thermal risk factors, and the most robust areas would be favorable in all renditions of the 
Play Fairway Metric. Heat flow is not considered to be a risk factor because heat flow alone is 
not of great value to those interested in drilling a geothermal well. 
 
Dollar values for depth to temperature thresholds are from Beckers et al. (2014) and represent the 
average cost in 2012 US dollars needed to drill a single geothermal well. Dollar values are 
rounded. A value of $15 million/well is used as the worst value, corresponding to a depth of 
5000 m. Approximate $2 million/well increments are used to select thresholds 1 through 4 on a 
5-color scheme. Temperature thresholds for temperature at depth maps are selected based on 
typical utilization temperatures, or favorability of thermal gradients from the temperature-at-
depth to the annual average ground surface temperature of 15 °C, as discussed above. All values 
greater than the maximum are assigned a value of 3 or 5, and all values less than the minimum 
are assigned a value of 0. 
 

Depth to 80 °C 
5-color scheme 

0: 5000 m ($14.5M/well) 
1: 4000 m ($10M/well) 
2: 3000 m ($6.5M/well) 
3: 2500 m ($4.8M/well) 
4: 2000 m ($3.3M/well) 
5: 1000 m (< $2M/well) 

 
3-color scheme 

0: 5000 m ($14.5M/well) 
1: 3750 m ($9.2M/well) 
2: 2350 m ($4.2M/well) 
3: 1000 m (< $2M/well) 
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Depth to 100 °C 
5-color scheme 

0: 5000 m ($14.5M/well) 
1: 4200 m ($11M/well) 
2: 3700 m ($9M/well) 
3: 3200 m ($7M/well) 
4: 2600 m ($5M/well) 
5: 1900 m ($3M/well) 

 
3-color scheme 

0: 5000 m ($14.5M/well) 
1: 4000 m ($10M/well) 
2: 3000 m ($6.5M/well) 
3: 1900 m ($3M/well) 

 
Temperature at 1.5 km 

5-color scheme 
0: 30 °C (~10 °C/km) 

1: 50 °C (Minimum useful temperature) 
2: 60 °C (~30 °C/km) 
3: 70 °C (~37 °C/km) 
4: 80 °C (~43 °C/km) 
5: 90 °C (~50 °C/km) 

 
3-color scheme 

0: 30 °C (~10 °C/km) 
1: 50 °C (Minimum useful temperature 

2: 75 °C (~40 °C/km) 
3: 90 °C (~50 °C/km) 

 
Temperature at 2.5 km 

5-color scheme 
0: 40 °C (~10 °C/km) 
1: 60 °C (~18 °C/km) 
2: 75 °C (~25 °C/km) 
3: 90 °C (~30 °C/km) 
4: 100 °C (~35 °C/km) 
5: 110 °C (~40 °C/km) 

 
3-color scheme 

0: 40 °C (~10 °C/km) 
1: 70 °C (~22 °C/km) 
2: 95 °C (~32 °C/km) 
3: 110 °C (~40 °C/km) 
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Temperature at 3.5 km 

5-color scheme 
0: 50 °C (Minimum Useful Temperature) 

1: 75 °C (Milk Pasteurization) 
2: 90 °C (Small-Scale District Heating) 

3: 100 °C (25 °C/km) 
4: 120 °C (Large-Scale District Heating) 

5: 150 °C (ORC Power Generation) 
 

3-color scheme 
0: 50 °C (Minimum useful temperature) 

1: 80 °C (~19 °C/km) 
2: 110 °C (~28 °C/km) 

3: 150 °C (ORC Power Generation) 
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 

From:  Jared D. Smith and Franklin G. Horowitz 

Date:   Original from August 11, 2015. Updated September 21, 2016. 

Subject:  Well database organization and heat conduction model methods 

Applicability: This memo describes the assumptions, methods, and equations for the one-
dimensional heat conduction model that was used in this project. The heat 
conduction model was used to calculate the temperatures at depths, depths to 
temperatures, and the surface heat flow at individual well locations. This memo 
also describes the organization of the well database used in this project into a 
format that is more useful for heat conduction modeling. Portions of this memo 
are taken from Smith (2016) with permission of the author. More details are 
provided in Smith (2016). 

Nomenclature: 

AB  Radiogenic heat generation within the rocks at the top of the basement (W/m3) 

As  Radiogenic heat generation within sedimentary rocks (W/m3) 

aT  Amplitude of the annual surface temperature fluctuation (°C) 

B  Thickness corresponding to one log decrement (i.e. e-folding thickness) in 

radiogenic heat generation in basement rocks (m) 

BHTcorr  Corrected BHT (°C)  

G(x, y, z)  Straight line geothermal gradient at surface location (x, y) to depth z. z may also 
be specified as an interval (z = Z2 – Z1). (°C/km) 

 
!  Harmonic average thermal conductivity for rocks (W/[m °C]) 

!!  Thermal conductivity of basement rocks (W/[m °C]) 

!!  Harmonic average thermal conductivity for rocks from the ground surface to the 
depth of the well (W/[m °C]) 

 
!!  Harmonic average thermal conductivity for rocks from the ground surface to the 

top of the basement (W/[m °C]) 
 
!!!!!!  Harmonic average thermal conductivity for rocks between depth Z1 and depth Z2 

(W/[m °C]) 
 
N  Total number of geologic layers referred to in the text 
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P  Period of the annual surface temperature fluctuation (s) 

Q(z)  Heat flow upwards through depth, z (W/m2) 

QB  Heat flow contributed to Qs from basement rocks (W/m2) 

Qm  Mantle heat flow (W/m2) 

Qs  Surface heat flow (W/m2) 

Qsb  Heat flow through the top of the basement rocks (W/m2) 

Qsed  Heat flow contributed to Qs from sedimentary rocks (W/m2) 

TB  Temperature in basement rocks (°C) 

TSed  Temperature in sedimentary rocks (°C) 

Ts  Average annual surface temperature (°C) 

!!   Temperature at depth z (°C) 

t  Time (s) 

ta  Time elapsed since the mean annual surface temperature (s) 

Zs  Thickness of the sedimentary rock column (i.e. depth to basement) (m) 

Zw  Depth of the well (m) 

z  Depth below the surface (m) 

zbottom  Depth from the surface to the bottom of a rock formation (m) 

zcalc  Calculation depth (m) 

ztop  Depth from the surface to the top of a rock formation (m)  

α  Thermal diffusivity (m2/s) 
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Introduction 

The Appalachian Basin Geothermal Play Fairway Analysis (GPFA-AB) team needs to have a 
method for calculating the surface heat flow and temperatures at depth from corrected bottom-
hole1 temperature (BHT) measurements. The method used in this project calculates these 
variables based on a vertical (1-D), steady-state, N-layer heat conduction model with two layers 
of radiogenic heat generation. This model was developed in Python 2.7.9. A 1-D model is used 
rather than a 3-D model because published cross sections available for the basin are sparse in 
New York and Pennsylvania, and constructing a volume of basin stratigraphy based on 
individual wells would be infeasible for the time constraints of this project. Steady state 
conditions are assumed so that the thermal field in the rock can be modeled without regard to 
surface temperature fluctuations (Attachment 3): other transient variables, such as radioelement 
decay and mantle heat flow, would not affect calculations because the time scale of impact for 
these variables is much greater than the time scale over which the BHTs were sampled. 
Advection and convection of heat via moving fluid are not considered because the rock is 
essentially stationary, and information about groundwater transport is not available for the entire 
basin and would be infeasible to collect and/or model within the timeframe this project. 
Additionally, Frone et al. (2015) showed via a 2-D model along a cross section in West Virginia 
that heat conduction modeling alone is sufficient for reproducing BHTs at depth, within 
reasonable error. Therefore, it is likely that neglecting advection in this analysis provides an 
adequate representation of the thermal field for regional thermal resource assessment. Further 
details about the heat conduction model are provided below. 

A primary necessity for running any model is preparation of the input data and specification of 
model parameters. The well database described in this memo and the generalized stratigraphic 
columns from the American Association of Petroleum Geologists (AAPG) (1985a; 1985b) 
Correlation of Stratigraphic Units in North America (COSUNA) project are the inputs to the 
thermal model. This memo discusses the organization of the well data into a useful format for the 
thermal model. Processing of the COSUNA data is described in another memo (see Memo 4:  
 Assignment of thermal conductivity stratigraphy to individual wells using COSUNA columns). 

The parameters in the thermal model are the heat flow upward through the base of the crust 
(referred to as mantle heat flow), the radiogenic heat generation in sedimentary rocks, the 
thermal conductivity of basement rocks, and the log decrement (e-folding length) of radiogenic 
heat generation in basement rocks. These parameters are selected from published studies. 

Following these sections, the memo describes the methods, assumptions, and equations used for 
calculating properties of the thermal field at each well using the heat conduction model. 
Appendices provide derivations of equations that have not been documented in previous studies. 
Attachments provide references to databases and additional methodological details. The 
appendices and attachments are from Smith (2016).  

																																																													
1
	Some	temperature	measurements	do	not	correspond	to	the	bottom	of	the	well,	but	BHT	is	used	as	an	

abbreviation,	as	per	traditional	use.	
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Selecting and Processing Wells for Analysis  

Wells were gathered from the Association of American State Geologists (AASG) Geothermal 
Data Repository for the states of New York (Slater, 2012), Pennsylvania (Shank et al., 2012), 
West Virginia (WVGES, 2011), Maryland (Brezinski, 2011), Virginia (VDGMR, 2011), 
Kentucky (Curl, 2011), and Ohio (Leftwich, 2011). All of the available wells were combined 
into a single spreadsheet with common field headers (Attachment 1, “AASG_Combined.xlsx”). 
There were a total of 41,099 records from approximately2 39,000 wells in this database. Some 
processing steps were needed to make this dataset useful for the assessment of the thermal field. 

Additional data fields beyond those provided by AASG were needed to use these wells in the 
thermal model. Table 1 lists the additional fields and respective sources of the data. All 
information was joined to the well data based on spatial location (ArcGIS Spatial Join tool) or 
added from the output of an R function written for this project (Table 1).  

To limit edging effects that would occur from using interpolations near state lines, only those 
wells within New York, Pennsylvania, West Virginia, and a 50 km buffer zone into surrounding 
states were retained in the database for analysis (32,385 total records remained). Further, only 
those wells with a depth of BHT measurement were retained for quality purposes, as opposed to 
a total/true vertical depth or driller/log depth (arc length) that may or may not correspond to the 
depth of the BHT measurement (21,104 total records remained). Then, records lacking any of the 
information in Table 1 as a result of spatial coverage of the map layer were removed (29 records 
were not in a COSUNA section and an additional 324 records did not have a basement depth, so 
20,751 total records remained). One record was removed because the depth of measurement was 
less than 10 m (minimum depth to run the thermal model) so the final record count is 20,750. 
These processed records were sent to the thermal model (Attachment 1, AASG_Processed.xlsx). 
An exploratory data analysis (EDA) that included local spatial outlier detection was conducted 
on these well data after processing in the thermal model (see Memo 9: Exploratory Data 
Analysis and Interpolation Methodology for Thermal Field Estimation). 
  

																																																													
2
	This	number	is	approximate	because	the	number	of	unique	API	numbers	was	used	as	a	proxy	for	the	number	of	

unique	wells.	Some	wells	do	not	have	an	API	number,	so	the	well	name	was	used	instead	of	the	API	number	for	

these	records.	Other	wells	do	not	have	either,	so	these	1,500	records	were	not	counted.	Therefore,	the	actual	

number	of	unique	wells	is	likely	greater	than	reported.	
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Table 1: Information added to the AASG well database. Attachment 1 (AASG_Processed.xlsx) 
contains field names for these data types. 

Data Type Source 

COSUNA section “All_COSUNA_Sections_Final.shp”, created for this 
project. 

Sediment thickness 
Derived from the Trenton-Black River (TBR) Project 
(WVGES, 2006) Precambrian basement contours. Map 
created for this project (Attachment 2). 

Rome Trough identifier 
Traced from a georeferenced figure in Repetski et al. 
(2008) (see Memo 4 for an image). “Rome trough 
final.shp”, created for this project. 

Average annual ground 
surface temperature 

Derived from Gass (1982) shallow (15 m – 46 m) 
groundwater temperature measurements. These 
measurement depths are considered resistant to annual 
surface temperature fluctuations, as shown by Lovering 
and Goode (1963) (Attachment 3). 

BHT correction section “BHTCorrectionSections.shp”. See Memo 2: BHT 
Corrections. 

Corrected BHT Output from BHT correction code. See Memo 2: BHT 
Corrections. 

Drilling Fluid 

Whealton (2015) well database for NY and PA (1755 
records), modified with generalized drilling fluid groups 
(air and mud) in this project. A PostgreSQL query in 
PgAdmin III was used to select all wells in this database 
that matched with wells in the AASG database. 687 
records (245 wells) matched. Attachment 4 contains the 
query used and a more detailed description. 

Proportion Air or Mud 
Drilled Neighbor Wells 

Proportion of nearest neighbor wells that are air or mud 
drilled. Nearest neighbor wells are from the Whealton 
(2015) database. Attachment 5 describes how this 
proportion was calculated.  

Mantle Heat Flow Parameter in the thermal model. Discussed below. 
Sediment Heat Generation Parameter in the thermal model. Discussed below. 
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One Dimensional Heat Conduction Model Assumptions and Equations 

A vertical (1-D) steady state heat conduction model with two heat generation layers was 
developed in Python 2.7.9 (Horowitz, Smith, and Whealton, 2015). A schematic of this model is 
provided in Figure 1. This model calculates the geothermal gradient at the surface, heat flow at 
the surface, and the geotherm temperature at depth profile for wells in the input database. This 
model assumes the traditional approach to subsurface 1-D heat conduction modeling (Jaeger, 
1965) that at some depth there is a constant value of heat flowing upward from the mantle, Qm, 
and that all variations in the surface heat flow, Qs, are a result of differences in the radiogenic 
heat production, As or AB, in sedimentary and basement rocks, respectively. Frone et al. (2015) 
showed that these assumptions of radiogenic heat contribution to the surface heat flow are 
appropriate to estimate the BHTs using a 2-D heat conduction model along a cross section in 
West Virginia. Another approach to 1-D heat conduction modeling is described by Lachenbruch 
(1980), who shows that one could assume that the radiogenic contribution is constant and that all 
variations in surface heat flow are a result of changes in the mantle heat flow. This approach is 
more relevant for locations that have recently experienced rifting, not for the stable continent 
settings, like the Appalachian Basin. 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of the 1-D conduction heat balance. There is a sediment heat generation 
layer and a basement heat generation layer, which follows an exponential decrease with 
increasing depth. Figure from Smith (2016). 

A 1-D model is an appropriate first-order estimation of the surface heat flow and temperatures at 
depth (Lachenbruch, 1970; Jaupart, 1986). Additionally, Lachenbruch (1970) states that the 
consistency in the relationship between heat flow and heat production across a variety of 
geologic settings indicates that lateral heat flow must be much less important than vertical heat 
flow (e. g. !!!! ,

!!
!! ≪

!!
!!) in cases for which advection of heat may be neglected. Therefore, a 1-D 

model is adequate for a basin scale evaluation of the thermal field: higher dimensions may be 
assessed for smaller scale analyses in Phase 2, if data are available. 

Sediment-Basement (SB) Boundary 

3B	

Zs	

B	

AS	

AB	
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D
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Radiogenic Heat Content 

teresajordan
Typewritten Text
Memo 8: p.



	

8	

	

Using a 1-D model, there is an implicit assumption that strata are perfectly horizontal, or that the 
input formation thicknesses have been adjusted for folds, because heat preferentially flows 
normal to the bedding plane. Reliable folding information is available on published cross 
sections, but these cross sections are not available throughout the extent of the basin (Ryder, 
1992; Ryder et al., 2008; Ryder et al., 2009; Ryder et al., 2012; Harris et al., 2002). Based on 
available cross sections, areas west of the eastern margin of the Rome Trough have minimal 
folding, and areas east of the eastern margin of the Rome Trough (e.g. Valley and Ridge) have 
folds that may violate the assumption of perfectly horizontal strata. Even so, based on the 
location of available wells, only small portions of West Virginia and Pennsylvania would be 
affected by this assumption. The expected effects of 2-D heat conduction are higher temperatures 
on anticlinal crests, and lower temperatures on synclinal troughs as compared to horizontal strata 
(Frone et al., 2015). Additional effects may happen where abrupt changes in lithology occur (e.g. 
the eastern margin of the Rome Trough).  

Input Variables 

The inputs to the model are the processed AASG well database described above, and the 
COSUNA-based conductivity stratigraphy for each COSUNA section, described in the 
COSUNA memo. 

Parameter Selection  

Radiogenic Heat Generation: Sedimentary Rocks 

This model assumes that radiogenic heat generation is constant and uniformly distributed in 
sedimentary rocks, and decreases exponentially in the basement rocks, as per Lachenbruch 
(1968; 1970). Uniformly distributed radiogenic heat generation in sedimentary rocks is not 
accurate; however the range of radiogenic heat generation in sedimentary rocks is small, 
typically between 0.5 µW-m-3 (for non-clastic rocks) to 2.0 µW-m-3 (for radiogenic clastic rocks) 
(Waples, 2002). One exception is organic rich shale, which tends to have higher concentrations 
of uranium. These shales may have radiogenic heat generation values as great as 5.5 µW-m-3 
(Waples, 2002). Even so, a greater value was not assigned to black shales because so few 
formations in the basin consist of only black shales, and those that are black shale are not a great 
enough thickness to significantly deviate from thermal model calculations assuming 1 µW-m-3 
(difference in heat flow of 0.45 mW-m-2 per 100 m thickness). Therefore, for this project, a value 
of 1 µW-m-3 was assigned to all sedimentary rocks within the basin. 

As an alternative to assuming a single heat generation value, formation specific values may be 
calculated from ordinary (Bücker and Rybach, 1996) or spectral (Rybach, 1973) gamma ray logs. 
The availability of spatially well distributed and interpreted gamma ray logs, and time to process 
them resulted in lithologic complexity in radiogenic heat generation to be undetermined for the 
basin. Waples (2002) suggests that published values should be used for each lithology in lieu of 
gamma log measurements for more accurate surface heat flow calculations. Despite this claim, 
formation specific values were not added into the thermal model because it is unlikely that the 
heat flow or temperatures at depth will deviate significantly from small changes to sediment heat 
generation relative to the assumed value. Phase 2 models on the project scale can include these 
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formation specific values, along with appropriate uncertainty analysis, in order to improve the 
accuracy of the model. 

Radiogenic Heat Generation: Basement Rocks 

Heat generation in basement rocks is mainly a result of potassium-bearing felsic rocks. These 
rocks may exist as plutons (thick mass of intrusive igneous rock), or as part of the matrix rock. 
The basement rocks of the Appalachian Basin are Grenville age, consisting from east to west of a 
granulite terrane, a metasedimentary belt, and a gneiss belt, all separated by shear zones (DeWolf 
and Mezger, 1994). The Grenville basement is exposed nearest the Appalachian Basin in the 
Canadian Shield, the Adirondack Highlands in New York, and the Blue Ridge of Maryland, 
Virginia, and further south. Based on the lithology of these rocks surrounding the basin, it is 
likely that the Appalachian Basin basement does contain plutons (charnockitic suites and other 
granitoids (Bartholomew and Lewis, 1984)); however the plutons may not be the same thickness 
or composition throughout the basin. Without detailed knowledge of the composition and 
thickness of plutons, the basement rocks are assumed to be similar composition (e.g. granitic 
gneisses and schists, (Saylor, 1999)), with any variation in heat production estimated by the 
radiogenic heat production at the sediment-basement interface calculated in this model. It is 
possible that the multiscale potential field edges (see seismic risk memo) identify locations of 
plutons and/or locations where the composition of the crust is different on either side of the 
boundary. Therefore, revisions to the assumption of similar basement rocks throughout the basin 
can be made in future model iterations based on these edges. 

From a geochemical perspective, radiogenic heat generation decreases with depth in basement 
rocks as a result of a decrease in felsic rocks with increasing depth in the crust, and radioelement 
decay with time. An exponential decay modelling the decrease in radiogenic heat generation with 
depth has been the traditional assumption since the relationship was first discovered (e.g. Birch 
et al., 1968; Lachenbruch, 1968, 1970). More recent studies (Sandiford and McLaren, 2002; 
Vendanti et al., 2011) have shown that the exponential model does not provide the best fit for all 
basement rocks. For example, Vendanti et al. (2011) demonstrate that power law decay models 
fit well for six deep boreholes around the world; however the power decay selected for most of 
these boreholes does not deviate far from the exponential fit. The exponential model is likely a 
low-end estimate of the heat produced in the crust because it decays faster than the power law 
fits in Vendanti et al. (2011). Therefore, the exponential model is assumed for this project as a 
conservative model of heat generation in the basement. 

For the exponential model, the scale parameter is the crustal thickness corresponding to a one log 
decrease in heat generation. Previous studies that have assessed Grenville basement found a 
variety of estimates for the scale parameter. Variation in the scale parameter is generally thought 
to represent differences in the geochemical composition of the continental crust (Lachenbruch, 
1970). Jaupart (1986) reports 10 km, Jaupart and Mareschal (1999) suggest 9 km, Frone et al. 
(2015) suggest 7.5 km for West Virginia, Artemieva and Mooney (2001) report a range of 4.6 
km – 13.6 km for North American cratons, and Blackwell et al. (2007) suggest using a varying 
value based on the thickness of sedimentary rock overlying the basement. The logic behind the 
varying value is that thick sedimentary basins would form only over attenuated (post-rifting) or 
eroded continental crust; thus the radioactive contribution from the basement would be reduced 
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due to the reduced crustal thickness. This approach is also used in this model, and will capture 
the wide variety of reported values for this region. The variable thickness used in this model is 
provided in Equation 1 
 

! = 10 !", !! ≤ 3 !"
13 !" − !!, !! > 3 !" 

[1] 

where B is the value of B as a function of Zs, and Zs is the sediment thickness. The maximum 
value of B is taken to be 10 km for Grenville basement, and areas that have more than 3 km of 
sediment have a reduced B value. This is the same approach used in Blackwell et al. (2007) and 
Stutz et al. (2012). The spatial distribution of the calculated values of B using this approach are 
provided in Figure 2. 
	

	
Figure 2: Spatial distribution of calculated values of B using the thermal model. Wells drilled 
into the basement are shown as larger circles with lighter colors. Figure from Smith (2016). 
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Thermal Conductivity of Basement Rocks 

A value of 2.7 W-m-1-°C-1 was selected as the thermal conductivity for basement rocks. This is 
the mean value of the basement rocks in the regional heat flow database for the United States 
(Blackwell et al., 2007). This value could be changed in future models and made variable based 
on location within the basin based on the multiscale potential field analysis. As part of this 
project, a value of 2.83 W-m-1-°C-1 was determined for basement rocks consisting of gneiss, 
marble, and quartzite. The COSUNA memo outlines the approach taken to arrive at this value. 
Even so, 2.7 W-m-1-°C-1 was used for calculations in this project. 

Mantle Heat Flow 

The final parameter is the heat flow at the base of the basement rocks. A mantle heat flow of 30 
mW-m-2 is assumed for the Appalachian Basin region of interest in New York, Pennsylvania, 
West Virginia, and surrounding 50 km buffer zone. This is a lower than average value of the 
mantle heat flow for the Central Stable Region of the continents as reported by Roy, Blackwell, 
and Birch (1968), a higher than average value for stable continents as reported by Sclater, 
Jaupart, and Galson (1980), and about average as reported by Artemieva and Mooney (2001) and 
Jaupart and Mareschal (1999). This value could be changed based on spatial location in future 
models based on the multiscale potential field analysis. 

Model Output 

The properties of the thermal field determined from this model include the thermal gradient, the 
surface heat flow, temperatures at depths of interest, depths to temperatures of interest, the 
average thermal conductivity from the surface to the depth of BHT measurement, and the 
average thermal conductivity for the entire sedimentary rock section at the location of the well. 
The output thermal variables are stored in a spreadsheet (Attachment 1, 
“AASG_Thermed.xlsx”). 

Equations 

The general equations used in the thermal model and their assumptions are discussed in this 
section. This model updates and corrects three equations previously published by Blackwell et al. 
(2007), Stutz et al. (2012), and Stutz et al. (2015). These corrections are:  

1) the heat balance used to estimate the value of radiogenic heat generation at the sediment-
basement interface, 
 

2) the calculation of surface heat flow relative to the assumptions made, and  
 

3) a sediment radiogenic heat generation term in the calculation for the temperature-at-depth 
for depths deeper than the well. 

This model also provides an analytical solution to the Ordinary Differential Equation (ODE) that 
results from a two-layer model of heat conduction; thus eliminating the need for numerical 
approximations to the solutions of temperatures at depth, and surface heat flow. 
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Geothermal Gradient 

The geothermal gradient from the surface to the BHT depth is computed using Equation 2  

! !, !,!! =  !"!" =
!"!!"##  −  !!

!!
 

      [2] 

where G(x, y, Zw) is the geothermal gradient at spatial location (x, y) between the surface and Zw, 
BHTcorr is the corrected BHT, Ts is the average annual surface temperature, and Zw is the depth 
of the BHT measurement in the well. This is a linear approximation of the geothermal gradient at 
location (x, y) from z = 0 to z = Zw. Under the assumptions made, the temperature gradient is 
curved with depth because heat is generated at all locations in the crust. The temperature gradient 
is also different for each lithology as a result of differences in thermal conductivity.  

Some interest may lie in knowing what the geothermal gradient is for a depth range of interest 
(e.g. from the top of a reservoir to the bottom of a reservoir). This equation is not currently 
provided in the model, but can be implemented in future versions in Phase 2. 

Average Thermal Conductivity 

The average thermal conductivity for a column of rock with N perfectly horizontal strata is 
calculated using Equation 3 

! = !!"#!
!!"##"$,! − !!"#,!

!!
!!!
!!!  +  !!"#! − !!"#,!!!  

 

          [3] 

where k is the average thermal conductivity to calculation depth zcalc, ki is the thermal 
conductivity for lithologic unit i, zbottom,i is the distance from the ground surface to the bottom of 
unit i, ztop,i is the distance from the ground surface to the top of unit i, and n is the number of 
lithologic units to zcalc. The denominator is a summation of thermal resistance in the vertical 
column. All thicknesses of units would have been scaled to the sediment thickness at the location 
of the well prior to this calculation, as described in Equation 3 of the COSUNA documentation 
(Memo 4 of this project). Calculation of thermal conductivity values for sedimentary rock 
formations (ki) is also described in the COSUNA documentation. The conductivity of basement 
rocks is a parameter in the model, described above.  

Surface Heat Flow 

Using the calculated gradient at the surface and the average thermal conductivity to the depth of 
the BHT allows for the computation of the surface heat flow. Equation 4 is a rearrangement of 
Equation 6 solved for surface heat flow 
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            [4] 

where Qs is the surface heat flow, Qm is the mantle heat flow, G(x, y, Zw) is the geothermal 
gradient from the surface to the BHT measurement as computed in Equation 2, Ts is the surface 
temperature, k! is the average thermal conductivity to the depth of the well, k! is the average 
thermal conductivity of the sedimentary rocks, kB is the thermal conductivity in basement rocks, 
As is the radiogenic heat generation in the sediment, Zw is the depth of the well, Zs is the 
thickness of the sedimentary rocks, and B is the log decrement in radiogenic heat production in 
the basement rocks. This equation is the exact solution to the heat flow present under the 
assumptions of heat generation in this model from the depth of the BHT to the surface. Not 
including heat generation would cause a 1 mW-m-2 difference in surface heat flow for every 
kilometer of sediment above the well measurement. Differences in basement rocks would vary 
depending on the value of B. 

Heat Generation in Basement Rocks 

The heat generation at the sediment-basement interface is determined from the 1-D heat balance 
(Appendix 1), which leads to Equation 5  

!! =
!! − !! − !!!!
! ∗ 1− !!!  

[5] 

where AB is the value of radiogenic heat generation at the sediment basement interface and all 
other terms are described above. It is assumed that no radiogenic heat generation exists at depths 
greater than 3B, such that mantle heat flow is present at 3B. Mathematically, the exponential 
decay in heat generation would only reach a value of zero at a depth of infinity. This depth is 
unrealistic because the crust is not infinitely thick. Three times B is selected as a representative 
thickness of radiogenic heat generation in the crust (Lachenbruch, 1968); however the total 
thickness of the crust may be greater than 3B. The variation in the value of B across the basin 
introduces variability in pluton thickness throughout the basin as a function of sediment 
thickness. 
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For wells drilled into basement rocks, Equation 4 is derived using Equation 5 as the second 
equation needed to solve for the two unknowns of Qs and AB. Therefore, the most reasonable 
estimates of the value for AB within the basin come from these deep wells, but rely on the 
assumptions of mantle heat flow, the exponential decay model, the BHT correction equation, and 
accurate well log information. Even so, the values can inform what reasonable values of AB for 
the region would be under these assumptions. Values of AB generated from the thermal model 
are provided in Figure 3 and a spatial distribution is provided in Figure 4. 

 

Figure 3: Histogram of AB values calculated using the thermal model. All 0s are from wells that 
had negative AB values (see below for discussion on negative values).	

The average value of radiogenic heat generation throughout the entire crustal thickness for 
Grenville basement is reported as ranging between 0.39 µW-m-3 and 0.95 µW-m-3 (Artemieva 
and Mooney, 2001). Adjusting these values to an equivalent exponential decay model 
corresponds to AB values between 1.4 µW-m-3 and 3.6 µW-m-3. Approximately 90% of the 
calculated AB values are less than 4.0 µW-m-3. All wells deeper than the basement have AB 
values less than 5 µW-m-3 (Figure 4), and approximately 95% of the records used in the thermal 
model have values less than or equal to 5.0 µW-m-3. Those wells with AB values greater than 10 
µW-m-3 all have very high heat flow values (> 100 mW-m-2). Some of these may be identified as 
outliers (see EDA discussion in Memo 9: Exploratory Data Analysis and Interpolation 
Methodology for Thermal Field Estimation).  
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Figure 4: Spatial distribution of calculated AB values in wells. Wells that are deeper than the 
basement are shown in larger circles and lighter colors. Figure from Smith (2016).	

Negative values of AB and very high values of AB may result from this method, which indicates 
that any input parameter (Qm, As, and/or B) may be incorrect. For negative values, the mantle 
heat flow or As is likely too high. For very high values, the mantle heat flow is likely too low. 
Because none of the inputs are well constrained, it is not possible to adjust one parameter to 
make AB a reasonable value. Additionally, Jaupart (1986) observes that it is not possible to vary 
the mantle heat flow and the basement radiogenic heat production independently. Even so, AB 
and Qm are treated as independent values in this model because when AB is negative, the value of 
AB is set to 0 without adjusting another parameter (e.g. decreasing mantle heat flow). This means 
that the estimates of temperature at depth and surface heat flow are greater for these wells than 
they should be. 

 

teresajordan
Typewritten Text
Memo 8: p.



	

16	

	

Temperature at Depth 

The general equations used for calculating temperature at depth are provided in Equation 6 (e.g. 
Jaeger, 1965). The thermal conductivity subscripts indicate over what depth range the thermal 
conductivity ought to be calculated. 

!!!"#! =  

                                     !! +
!!!!"#!
!!"#$"!!

− !!!!"#!!

2!!"#$"!!
                               ,    !!"#! ≤ !! < !!

           !!! +
!! − !!!! !!"#! − !!

!!"#$"!!"
− !! !!"#! − !!

!

2!!"#$"!!"
         ,     !! < !!"#! ≤ !!

!!! +
!! − !!!e!! !!"#! − !!

!!
+
!!!! 1− e!

!!"#! ! !!
!

!!
, !!"#! > !!

 

[6] 

Using this equation, BHT values are calculated exactly for all wells except the 3 basement wells 
that had negative values of AB. The BHT in these 3 wells are not perfectly predicted because the 
AB value was set to 0; it would need to be negative for it to perfectly reproduce the BHT, which 
is geologically implausible. The temperature difference from the BHTs in all 3 wells is about 0.1 
°C. This difference is not worrisome. 

Improvements for Phase 2 

The methods presented in this memo were sufficient for Phase 1 time constraints, but can be 
improved with more time and resources in Phase 2. Accuracy of the thermal model results may 
be improved by using Appalachian Basin specific thermal conductivities (see Memo 4 for a 
discussion of potential sources of basin-specific data). Another improvement in accuracy may be 
accomplished by 1) calculating the surface heat flow at all wells, 2) performing a spatial 
interpolation of the surface heat flow using the methods presented in Phase 1 to obtain a 1 km2 
grid of surface heat flow, then 3) using the thermal model on each grid cell to calculate 
temperatures at depth throughout the basin. This would be an improvement over the current 
methods because this method will include information about the sediment thickness at all 
locations of prediction.  

On the small-scale of a single play or reservoir for which a detailed economic analysis is to be 
performed in Phase 2, inclusion of formation specific radiogenic heat generation may become 
important for estimating the lifetime of the reservoir, and the necessary operating conditions and 
expenses. Values of heat generation may be obtained from gamma ray logs, if available. The 
current formulation of the model is not written to handle formation specific radiogenic heat 
producing elements. From a mathematical perspective, using a different value of radiogenic heat 
generation in each formation would mean that each formation represents a new layer within the 
thermal model (as opposed to the 2-layer sediment-basement model used in this analysis). This 
generalization of the model will prove useful for this project, and possibly to other researchers, 
but will be computationally more time consuming. Appendix A of Smith (2016) contains the 
equations needed for an N-layer model of heat generation. 
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Other potential improvements are listed throughout this memo. Generally speaking, these 
improvements are related to understanding of the basement rocks via interpretation of the 
potential field analysis, and assigning appropriate values according to the types identified. 
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Appendix 1: Derivation of the One-Dimensional Conduction Heat Balance 

The content presented in this appendix is taken from portions of Appendix A and Appendix B of 
Smith (2016) with permission of the author. Minor changes to text have been made, including 
equation numbers, and references to the body of the thesis. 

Assumptions 

Steady state, one dimensional (vertical) heat conduction is assumed. There are two layers of 
radiogenic heat generation: 1) a constant value of heat generation in sedimentary rocks, and 2) an 
exponential decrease in heat generation with increasing depth in the basement rocks. Deeper than 
3 e-folding lengths in the basement (3B) there is no longer any heat generation (e.g. 
Lachenbruch, 1968; 1970). Thermal convection and advection are not considered. The thermal 
conductivity stratigraphy (derived from the COSUNA rock columns, see Memo 4 of this project) 
consists of N-1 layers of sedimentary rock, and 1 layer of basement rock. The thermal 
conductivity remains constant within each layer. This derivation proceeds from the bottom to the 
top of the column in Figure A1. A constant value of heat generation is assumed for sedimentary 
rocks. 

Heat Flow deeper than 3B  

At depths deeper than 3B it is assumed that there are no longer any radiogenic elements in the 
crust that contribute to the surface heat flow. In effect, a depth of 3B in the basement rocks is the 
depth to the mantle heat flow value, even if the depth does not correspond to the boundary 
associated with Qm (e.g. the crustal thickness, or the asthenosphere). Therefore, the heat flow, 
Q(z), at depths greater than or equal to 3B is the mantle heat flow, Qm. 

 

! ! = !!,         z ≥ 3! 
            [A1] 

Heat Flow through the Top of the Basement  

Let Z = Zcalc – Zs.  

At depths from Z = 0 (the surface of the basement) to 3B, AB decays exponentially according to 
Equation A2. 

!! = !! e !!!
!!

!
d! 

!! = −!!! e !!!
!

!!
 

!! = −!!! ∗ e !!!! −  1 = !!! 1− e!!  

               [A2] 

Generally, the heat flow at any location within the basement rocks is the sum of the mantle heat 
flow and the generated heat from 3B to a location z in the basement. 
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! ! = !! + !!! e !!!!!! − e!!      ,     !! ≤ ! ≤ 3! + !! 
             [A3] 

Note that when z = 3B + Zs the radiogenic heat generation term goes to 0, and Q(Zs+3B) = Qm. 
When z = Zs, the heat flow through the top of the basement rocks is: 

 

!!" = !! + !! 
     [A4] 

Surface Heat Flow 

Radiogenic heat generation in sedimentary rocks is assumed to be constant. Under this 
assumption, the total heat produced in the sedimentary rocks from decaying radioactive material 
is given by Equation A5. 

!!"# = !!!! 
             [A5] 

The heat flow at any depth, z, within the sedimentary rocks is the summation of the heat from the 
mantle, basement rocks, and sedimentary rocks below z, as shown in Equation A6. 

 

! ! = !! + !! + !! !! − ! ,     0 ≤ ! ≤ !! 
   [A6] 

At z = Zs, Q(Zs) = Qsb. The heat flow at the ground surface (z = 0) is provided in Equation A7. 

 

!! = !! + !! + !!"# 
       [A7] 

In this heat conduction model, the value of radiogenic heat generation in the volume of rock at 
the top of the basement is unknown. The heat balance in Equation A7 may be rearranged to solve 
for this variable for each well based on the known or assumed variables and parameters. 

 

!! =
!! − !! − !!!!
! ∗ 1− e!!  

     [A8] 

If there are N-1 layers of heat generation from sedimentary rocks, AsZs in Equation A8 could be 
replaced with a summation: !!!! + !! !! − !!!!!!!

!!! .  
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Attachments 

These attachments provide references to databases (Attachments 1 and 2) and additional 
methodological details (Attachments 3 through 5). The files referenced in this memo are 
available on the Geothermal Data Repository (Cornell University, 2015). These attachments and 
data files are copied verbatim from portions of Chapter 3, Section 3.7; Chapter 2, Section 2.7; 
and Appendix C of Smith (2016) with permission of the author. Minor changes to text have been 
made, including equation and figure numbers, and references to the body of the thesis. 

List of attachments 

1) Well Databases Folder 
2) Trenton-Black River Sediment Thickness Map 
3) Influence of Annual Temperature Fluctuation on Near-Surface Temperatures 
4) Drilling Fluid Query in SQL 
5) Probabilistic assignment of Drilling Fluid based on Nearest Neighbor Wells 

 
1. Well Database Files 

 
File 1: All_States_BHT_HeatFlow_Raw_Combined.xlsx 

 
Description: 
 
This file contains all of the raw well data gathered for this project. These state databases do not 
necessarily have BHT measurements for all wells, and may contain duplicate records within-
database and between databases. 
  
For quality purposes, only those records that were submitted to the AASG State Geothermal 
Data Repository were selected for use in this project because all of these records had BHT data. 
Additional data sources collected include 1) Pennsylvania records from American Association of 
Petroleum Geologists (AAPG), 2) New York records from Empire State Oil and Gas Information 
System (ESOGIS) 4) West Virginia records from the National Geothermal Data System (NGDS 
had 1000 fewer records than AASG), and 5) Ohio heat flow wells. Many of the wells with BHT 
measurements available in these databases are likely recorded within AASG wells, though this 
was not checked for all databases. 
 

File 2: AASG_Combined.xlsx 
 

Description: 
 
The data contained within this database are taken from the AASG Geothermal Data Repository 
(all references in body of memo for each state). This database has 41,099 records. Duplicate 
records have not been removed. The spreadsheets for each state did not have the same field 
names, or the same fields. When combining the data, only those fields needed for analysis (listed 
below) were placed into the AASG_Combined file. All of the original data may be joined to this 
database using the StateID field, if further information is desired*. 
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This database was screened for obvious data entry errors in fields important to the project. These 
fields included the latitude, longitude, depth of measurement, and the BHT. Latitude and 
longitude were checked by ensuring that all wells were located in the county specified. All but 
one well (RowID 11604) passed this test. Depth of measurement and BHT were screened for 
abnormally high or low values. Several obvious instances were found and corrected as described 
below. As part of this screening, an additional record was found and added for API number 
31003042480000 at 7560 ft and 140 °F based on the log data for the well. 
 
* StateID is used as a unique identifier because some wells do not have an APINo. A StateID 
field was added into the original state databases for joining purposes. 
 
Corrections to Records: 
RowID numbers 19375 and 35927 had a very high depth of measurement. RowID 19375 had 2 
leading 3s but one 3 was deleted to match the driller depth. RowID 35927 had a depth of 
measurement of 36,885, but it seemed like the 6 was a typo because by deleting the 6 the depth 
was the same as the TVD. RowID 35939 depth of measurement was about 10 times deeper than 
the TVD and driller depth with no apparent typo, so the depth of measurement for this well was 
deleted. RowID 37534 has a depth of measurement that is about 10,000 ft more than the TVD, 
with a BHT that did not match that depth, so the depth of measurement was deleted. RowID 
22772 had a -9999 as the depth of measurement, so this value was deleted. 
 
Database Fields 
 
RowID   Unique identifier for the wells, starting at 1. 
 
StateID Unique identifier that matches the original state database. Labels have the 

state postal code followed by a number, starting at 1. 
 
WellName  Name of the well as listed by the state datasets (blank if not available). 
 
APINo   API number for the well, if one exists (blank if not available). 
 
County  County where the well is located. 
 
State   State where the well is located. 
 
LatDegree  Decimal degree latitude for the well. 
 
LongDegree  Decimal degree longitude for the well. 
 
SRS   Coordinate reference system as listed by the state database. 
 
DrillerTotalDepth Total depth as logged by the driller. This may include any horizontal, non-

vertical component of the drilling (m or ft). 
 
TrueVerticalDepth The vertical depth of the well (m or ft). 
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DepthOfMeasurement The depth of temperature measurement as listed by the state database (m 

or ft). 
 
ElevationGL  Ground level elevation (m or ft) 
 
LengthUnits  Units used for the depth fields (m or ft).  
 
MeasuredTemperature Temperature measured at the depth of measurement (°C or °F). 
 
TemperatureUnits Unit of the temperature measurement (°C or °F). 
 
DrillingFluid  Fluid used to drill the well, if provided. Blank otherwise. 
 

File 3: AASG_Processed.xlsx 
 

Description: 
 
This file has all of the above fields, and the following additional fields. Before running through 
the heat conduction model, all wells were checked for depth of measurement being greater than 
the first increment of calculation in the heat conduction model (10 m). It was found that RowID 
35925 had a depth of measurement shallower than 10 m, so this record was removed from the 
database before using the heat conduction model. 
	

Additional Fields Added Before Heat Conduction Model Calculations 
 
BHT_C The MeasuredTemperature in Celsius. 
 
CalcDepth_m The well depth corresponding to temperature measurement based on 

quality hierarchy of 1) DepthOfMeasurement, 2) TrueVerticalDepth, and 
3) DrillerTotalDepth. If no depth is available, NA is listed. (This field was 
not used for this project, but it is provided for reference). 

 
MeasureDepth_m The DepthOfMeasurement in meters. If no depth is available, NA is listed. 
 
ReportedElevation_m  The ElevationGL in meters. 
 
CRS Coordinate reference system rewritten as WGS84 and NAD83 for 

database consistency. 
 
API_14Dig 14 digit API number for each state, when available. If no API number 

exists, NA is listed. This is intended to be a well identifier, but values may 
be truncated in some programs. 
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Fluid_Type Generalized fluid type based on Whealton (2015). (all_agfs, all_mgpw for 
air and mud, respectively; blank if not available). 

Pct_Air Proportion of nearest neighbor wells that are air drilled. 1 if the well is 
known to be air drilled, 0 if the well is known to be mud drilled. All values 
are between 0 and 1, inclusive. 

 
Pct_Mud Proportion of nearest neighbor wells that are mud drilled. 1 if the well is 

known to be mud drilled, 0 if the well is known to be air drilled. All values 
are between 0 and 1, inclusive. 

 
BHTReg BHT correction region. 
 
CorrBHT Corrected BHT. (°C) 
 
Corr_error Error code for corrected BHT. 0 if there’s not an error. 
 
UTM_Long Universal Transverse Mercator (UTM) Zone 17N longitude. (m) 
 
UTM_Lat Universal Transverse Mercator (UTM) Zone 17N latitude. (m) 
 
BasementDepth Depth to the basement (i.e. sedimentary rock thickness). (m) 
 
SurfTemp Average annual surface temperature derived from Gass (1982). 
 
COSUNA_ID The ID number assigned to the COSUNA section for the well. 
 
COSUNA_NAME COSUNA column name corresponding to the COSUNA_ID. 
 
ROME_ID Binary. 1 if a well is in the Rome Trough, 0 if it is not. 
 
SedRadHeat Radiogenic heat generation in sedimentary rocks (µW/m3) 

QMantle  Mantle heat flow (mW/m2) 
 

File 4: AASG_Thermed.xlsx 
 

Description: 
 
This is the data after processing in the heat conduction model. This file has all of the above fields 
and the following additional fields calculated in the model. Enough information is reported in 
this database such that calculations may be made using the heat flow equations in the text. The 
temperature at depth equations (Eq. 6) require knowledge of the thermal conductivity and 
thickness of each rock layer, scaled to the sedimentary rock thickness. This information is not 
provided here, but is provided in the Cornell University (2015) data submission. 
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Additional Fields Added After Heat Conduction Model Calculations 
 
BaseRadHeat Calculated radiogenic heat generation in the volume of rock at the top of 

the basement (µW/m3)		
 
Gradient The geothermal gradient calculated from CorrBHT at the 

MeasureDepth_m (°C/km) 
 
HeatFlow  Heat Flow calculated using the thermal model (mW/m2) 
 
Depth50C  Depth to 50 °C calculated using the thermal model (m) 
 
Depth80C  Depth to 80 °C calculated using the thermal model (m) 
 
Depth100C  Depth to 100 °C calculated using the thermal model (m) 
 
Temp2km  Temperature at 2 km calculated using the thermal model (°C) 
 
Temp3km  Temperature at 3 km calculated using the thermal model (°C)  
 
Temp4km  Temperature at 4 km calculated using the thermal model (°C)  
 
Temp5km  Temperature at 5 km calculated using the thermal model (°C)  
 
Kw Harmonic average thermal conductivity to the MeasureDepth_m         

(W/[m °C]) 
 
Kc   Harmonic average thermal conductivity to the BasementDepth (W/[m °C]) 
 
BHT_diff Difference between the calculated BHT at the MeasureDepth_m and the 

CorrBHT. (°C) 
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2. Trenton-Black River Sediment Thickness Map 

Description: 
 
The map of sedimentary rock thickness was created from the Trenton-Black River (TBR) project 
structural contours of the Precambrian basement, relative to mean sea level (WVGES, 2006). 
These structural contours were converted to a raster file in ArcMap 10.2 (ESRI, 2015; Contour to 
Raster tool). The raster represents the depth to the Precambrian basement from mean sea level. 
The raster was processed to represent the sedimentary rock thickness by adding the elevation 
using 30 m resolution DEMs from the USGS National Map (2015) that were mosaicked together 
into a single DEM for the region using ArcGIS (Mosaic tool). Finally, the resulting TBR raster 
was manually clipped to an approximate 10 km distance from the extent of the Precambrian 
contour lines to avoid extrapolation of the sedimentary rock thickness beyond the data support. 
This clip did not greatly impact the number of wells capable of being used in the assessment of 
the thermal field for the basin. 
 
The accuracy of this map of sedimentary rock thickness was in question for West Virginia 
because of thickness differences on the order of kilometers compared to the more recent map of 
sedimentary rock thickness by Mooney (2011). Upon inspection, the map created by Mooney 
(2011) was derived from 1985 data, which is before detailed knowledge of structural features of 
importance, such as the Rome Trough in West Virginia, were established in portions of the 
Appalachian Basin. To check the accuracy of the TBR derived sedimentary rock thickness map, 
a set of wells, with detailed stratigraphic information that were drilled into the Martinsburg 
formation or deeper in West Virginia, were used. First, the well-reported depth to the touchdown 
formation top was compared to the depth to the formation top in the COSUNA columns. If the 
well depth-to-formation was within the minimum and maximum depth-to-formation as listed on 
the COSUNA column, the true thickness of sedimentary rocks at the well location was assumed 
to be within the minimum and maximum sedimentary rock thickness as listed on the COSUNA 
column. Using this method, the TBR sedimentary rock thicknesses were all within the COSUNA 
sedimentary rock thickness ranges. Therefore, the TBR sedimentary rock thickness map is 
reasonably accurate within West Virginia. As another check for West Virginia, the depth to 
basement for Ryder et al. (2008) cross section E-E’ is ~7.5 km in the southeast region of WV; 
whereas the TBR map is 7 km and the Mooney (2011) map is nearly 12 km.  
 
A simple comparison of the TBR sedimentary rock thickness map to the actual sedimentary rock 
thickness in a set of wells that reached the basement is provided in Figure B1. The choice of the 
TBR sedimentary rock thickness map seems appropriate for the region. 
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Figure B1: Comparison of the sedimentary rock thickness derived from the Trenton-Black River 
Project (Map Depth) to the actual sedimentary rock thickness from a subset of wells that reached 
basement rock. A 1:1 line is shown for reference. Depth to basement is the same as sedimentary 
rock thickness. 
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3. Influence of Annual Temperature Fluctuation on Near-Surface Temperatures  

Surface temperature fluctuations on time scales ranging from annual to millennial have been 
shown to affect near-surface temperatures at depths from 15 m to 600 m (e.g. Beltrami, 
Matheroo, and Smerdon, 2015). Millennial and centennial scale variations are not of concern in 
this project because the BHT data used for calculations are deeper than 1000 m, which is deeper 
than the 600 m potential penetration depth for these time scales. However, it is worthwhile to 
assess the potential impact of the annual temperature fluctuation on the shallow groundwater 
temperatures taken by Gass (1982) at depths between 15 m and 46 m. This assessment only 
considers heat conduction. Advection of heat via groundwater could also impact the 
measurements taken by Gass (1982). Additionally, disturbances to the thermal field as a result of 
surface landscape alteration (Roy, Blackwell, and Decker, 1972) are not considered here, but 
may have had an effect on the temperature measurements taken by Gass (1982).  

Under these assumptions, the depth of disturbance in the thermal field as a result of the annual 
surface temperature fluctuation varies according to the thermal diffusivity of the subsurface 
medium; the more thermally diffuse, the deeper the propagation. Sandstone has the greatest 
thermal diffusivity of the rocks located at the surface of the Appalachian Basin. A high-end 
thermal diffusivity of sandstone (0.014 cm2/s) was used to approximate a worst-case impact on 
Gass’ (1982) measurements. The dampening of the annual surface temperature fluctuation with 
depth follows an exponentially decaying sine curve given in Equation B1 (Ingersoll, Zobol, and 
Ingersoll, 1946) 

! ! = !! e!!
!
!" ∗ sin 2π!!

! − ! π
!"  

   [B1] 

where aT is the amplitude of the surface temperature fluctuation (°C), α is the thermal diffusivity 
(cm2/s), z is the depth below the surface (cm), P is the period of the annual temperature 
fluctuation (1 year, in seconds), and ta is time since the annual average surface temperature (s). 
The bounds of the annual near-surface temperature with depth are provided by Equation B2. 

! ! = ! e!!
!
!"  

[B2] 
 

From Figure B2 it is clear that the shallow groundwater temperature measurements taken by 
Gass (1982) would have been relatively stable with regard to the annual temperature fluctuation, 
which is less than ± 0.5 °C at the depths measured. Because the depths of measurement were 
taken between 15 m and 46 m, the heat conduction model calculations implicitly assume that the 
map of surface temperature that was created by the Gass (1982) measurements is also the 
average annual temperature at the surface (0 m). This is a reasonable assumption based on this 
analysis. The uncertainty in the value of Gass (1982) measurements may be assumed to be 0.5 
°C based on the temperature fluctuation with depth. Additional uncertainty in the derived map 
results from creation of the contour map, and interpolating between the contours; however this 
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uncertainty is not provided by Gass (1982) or the map provider, Southern Methodist University 
(2016). 
 

 

Figure B2: Annual temperature fluctuation with depth for a sandstone with higher than average 
thermal diffusivity (0.014 cm2/s). The surface temperature is assumed to fluctuate ± 28 °C from 
the annual average surface temperature. Hottest day, coldest day, and average days refer to the 
surface temperature. Figure modified from Ingersol, Zobol, and Ingersol (1946). 
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4.  DrillingFluidQuery_ALL.SQL 

Query: 

 

Description:  
 
Because the API number is not a unique identifier (e.g. a well with 2 BHT measurements creates 
2 records with the same API number) a method for joining many wells with the same API 
numbers in the Whealton (2015) database to many wells with the same API numbers in the 
AASG database was needed. This is called a many-to-many join.  
 
First, a link table called [aasg_whealton] was created by combining the [AASG_Wells_GDB] 
and [Whealton_Wells_GDB]. This table consists of five fields: 1) a primary key (unique 
identifier) for the Whealton database [whealton_pk] 2) primary key for the AASG database 
[aasg_pk], 3) API number for AASG database [aasg_api], 4) API number for the Whealton 
(2015) database, and 5) spatial geometry of the data. 
 
This code selects all [*] information from the wells in the Whealton (2015) database for which 
the API number [id] equals the Whealton primary key in [aasg_whealton]. Then, the AASG 
wells for which the API number [id] equals the AASG primary key in [aasg_whealton] are 
joined to the previous table. This resulted in 687 matching records for 245 unique wells in NY 
and PA before processing of the data, as described in Selecting and Processing Wells for 
Analysis. Post processing, only 137 records matched. 
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5.  Drilling Fluid Nearest Neighbors [WhealtonWells_NAD_FinalProcessing.xlsx and 
whealtonAir&Mud_NAD3_RemovedNoLongLatPts_Reg_Unique.shp] 

 
Description:  
 
All wells in the Allegheny Plateau BHT section in New York and Pennsylvania needed to have 
drilling fluid information in order to use the BHT adjustment equation, as defined in Memo 2 of 
this project. For the 137 records in the processed AASG database that matched the Whealton 
(2015) drilling fluid database, the use of the BHT equation for air or mud drilled wells is not a 
problem. For all other wells, no drilling fluid information is available.  
 
When a well did not have drilling fluid information, a weighted average of the BHT corrections 
for air and mud drilled wells was used based on the drilling fluid used to drill nearest neighbor 
wells. The nearest neighbor wells were the Whealton (2015) wells. The logic behind using a 
probabilistic assignment of nearest neighbors is that the wells close to each other are more likely 
to be drilling for the same resource and drilled by the same company, and therefore use a similar 
drilling fluid. 
 
An important step prior to running the nearest neighbor function was to check the Whealton 
(2015) database for wells with the same API number. Multiple records for the same well would 
count that well’s drilling fluid multiple times, thus assigning an inappropriate proportion of air 
and mud to a well with unknown drilling fluid. Of the 2233 records in the Whealton (2015) 
database, there were 1755 unique wells. 
 
A function was written to determine the proportion of air and mud drilled wells (see Whealton 
and Smith [2015] code repository). This function uses the nearest 25 points within 50 km to 
compute the proportion of air and mud for an unknown well. The algorithm is defined such that 
the distance to the 25th nearest neighbor is the distance cutoff for the inclusion of wells in the 
calculation of the proportion. If the 25th nearest point happens to have another point the same 
distance away (same location or different location), then there may be more than 25 points used 
to compute the proportion of air and mud. If 25 points did not exist within 50 km, then that well 
was assigned the regional average proportion of air and mud drilled wells of 0.194 air drilled and 
0.806 mud drilled. 
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 

From:  Jared Smith 

Date:   Original from October 16, 2015. Updated on September 27, 2016. 

Subject:  Exploratory Data Analysis and Interpolation Methodology for Thermal Field 
Estimation. 

Applicability: This memo describes an exploratory spatial data analysis on the temperature-at-
depth well data. This memo also presents the methods used to interpolate the 
temperature-at-depth data to create the thermal risk factor and uncertainty maps 
for this project. Smith (2016) Chapter 4 contains further methodological details 
and results, specifically for the Appalachian Basin surface heat flow. 

Introduction 

The Appalachian Basin Geothermal Play Fairway Analysis team needs to have a method for 
creating the thermal resource and risk factor maps, and to quantify associated uncertainties of the 
spatial predictions. The data available for these spatial predictions are the tens of thousands of 
well bottom-hole temperature (BHT) measurements, which are primarily from regional oil and 
gas drilling. These data are known to have errors and are considered low quality temperature 
information (e.g. Demming, 1989). Some of the data processing steps for these BHT data are 
described in Memo 4 of this project. Memo 4 also describes the heat conduction model that was 
used to calculate the surface heat flow and the geotherm temperature at depth profiles at the 
surface location corresponding to each well’s BHT-depth measurement. 

As a result of using lower quality BHT data, an exploratory data analysis (EDA) is employed on 
the calculated thermal variables (e.g. the temperature at 1.5 km depth) to scan for potentially 
anomalous observations, and retain only those observations that are deemed to be of sufficient 
quality. The EDA involved an assessment of each variable according to the depth of the BHT 
measurement, followed by the identification and removal of spatial outliers. The details of the 
outlier analysis algorithm developed for this project are provided in Memo 6. This memo 
presents general results from the outlier analysis for each thermal variable of interest. The EDA 
also included an evaluation of the spatial autocorrelation for each thermal variable of interest. 
The results of the spatial autocorrelation analysis are provided for the Depth to 80 °C, which is 
the selected thermal risk factor in this project. All other thermal resource variables were subject 
to the same EDA methodology. Detailed EDA methods for the surface heat flow are presented in 
Smith (2016). 

The thermal information obtained at the spatial location of each well may be viewed as control 
points in a basin-scale spatial prediction of temperatures at a specified depth and depths to a 
specified temperature. Many interpolation algorithms may be suitable for prediction of these 
thermal variables of interest in the Appalachian Basin. The results of the EDA were used to 
inform which interpolation algorithm to use for this project. Recent work by Smith (2016) 
showed that the Appalachian Basin surface heat flow does not have a stationary spatial 
correlation structure (i.e. the semi-variogram is nonstationary). As a result, Smith (2016) used 

teresajordan
Typewritten Text
Memo 9: Exploratory Data Analysis and Interpolation Methodology for Thermal Field Estimation

teresajordan
Typewritten Text

teresajordan
Typewritten Text

teresajordan
Typewritten Text
Memo 9: p. 



2	
	

stratified ordinary kriging interpolation to laterally stratify the basin into sub-regions, many of 
which have statistically significantly different spatial correlation structures for the surface heat 
flow. Lateral stratification boundaries are defined by the gravity and magnetic potential field 
edges at depths from 7 km – 15 km (see Memo 13 of this project for details on these potential 
field data). The interpolation regions used in Smith (2016) have also been used in this project. 
This memo briefly discusses the creation of the interpolation boundaries based on the gravity and 
magnetic potential field edges. Smith (2016) Appendix D provides further geological 
interpretation of these edges and their use as interpolation boundaries.  

The performance of the stratified ordinary kriging algorithm was tested using two cross 
validation techniques. The first was a leave one out cross validation (LOOCV). Results and 
details of the LOOCV are provided at the county level in Memo 10. The second was an 
evaluation of the kriging predicted mean temperature at 1.5 km depth. This evaluation compared 
the set of 47 equilibrium well BHT measurements near 1.5 km depth with the kriging predicted 
mean temperature at 1.5 km depth, and the uncertainty standard error in the predicted mean. The 
results from this evaluation are presented at the end of this memo. 

 
Well Data Processing and Exploratory Data Analysis  

After each thermal variable of interest was calculated using the heat conduction model (see 
Memo 4), a few additional data processing steps were required before employing the exploratory 
data analysis (EDA). These processing steps are presented in the sections that follow. 
 
Negative Thermal Gradients 
 
Out of the 20,750 wells that were used in the heat conduction model, 39 of them had negative 
values of the geothermal gradient calculated between the surface and the depth of the BHT 
measurement. Calculated values of the geothermal gradient are negative if the assumed annual 
average surface temperature is greater than the BHT measurement. A negative geothermal 
gradient is not physically reasonable. Thus, for these wells a calculated negative gradient may 
indicate that 1) the annual average surface temperature is too high, 2) the BHT was cooled as a 
result of advection of heat via groundwater, or 3) the BHT or depth of measurement was not 
properly recorded. Case 1) would affect shallower wells more than deeper wells, whereas case 2) 
and 3) could affect any well.  
 
Figure 1 shows the spatial locations of the 39 wells with negative surface to BHT depth thermal 
gradients. Some clustering of wells with negative geothermal gradients exists, which may 
indicate local advection of heat. However, clustering could also be a result of improper recording 
of data from a local drilling company. Given that many more wells surrounding the wells with 
negative geothermal gradients have positive geothermal gradients, and further information is not 
available to quality control these data, the wells with negative geothermal gradients were 
removed from the dataset. 
 

teresajordan
Typewritten Text
Memo 9: p. 



3	
	

 

 
Figure 1: Locations of all 20,750 wells (black) and the 39 wells with negative surface-to-BHT 
depth geothermal gradients (red). Figure from Smith (2016). 
 
Minimum BHT Depth for Data Quality Purposes 
 
Each of the thermal variables were plotted against the depth of measurement to determine if 
there were any biases based on depth. The plot for the surface heat flow (Qs) is provided in 
Figure 2. Based on previous studies of the Appalachian Basin geothermal field (Stutz et al., 
2015; Frone and Blackwell, 2010), values of the surface heat flow greater than 100 mW/m2 are 
likely too high, but may be real if the data are spatially clustered. Based on Figure 2 and similar 
analyses for the other thermal variables, it was decided that many wells with BHT measurements 
shallower than 1,000 m were likely unreliable. These wells were removed from the database for 
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quality control. Aside from a few likely high outliers for West Virginia, the heat flow values for 
wells with a depth of BHT measurement greater than 1000 m appear to be in agreement. 

 

Figure 2: Surface heat flow versus the depth of BHT measurement for the 20,711 wells with 
positive geothermal gradients. Only wells deeper than the 1000 m cutoff (vertical black line) 
were retained for further analysis. 

For the large majority of the region, a 1000 m minimum BHT depth cutoff did not cause major 
data gaps to appear on the map (Figure 3). Generally, northern New York wells are removed 
because of a shallow depth to basement, and the oil and gas resource of interest was shallower 
than 1000 m. In northwestern Pennsylvania near the Allegheny National Forest there is 
insufficient deep well data, which would cause gaps in spatial predictions of the temperature at 
depth. Therefore, this region was examined closely in Smith (2016) for data agreement at 
shallower depths. As a result, the minimum BHT depth for this region was selected as 750 m 
(Smith, 2016). 
 
In summary, using these minimum BHT depths resulted in 13,818 records for further analysis. 

	2	
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Figure 3: Wells remaining for outlier analysis (black) and wells removed based on the 1000 m 
cutoff depth (red). Note that some wells were added back to the data gap in northwestern 
Pennsylvania. 
 
Wells in the Same Spatial Location 
 
Several records in the database had the exact duplicate coordinates as another record. 
Observations in the same spatial location could interfere with spatial exploratory data analyses. 
For example, in a spatial outlier analysis a location should only be counted once, assuming that 
the information about the thermal field provided by the multiple BHT measurements is the same. 
Exact duplicate locations in the database may result from a well having more than one 
measurement at different depths (same API number), from multiple wells starting at the same 
offshoot but branching off from each other (different API numbers), from wells being located on 
the same drill pad and assigned the average coordinates of the pad (different API numbers), or 
from a duplicate of a record in the database. In all of these cases, only the deepest measurement 
for a location was retained for analysis. The deepest measurement was used as a method of rapid 
quality control. Other methods that include all of the temperature measurements at different 
depths may be more accurate to the true geotherm temperature at depth profile. 

In a few locations the deepest depth had two or more different BHTs. The measurement date and 
time were not available for these wells, so it was not possible to tell if these temperature 
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differences were spread out in time, and thereby indicative of temporal variations in the thermal 
field. For these data, only the wells with BHTs at the same depth that were within 2 °C of each 
other were retained – the remainder were dropped from the dataset for quality concerns. The 
retained wells were checked for potential errors in recording the depth of measurement that could 
explain the difference in BHTs at same depth. Each well in the database has up to three depths: a 
driller depth (arc length), a true vertical depth, and a depth of temperature measurement. The 
depth of temperature measurement is used for wells in this project; however the database could 
contain errors. Therefore, the quality control was that the smaller of the multiple BHTs should 
correspond to the lesser of the depth of measurement and the true vertical depth or the driller 
depth. For wells that had sufficient information to make this assignment, the BHT corresponding 
to the depth of measurement was retained. For all other wells, the average of the multiple BHTs 
at the same depth were taken, and the geotherm was recomputed using the thermal model 
described in Memo 4 to reflect the average BHT. Only 1 well (2 records) needed to be rerun in 
the thermal model, so an adjustment of uncertainty in the BHT measurement was not made to 
reflect that 2 measurements were taken at the same depth for this well, rather than 1.  

After taking only the deepest wells in each spatial location, 13,381 BHT measurements remained 
for the spatial outlier analysis. 
 

Spatial Outlier Analysis 

Each thermal variable of interest in this project was subject to a spatial outlier analysis prior to 
the spatial correlation analysis and the spatial interpolation. Memo 6 of this project contains the 
details of the spatial outlier analysis algorithms developed for this project. The selected 
algorithm used the nearest 25 points within a 32 km radius for outlier analysis. For the roughly 
200 points that did not have 25 points within 32 km, the outlier analysis was not conducted by 
the algorithm. Instead, these points were inspected manually by looking at the values of the 
available nearest neighbor points. Only two wells were removed based on manual inspection. 
Table 1 summarizes the number of outliers removed for each thermal variable. It is interesting 
that points that are outliers for one thermal variable may not be outliers for another variable. This 
result suggests that a multivariate spatial outlier analysis would be worth evaluating. 

Table 1: Outliers identified and removed for each thermal variable of interest in this project. 

Variable Number of Outliers Percentage of Data Removed 
Surface Heat Flow * 1014 7.6% 
Depth to 80 °C + 1184 8.8% 
Depth to 100 °C † 1117 8.4% 
Temperature at 1.5 km† 979 7.3% 
Temperature at 2.5 km† 944 7.1% 
Temperature at 3.5 km† 970 7.3% 
* From Smith (2016). 
+ Updated using the 750 m minimum BHT depth in northwestern Pennsylvania. 
† Original results, which use a 1000 m minimum BHT depth everywhere. These numbers 
may change if they are rerun using the 750 m minimum BHT depth in northwestern PA. 
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Spatial Autocorrelation 

Previous studies of the Appalachian Basin geothermal field have shown that there is significant 
spatial autocorrelation that ought to be captured in spatial predictions (Smith, 2016; Aguirre, 
2014). Smith (2016) showed that the structure of surface heat flow spatial autocorrelation (the 
semi-variogram) is nonstationary on the scale of the Appalachian Basin. In order to capture more 
local spatial correlation structure, Smith (2016) used a different model of spatial autocorrelation 
for several sub-regions of the Appalachian Basin. These sub-regions were defined by the gravity 
and magnetic potential field edges described in Memo 13 of this project. The physical and 
statistical justification for using sub-regions is that rocks with different physical properties (e.g. 
concentration of radiogenic heat producing elements) may contribute different amounts of heat to 
the surface, thereby acting as different data generating processes that must be modeled separately 
in prediction of the thermal field.  

We believe that the use of potential field edges to define sub-regions reflects physical differences 
in rock properties (density and magnetite) better than do physiographic provinces, which do not 
necessarily define regions of similar rock composition. The following section briefly describes 
how these sub-regions were created from the potential field edges. Smith (2016) Appendix D 
provides more detailed information. 

Creating Interpolation Boundaries 

The concept of a heat flow province was first discussed in Roy, Blackwell, and Birch (1968) and 
referred to the apparent transition zone in heat flow originating from the mantle across a major 
continental structural divide on the order of about 100 km width. The Appalachian Basin is 
expected to be within a single heat flow province because it is within a stable continent setting. 
However, several studies (e.g. Rao, Rao, and Narain, 1976) have identified heat flow sub-
provinces (Roy, Blackwell, and Decker, 1972) in basement rock, related to spatial differences in 
the contribution of heat production to the surface heat flow. This concept of a heat flow sub-
province is applied to the interpolation boundaries defined in this project. A geostatistical 
argument for heat flow sub-provinces in the Appalachian Basin is presented in Smith (2016). 

The interpolation boundaries used in this project are provided in Figure 4 (from Smith [2016]). 
The gravity edges were the primary source for selecting the interpolation boundaries. The 
magnetic edges were used to refine the interpolation boundaries when large anomalies appeared 
within any section. Only the SWPA interpolation region was defined by the magnetic potential 
field edges.  
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Figure 4: Interpolation boundaries (potential heat flow sub-provinces) used in this project and 
the gravity potential field edges at depths from 7 km – 15 km from Memo 13. This figure is from 
Smith (2016) Appendix D. The sub-regions are colored starting in the top left, proceeding 
clockwise. The gravity edges are colored by the strength of the lateral gravity gradient, with red 
having higher contrast in rock density on either side of the boundary. 
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Stratified Ordinary Kriging Interpolation  

The potential heat flow sub-provinces in Figure 4 are laterally defined strata (regions) in a 
stratified ordinary kriging interpolation. Ordinary kriging (e.g. Cressie, 1988) assumes that the 
mean is unknown within the estimation window. In this study, the radius of the estimation 
window is selected based on the distance of spatial correlation on the semi-variogram. Ordinary 
kriging also assumes that the error may be modeled as a stationary stochastic field within the 
region for which the field is defined. Each of the strata are assumed to have their own stationary 
stochastic field, which is modeled for each thermal variable using semi-variograms. Semi-
variograms are models of spatial autocorrelation. All sub-regions in Figure 4 except for the 
Valley and Ridge were used. The Valley and Ridge sub-region was not used because too few 
well data points were available to construct a reliable semi-variogram. 

Stratified ordinary kriging was implemented in the gstat package of R (Pebesma, 1998). 

Semi-variogram Analysis 

In expectation, the difference in the geothermal field for observations that are closer to one 
another should be smaller than the difference in the geothermal field for observations that are 
more distant from each other. One metric that describes this relationship is the semi-variogram: 
the semi-variance as a function of distance between all (n*(n-1))/2 point pairs in the dataset. 
There are five key parameters that must be fit in order to empirically model the semi-variogram. 
These are the nugget, range, sill, anisotropy, and shape of the semi-variogram. The nugget refers 
to the apparent discontinuity in semi-variance at infinitesimal distances between two wells. If we 
had perfect measuring devices, and properties of the thermal field remained constant through 
time, and the assumptions used to model the thermal field were perfectly accurate, the nugget 
would be essentially zero. Because the nugget is not zero, is represents the measurement, 
positioning, and modelling errors present within the dataset. The range is the distance to which 
spatial correlation is modeled, and the sill is the value of semi-variance at the range. The shape 
of the semi-variogram may be selected from a collection of nearly 20 classic functional forms 
that provide positive definite and non-singular matrices for spatial prediction (Pebesma, 2014). 
Of these options, the Gaussian, Exponential, and Spherical shapes were used in this project to 
model and fit semi-variograms.  

Semi-variograms were fit using a weighted regression. The weights were determined by the 
number of point-pairs, n, divided by the distance, h, to the bin squared: n/h2. This is a common 
approach, which ensures that more weight is placed on points closer to one another rather than 
farther away. For complex (nested) semi-variograms, ordinary least squares regression was used 
instead of weighted regression. A further explanation of the ordinary kriging methods used in 
this analysis is provided in the Appendix of Stutz et al. (2015) under the subheading Kriging 
Interpolation. Smith (2016) also provides further details. 

Anisotropy 

Anisotropy refers to directional dependence in the structure of spatial autocorrelation. Figure 5 
shows the anisotropy within each of the nine sub-regions identified in Figure 4. As expected, 
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each sub-region does not exhibit the same degree of anisotropy, and some do not appear to 
exhibit anisotropy at all. This result supports the use of stratified kriging that can capture these 
differences in prediction and uncertainty analysis of the thermal field. Figure 6 shows the sample 
(points) and fitted (black lines) semi-variograms along the major and minor axes of the 
anisotropy ellipse for each of these interpolation regions. 

 

Figure 5: Directional semi-variance plots for the Depth to 80 °C. All plots have the same 
distance on the x and y axes, and the same semi-variance color bar. White areas are where 
insufficient data exist to calculate a value of the semi-variance. Where the plots appear elliptical, 
there is anisotropy (directional preference) in the structure of spatial correlation. 
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Figure 6: Fitted semi-variograms used for the interpolation of the Depth to 80° C within each of 
the nine sub-provinces. Sub-provinces that showed anisotropy in Figure 5 have semi-variograms 
defined along the major and minor axes of the anisotropy ellipse. Note that all plots have the 
same x-axis, but the y-axis is not the same on all plots. The vertical red line indicates the 
maximum interpolation distance of 30 km. In Central NY the maximum interpolation distance 
was 25 km because the semi-variogram only fit well to a 25 km distance. 
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Using these fitted semi-variogram models, the ordinary kriging interpolation was run within each 
of the sub-provinces. Only those wells located within a sub-province were used to predict in the 
sub-province. Additionally, a minimum of 5 points within 30 km of a location were needed to 
make a prediction. A maximum of 50 points were used for computational efficiency. 

 

Results 

The predicted mean and the standard error of the predicted mean Depth to 80 °C are provided in 
Figure 7. Generally, south-central New York, north-central Pennsylvania, and several areas in 
West Virginia appear to have the shallowest mean depth to 80° C. The uncertainty in the 
predicted mean is quite different spatially as a result of differences in the semi-variogram 
structure in each of the sub-provinces. Uncertainty in the mean value should be a great interest to 
decision makers who aim for investigating in more detail those locations that have the smallest 
uncertainty and the shallowest depth to 80° C. 

 

Figure 7: Predicted mean (left) and standard error of the predicted mean (right) depth to 80 °C. 
The interpolation boundaries (Figure 4) are shown in light gray lines. Note that red (deeper) is 
bad and green (shallower) is good on the predicted mean map. The upper end of the standard 
error map has a range because nearly all error between 1000 – 2000 m is contained within one 
section – Eastern New York and Pennsylvania. 
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Cross Validation 

The results of the leave one out cross validation (LOOCV) are provided at the county level in 
Memo 10. The cross validation using equilibrium temperature data at 1.5 km is presented in 
Figure 8. The goal is to have kriging predicted mean temperatures at 1.5 km depth that match the 
recorded equilibrium well temperature at 1.5 km depth. Where red and blue points are nearly co-
located there may be very small scale variability in the thermal field, which would be smoothed 
over in the kriging interpolation. This exercise provides insight into regions of the map that may 
have been over predicted or under predicted by the kriging interpolation. Generally, the cooler 
temperatures in south-central Pennsylvania are under predictions.   

 

Figure 8: Wells (points) with equilibrium or reliable temperature data at 1.5 km depth are 
compared to the kriging predicted mean temperatures at 1.5 km depth (map). The colors of the 
circles show differences from measured and predicted temperature at 1.5 km. The outline color 
indicates if the map over predicts (white) or under predicts (black) the equilibrium temperature.  
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 

From:  Jared Smith 

Date:   15 October, 2015 

Subject:  Selection of Four Counties in Each State with “Best” Thermal Resources 

Applicability: The methods described here were used to select the four “best” counties in each 
state according to the thermal resource. This analysis complements the Play 
Fairway maps that are based on the combination of the other three risk factors 
with the thermal resource, but this analysis is specific to thermal attributes. Note 
that the maps and cross sections in this memo reflect 2015 results, and do not 
reflect the 2016 results from the final report. 

Introduction 

At the conclusion of Phase 1 of this Geothermal Play Fairway Analysis project, the four most 
favorable or attractive counties in each of New York, Pennsylvania, and West Virginia must be 
selected for further inspection of the commensurate favorability of geothermal development. 
Favorability is primarily determined by high thermal resource quality, specifically the depth to 
80 °C as defined in the Statement of Project Objectives [SOPO]. Anticipating that the thermal 
resource quality will be a core factor in decisions regarding development of geothermal direct-
use projects at specific locations, in this memo we investigate the values and uncertainty of the 
thermal resource in the counties that currently appear to be of best thermal quality and of high 
interest to potential users. 

The following analysis could be applied to any county or site of interest to a potential user. To 
select counties for which to illustrate the insight that is gained from the analysis, additional 
factors we have taken into consideration are:  

i) Whether or not reservoirs and population/utilization centers are available to use the 
resource in the county 

ii) The number of wells within the county from which additional detailed lithology may 
be obtained to cross-examine the predicted thermal values, and from which to collect 
additional data in Phase 2 

iii) The location of all selected counties within the region of study. Spatial variety was 
desired such that the selected counties did not all occupy the same hot spots. 

High thermal resource quality was interpreted as a location having both a shallow predicted 
mean depth to 80 °C, and relatively high certainty in the predicted mean depth. No value was 
assigned to the certainty that was considered to be high; however in all but three counties the 
average uncertainty in the predicted mean throughout the county has a two-standard-error spread 
within ± 500 m. 

The selected counties are presented in Figure 1. Each of the counties are represented below in a 
series of cutout maps of the predicted mean depth to 80 °C within the counties. The color scale 
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on each map is different, tuned to the local temperature-depth relations in order to show 
variability within the counties of interest. A cross section through each county is provided, which 
depicts the uncertainty in the predicted mean as 

!  ± (2 ∗ !")	 	 	 	 	 	 [1] 

where ! is the predicted mean and SE is the standard error of the predicted mean. These bounds 
can be thought of as 95% confidence bands about the predicted mean. A second cross section of 
the Thermal Play Fairway Metric (0-5 point scale, see ThermalResourceThresholds_final.doc 
memo for discussion) is also provided for each county.  

 

Figure 1. Selected four best counties in New York, Pennsylvania, and West Virginia based on 
thermal resource, presence of reservoirs, population centers, and variety of location within the 
Appalachian Basin. 	

Results and Discussion 

The most promising counties have predicted mean depths to 80 °C that are shallower than 2500 
m. These include Preston, Gilmer, Lincoln, and Kanawha counties in West Virginia; Chemung, 
Steuben, and Tompkins counties in New York, and Tioga and Potter counties in Pennsylvania.  
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Chautauqua, NY, is a great example of where there is high certainty in the prediction as a result 
of many wells (Figure 2). The highly clustered well data provides insight to the spatial variability 
of the thermal field on a small scale. For example, the variation in the predicted mean depth to 80 
°C is in some locations on the order of a hundred meters on a horizontal scale of about 10 km in 
map distance (Figure 3). This provides insight to the spatial scale of thermal resource variability 
that may be expected everywhere in the basin, but is not captured on the maps as a result of 
fewer data available to support the predictions. 

Many of the counties have prediction boundaries (e.g., interpolation zone boundaries) that cut 
through the county (prediction boundaries are not shown on the individual county maps, but are 
provided on the cross sections, and the regional thermal resource maps for the basin). As a result, 
predictions on one side of the boundary may be discontinuous compared to those on the other 
side of the boundary; however not all boundaries show a meaningful statistically significant 
difference (e.g. at the α ≈ 5% level) in the predicted mean on either side. The meaningful 
statistically significant differences are potentially indicative of real boundaries in the thermal 
field. An example of one meaningful statistically significant difference is in Gilmer County, WV 
(Figure 8, Figure 9). This boundary is thought to represent the Rome Trough – a feature of 
known structural importance in the basin. It is not clear if the concurrence of a statistically 
significant difference and the Rome Trough is a result of poor well sampling, or if this is a real 
boundary in the thermal field. One argument against poor well sampling is that a two-sample t 
test in the difference of the mean depth to 80 °C calculated for each well rejected the null 
hypothesis: 

!! − !! = 0 

with a p-value of 1.2x10-4 and 314 degrees of freedom. Assuming unequal variance, the p-value 
is 8.9x10-5 with 313.6 degrees of freedom. Even so, the wells included in this test are located 
predominantly in northern Gilmer County, so the test reflects the difference in two means across 
this northern boundary rather than the sharper difference in southwestern portion of the county. 
More sampling in southern Gilmer County may change the significance of this test. 

At this time, it is also not clear if all statistically significant differences across interpolation 
boundaries coincide with features of similar importance to the basin, and further influence the 
thermal field. Even so, the gravity and magnetic potential field edges were used to define 
prediction boundaries in an attempt to capture differences in the subsurface that may correspond 
to variations in the thermal field (e.g. changes in the data generating process). Having one 
statistically significant difference appear along a feature of importance is encouraging support of 
this assumption. 

Evaluation of the predicted mean depth to 80 °C was conducted for the region using a “leave one 
out” cross validation. For N points, this cross validation runs the kriging interpolation algorithm 
N times, with one point left out of the prediction in each of the N repetitions. The results of the 
cross validation are provided for each county below in Figure 2, Figure 4, Figure 6, Figure 8, and 
Figure 10 as ‘bubble plots’ that display the Z-Score: ! = !!!

!" , where x is the geothermal variable 
for the well point, µ is the predicted mean for the grid cell, and SE is the standard error of the 
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predicted mean for the grid cell. Results indicate that on a regional scale about 98% of the data 
for the left-out points lie within 3 standard errors of the predicted mean. 

	

Figure 2. Depth to 80 °C in Erie County Pennsylvania, and Chautauqua County New York. 
Leave one out cross validation results are shown as ‘bubbles’ that increase in size as the error, 
measured as a Z-Score, increases in magnitude. Red indicates that the value of the point was 
greater than the predicted mean at the location (grid cell) of the left-out point. Larger circles 
may indicate that the point had more influence in the spatial prediction. 
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Figure 3. Variation in depth to 80 °C and the thermal Play Fairway Metric along cross section 
C-C’ in Figure 2. These two counties display moderate depths with relatively high certainty 
compared with other locations (! ± 2!" spans approximately 500 m in most locations). 
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Figure 4. Depth to 80 °C in Fayette County Pennsylvania, and Preston County West Virginia. 
Leave one out cross validation results are shown as ‘bubbles’ that increase in size as the error, 
measured as a Z-Score, increases in magnitude. Red indicates that the value of the point was 
greater than the predicted mean at the location (grid cell) of the left-out point. Larger circles 
may indicate that the point had more influence in the spatial prediction.	
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Figure 5. Variation in depth to 80 °C and the thermal Play Fairway Metric along cross section 
D-D’ in Figure 4. While Preston County has a higher predicted mean, it is not statistically 
different than the mean in Fayette County. 
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Figure 6. Depth to 80 °C in Lincoln and Kanawha counties in West Virginia. Leave one out 
cross validation results are shown as ‘bubbles’ that increase in size as the error, measured as a 
Z-Score, increases in magnitude. Red indicates that the value of the point was greater than the 
predicted mean at the location (grid cell) of the left-out point. Larger circles may indicate that 
the point had more influence in the spatial prediction. 
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Figure 7. Variation in depth to 80 °C and the thermal Play Fairway Metric along cross section 
E-E’ in Figure 6. The uncertainty in the predicted mean increases along the cross section as a 
result of decreasing well density. 
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Figure 8. Depth to 80 °C in Gilmer County West Virginia. Leave one out cross validation results 
are shown as ‘bubbles’ that increase in size as the error, measured as a Z-Score, increases in 
magnitude. Red indicates that the value of the point was greater than the predicted mean at the 
location (grid cell) of the left-out point. Larger circles may indicate that the point had more 
influence in the spatial prediction. 
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Figure 9. Variation in depth to 80 °C and the thermal Play Fairway Metric along cross section 
F-F’ in Error! Reference source not found.. The most certain shallowest location is about 2300 
m. 
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Figure 10. Depth to 80 °C in Chemung, Steuben, and Tompkins counties in New York, and 
Potter and Tioga counties in Pennsylvania.  Leave one out cross validation results are shown as 
‘bubbles’ that increase in size as the error, measured as a Z-Score, increases in magnitude. Red 
indicates that the value of the point was greater than the predicted mean at the location (grid 
cell) of the left-out point. Larger circles may indicate that the point had more influence in the 
spatial prediction. 
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Figure 11. Variation in depth to 80 °C and the thermal Play Fairway Metric along cross section 
G-G’ in Figure 10. The most certain shallowest location is between Tioga through Chemung 
counties, which contain reservoirs and two population centers (Elmira, NY and Corning, NY). 
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The Natural Reservoirs Task of the Appalachian Basin Geothermal Play Fairway Analysis 

project involves mapping and characterizing the proven natural reservoirs, which have the 

potential to be utilized for geothermal energy production within the Appalachian Basin region of 

New York (NY), Pennsylvania (PA), and West Virginia (WV). The results of this task are 

intended to accompany the analyses of the Thermal Resource, Seismic Risk, and Utilization 

tasks, for the purpose of a Combined Risk Map (CRM) to determine the most optimal locations 

in the basin for future geothermal investment. The goals of the Natural Reservoirs task were: 

i. Collect data on known natural reservoirs in the Appalachian Basin, and integrate data 

sources for consistency, 

ii. Research geologic formations in the basin to populate empty fields in the database, 

iii. Choose or develop a metric for quantifying reservoir favorability, 

iv. Predict the likely range of outcomes for all natural reservoirs in the basin, and 

v. Map the reservoir results in a Geographic Information System (GIS) 

Reservoir data collection and compilation methods differed state by state; however, reservoir 

analysis and uncertainty quantification methods are consistent across the tristate region. This 

memo and its accompanying Memo 12 (Reservoir data selections) presents a detailed description 

of all methods that were used for the completion of this task’s milestones. 

1. The Desired Resource: Natural Reservoirs 
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For the purposes of this project, a geothermal reservoir is defined as a volume of rock in the 

subsurface that has sufficient permeability to allow fluids to flow through it. Fluids are pumped 

into one well, heated by contact with the rock, and pumped back to the Earth’s surface via a 

second well. This scope of this project was limited to consideration of naturally-occurring 

reservoirs, or those in which sufficient permeability already exists. Enhanced or Engineered 

Geothermal Systems (EGS)—the process by which permeability is artificially created in a rock 

using high pressure fluids—was excluded from the analysis as described in the Statement of 

Project Objectives (SOPO).  

Because this project was limited to the analysis of existing data, our proposal hinges on the 

application of subsurface data that has already been collected by the petroleum industry via 

drilling for oil and gas. Such non-proprietary datasets of proven conventional hydrocarbon 

reservoirs generally include depth, thickness, location, spatial extent, porosity, and less 

frequently permeability, though publicly available data vary from state to state and from basin to 

basin. Analyzing petroleum reservoirs for geothermal exploration may lower geothermal project 

risk because: 

i. Non-proprietary hydrocarbon reservoir data is already collected and access to those data 

is low- or no-cost 

ii. Hydrocarbon reservoirs have some degree of inherent porosity and permeability given 

that large amounts of hydrocarbons existed within and flowed out of those reservoirs.  

iii. Sedimentary units generally have higher permeability values than crystalline igneous or 

metamorphic units, in which hydrothermal or EGS projects generally occur.  

2. Data Collection 
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The reservoir dataset available for New York differed from that of Pennsylvania and West 

Virginia. This section describes the differences between the two datasets.  

2.1. Pennsylvania and West Virginia 

Extensive data collection and reservoir mapping was completed in the early 2000s for the 

purpose of carbon sequestration research through the Midwest Regional Carbon 

Sequestration Partnership (MRCSP). A GIS database from the MRCSP was available for use 

as a starting point for this project, courtesy of the West Virginia Geological and Economic 

Survey (WVGES). The dataset is not open-source, but it can be purchased from the WVGES. 

The dataset includes oil and gas reservoirs located in PA and WV, but does not include 

reservoirs in NY. The MRCSP calculated potential storage volume for the reservoirs by using 

a volumetric analysis (total volume of rock corrected by reservoir porosity); therefore, the 

following reservoir parameters were included in the dataset: average reservoir production 

depth, reservoir name, formation code (geologic code for the producing formation, see Memo 

12 (Reservoir data selections)), state, reservoir pressure, porosity, net thickness, and 

shapefiles (polygons). 

Due to the large size of the PA and WV database and narrow time constraints of the 

Phase One GPFA, reservoirs shallower than our chosen threshold were trimmed from the 

database to reduce the workload. To pick the depth threshold, a temperature threshold of 

40ºC was first selected using the Lindal Diagram of temperatures and potential end-uses 

(Lindal, 1973). An average geothermal gradient and surface temperature for the region 

(calculated from the Thermal Resource Task) resulted in a threshold of 1250 meters (4100 

feet).  
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2.2. New York 

The dataset from carbon sequestration research conducted in NY was available to us through 

the New York State Geological Survey (NYSGS); however, it did not prove useful to our 

project because it does not contain any information about potential reservoirs except for their 

depth. Because New York joined the MRCSP years later than the other states in the 

Consortium, their efforts did not produce the same final data products or use the same 

volumetric analysis method as for WV and PA. NYSGS instead approximated the storage 

potential for carbon dioxide sequestration using oil and gas production volumes to estimate 

storage capacity of each reservoir. Because porosity and thickness values were not required 

to conduct their analyses those parameters are not included in the database.  

Instead, we used the Empire State Organized Geologic Information System (ESOGIS) 

online database to access the information that was required for this project. This dataset holds 

data by well rather than by reservoir. Well locations (latitude and longitude) were 

downloaded from ESOGIS and uploaded into a GIS. To create reservoir area polygons 

similar to those in the database for PA and WV, we used a GIS tool to create “buffer zones” 

around wells that pertain to a given reservoir. For details on the process of calculating the 

reservoir well buffer, see the accompanying Memo 12 (Reservoir data selections).  

The available digital well data from ESOGIS included well Total Vertical Depth (TVD), 

producing formation, reservoir name, latitude, and longitude. Reservoir thickness was not 

available in the digital database, and was extracted manually from downloaded PDFs of Well 

Completion Reports. 

The ESOGIS database does not report either formation or reservoir porosity as a separate 

data field. Porosity data for each reservoir in NY had to be extracted from the published 
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literature. In the interest of time, the reservoirs were categorized by producing formation, and 

an average reservoir porosity was assigned to each formation based on values reported in 

literature. Details on porosity value choices can be found in the Memo 12 (Reservoir data 

selections). 

No minimum temperature threshold for reservoir analysis was necessary for NY, as the 

database was small enough to be evaluated by the available personnel in a short time. This 

decision was made knowing that any shallow reservoirs in NY would be eliminated once the 

thermal map was integrated with the reservoir map. 

2.3. Permeability 

Neither the MRCSP database nor ESOGIS contains information about reservoir permeability, 

which is the most important parameter for estimating reservoir favorability. Reservoirs across 

the basin were again grouped by producing formation, and a permeability value was assigned 

to each reservoir based on published values for its formation, or an empirical relationship 

with porosity. For more details on the process of estimating permeability for each formation, 

see Memo 12 (Reservoir data selections).  

3. Reservoir Favorability Metrics 

Following the compilation of the three-state reservoir database, reservoir favorability metrics 

were chosen using the available parameter constraints: permeability, thickness (hydrocarbon pay 

thickness), temperature, depth, and area. Three metrics were ultimately chosen to express 

reservoir favorability: one is a geologic quality metric that serves mostly as a reservoir ranking 

tool and relies only on the geologic properties detailed above; the other two include engineering 

inputs to predict production-stage performance of the reservoirs. The Reservoir Flow Capacity 

(RFC) is the metric that is used as a comparator for the geologic parameters in each reservoir. 
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The latter metrics are the Reservoir Productivity Index for supercritical CO2 (RPIc) and for water 

(RPIw), used to quantify potential productivity, or fluid flow rate, in each reservoir during 

production. The following sections describe each metric and their purposes. 

3.1. Reservoir Flow Capacity 

The reservoir flow capacity (RFC) was chosen as a favorability metric not only because it is 

comprised of only geologic parameters, but also because the levelized cost of energy is 

sensitive to this metric (Sanyal and Butler, 2009). This metric provides the opportunity to 

compare the quantitative favorability of each reservoir relative to the other reservoirs based 

on its natural reservoir qualities only. The RFC, shown as F below in units of mD-m, is a 

simple equation comprised of only permeability k in millidarcies (mD), and thickness H in 

meters: 

𝐹 = 𝑘𝐻 (1) 

3.2. Reservoir Productivity Index 

A separate metric was chosen for this project as a means of quantifying the favorability of the 

reservoirs in the basin during energy production. After thermal quality, flow rate is the 

second-most important factor affecting geothermal heat production (Bedre and Anderson, 

2012). The petroleum industry often uses a term called the well productivity index (PI) to 

quantify the flow of a given oil or gas well producing from a hydrocarbon reservoir. The PI is 

defined as the volumetric flow rate of a well divided by the pressure drop from the reservoir 

to the producing well:  

𝑃𝐼 = !
!!
= !!"#

!"# !
!!

 (2) 

where Q is flow rate (m3/s), ΔP is the pressure drop from the reservoir to the production well 

(Pa), k is permeability (m2), H is reservoir thickness (m), µ is the fluid viscosity (Pa-s), D is 
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the distance between the injection and production well (m), and rw is the wellbore radius (m) 

(Gringarten, 1978). Equation 2 assumes that the reservoir is a homogeneous porous medium 

with horizontal intergranular flow.  

PI has also been used to characterize the productivity of a well doublet for geothermal 

reservoirs, for both EGS reservoirs and sedimentary aquifer reservoirs (Gérard et al., 2006; 

Sanyal and Butler, 2009; Augustine, 2014; Cho et al., 2015;	Hamm et al., 2016). The PI 

metric was adapted to this project by using it as an approximation of a reservoir’s 

productivity, rather than just a well pair. The metric is identical to Equation 2, but is called 

the Reservoir Productivity Index (RPI) and the parameters used are average reservoir values. 

Additionally, mass flow rate (kg/s) was used instead of volumetric flow rate, so that RPI can 

be compared fairly for an incompressible liquid and a compressible gas as the working fluid. 

RPI is used as the model in a Monte Carlo Simulation to predict the uncertainty associated 

with each reservoir, which is described below.  

The RPI was subdivided by the type of working fluid that could be used in the 

geothermal system. Water (RPIw) and supercritical carbon dioxide (sCO2; RPIc) were chosen 

as the two working fluid options for this project. For each reservoir, RPIw and RPIc were 

modeled. The differences between RPIw and RPIc are the respective inputs for viscosity and 

permeability.  

3.2.1. Viscosity  

The viscosity of water varies with temperature, therefore the temperature at the depth of 

each reservoir was calculated. Because the thermal and reservoir tasks were being 

completed simultaneously, reservoir-specific temperatures at depth were not available. 

Therefore, state-wide averaged thermal gradients and surface temperatures were used for 
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this work. Uncertainty can be reduced in future work by applying reservoir-specific 

estimates of temperature at depth for a more accurate estimate of fluid viscosity. The 

following values in Table 1 are averages taken from work done by Smith (2015). Those 

geothermal gradients and surface temperatures were used to calculate the temperature at 

the depth of each reservoir using the following equation modified from Tester et al. 

(2012): 

𝑇 𝑧 = 𝑧! !"!" + 𝑇! (3) 

where zr is the depth of the reservoir in meters,  !"
!"

 is the temperature gradient in ºC/km, 

and Ts is the temperature at the surface in ºC (Table 1). The dynamic viscosity of water as 

it varies with temperature (Engineering Toolbox, 2015) is presented in  

 

Table 2. The effects of salinity on viscosity were assumed to be negligible. 

  

teresajordan
Typewritten Text
Memo 11: p. 8



 

 
Table 1. Average temperature gradient and surface temperatures for New York, Pennsylvania, and West Virginia. 

Values averaged from work done by Smith (2015). 

 Gradient (ºC/km) Average Surface Temperature (ºC) 

New York 22.19 9.66 

Pennsylvania 21.19 11.33 

West Virginia 23.19 13.87 
 

 

Table 2. Dynamic viscosity of water as a function of temperature. 
Temperatures are categorized in 10º increments (Engineering Toolbox, 2015). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Data for dynamic viscosity of sCO2 come from Ouyang (2011). The viscosity of 

sCO2 varies as a function of both temperature and pressure. The assumed pressure of the 

injected sCO2 was 10 MPa (100 bar; 1500 psi). At all temperature ranges at a pressure of 

10 MPa, the estimated viscosity of sCO2 is 0.00002 Pa-s. 

Temperature (ºC) Viscosity, water (Pa-s) 

< 30 0.000900 

30-39.99 0.000726 

40-49.99 0.000600 

50-59.99 0.000507 

60-69.99 0.000436 

70-79.99 0.000380 

80-89.99 0.000335 

90+ 0.000299 
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3.2.2. Permeability 

Most permeability values are derived from direct measurement of cored rock samples 

using a gas as the fluid. Use of the raw permeability measurements (kg) is acceptable 

when estimating the flow of a gas through a reservoir rock, but not when trying to 

estimate the flow of water through the rock, which is the typical fluid used in geothermal 

systems. In the case of RPIc, the gas permeability was retained because the viscosity of 

sCO2 is much like that of a gas (Brown, 2000; Pruess, 2007); however, for RPIw the gas 

permeability was corrected for the Klinkenberg effect. This correction is more important 

for low permeability rocks than high permeability rocks (Tanikawa and Shimamoto, 

2006). Since most reservoirs in the Appalachian Basin are of low permeability, this is an 

important step for the RPIw calculations.  

Corrections were applied to all reservoirs based on the reservoir’s primary lithology. 

For carbonate reservoirs, the following correlation from Al-Jabri et al. (2015) was 

applied, 

𝑘! = 0.578𝑘!!.!"# (4) 

where kw is the permeability of the rock with water, and kg is the permeability of the rock 

with gas, both in units of mD. For all other lithologies, the following correlation from 

Jones (1987) was used: 

𝑘! =
!!
!!!!

 ; (5) 

  𝑏 = 15.61 !!
!

!!.!!"
 (6) 

 

where p is the mean flowing pressure in psi, and 𝜙 is the porosity as a decimal fraction.  
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3.2.3. Thickness 

The MRCSP dataset holds values for each reservoir’s net pay thickness, or the vertical 

column from where oil and gas was produced. The New York ESOGIS database does not 

contain information on reservoir thickness, so pay thickness was extracted manually from 

well production reports downloaded from ESOGIS. If the producing interval was not 

reported, then the perforated interval was used as an approximation. The pay thicknesses 

from all wells in each reservoir were averaged to calculate the mean reservoir pay 

thickness.  

3.2.4. Well Distance and Wellbore Radius 

These geothermal field design parameters were held as constants in the RPIw and RPIg 

equations. D, or distance between wells, was assumed to be 1000 m, while r, or wellbore 

radius, assumed to be 0.1 m. These parameters were not used in the RFC equation.  

3.3. Reservoir Architecture and Flow Considerations 

During the database compilation phase of this project, our reservoirs were categorized as 

either stratigraphically-controlled (porous medium) or structurally-controlled (fractured 

medium), based on what is known about the reservoirs from literature (i.e. Roen and Walker, 

1996). The original intention was to calculate the RFC and RPI of each reservoir using an 

appropriate equation based on the flow type; however, in the allotted time of the project, a 

comparable equation for fracture-dominated reservoirs was not identified. Therefore, the 

equation for RPI in porous medium reservoirs was applied to all reservoirs as a first-order 

approximation, regardless of reservoir architecture.  
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4. Uncertainty 

An important piece of this project is the quantification of uncertainty in reservoir data, and 

therefore, also in the uncertainty of the calculated RFC, RPIc and RPIw for each reservoir in the 

basin. In order to calculate the range of possible outcomes (RFC, RPIc and RPIw) for each 

reservoir, we performed a Monte Carlo Simulation on each metric. To do this, the required inputs 

for each variable were the average value, the standard deviation, and probability distribution type 

(normal, log-normal, etc.). 

4.1. Reservoir Parametric Uncertainty Index 

Each average parameter value (i.e. k, H, µ) from the database has inherent uncertainty 

associated with it, both in terms of the variation in data quality and in terms of the natural 

variation, or heterogeneity, of each reservoir. Though average parameter values were 

available in the database for each reservoir, standard deviations and probability distributions 

were not, and therefore had to be selected. To maintain consistency during the assignment of 

standard deviations and distribution types to each parameter for all the reservoirs, we created 

an uncertainty index that ranges from 0 (no uncertainty) to 5 (most uncertain).  

Each uncertainty index value (0-5) corresponds to the likely standard deviation from the 

parameter input, shown in Table 3. The standard deviation increments for each parameter 

were chosen based on reports in reservoir literature of typical variations in reservoir 

thickness, permeability, and temperature (which affects the fluid viscosity) due to 

heterogeneity (i.e., Murtha, 1994; Society of Petroleum Engineers, 2001; Satter et al., 2008; 

Peters, 2012).  

Because the sources of data for the average parameter value were not equally reliable for 

all reservoirs, data quality guided the selection of the uncertainty index value for each 
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reservoir’s parameters, as shown in the example in Table 4. For example, permeability data 

that was calculated from a published empirical porosity-permeability relationship for the 

respective geologic formation and region would be assigned an uncertainty factor of 2. That 

reservoir’s average permeability value would therefore be assigned a standard deviation of 

25% with a log-normal distribution. Additionally, each parameter was assigned a probability 

distribution type for a Monte Carlo Simulation. Distribution types were determined based on 

reservoir engineering and modeling best practices and literature. More details on how the 

uncertainty indices were assigned can be found in the Memo 12 (Reservoir data selections). 

 

 
Table 3. Uncertainty Index reference chart for each parameter in the Monte Carlo Simulation model. 

Uncertainty 
Index Permeability Thickness Viscosity 

 k H µ 
0 0% 0% 0% 
1 12.5% 10% 10% 
2 25% 20% 20% 
3 50% 30% 30% 
4 100% 40% 40% 
5 200% 50% 50% 

Probability 
Distribution log-normal triangular normal 

References Murtha, 1994;  
Satter, 2008 

Peters, 2012; 
SPE, 2001 

Based on 
temperature 

distribution from 
Smith (2015) 
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Table 4. Example of Uncertainty Index assignment criteria for reservoir permeability data. 

1 • Data from a published empirical porosity-permeability relationship, applicable to 
the respective geologic formation and reservoir. 

2 • Data from a published empirical porosity-permeability relationship, applicable to 
the respective region and formation but not the respective reservoir. 

3 

• Data from unpublished empirical porosity-permeability relationship, applicable to 
the respective geologic formation but not the respective reservoir. 

• Data are a published or unpublished range of values or average value for the 
respective geologic formation and region. 

4 

• Data come from unpublished empirical porosity-permeability relationship 
• An average value can be applied from a similar formation or the same formation 

located in another region 
• Data are a published or unpublished range of values or average value for a similar 

geologic formation in the respective region 
5 • Generic low value (≤1mD) assigned due to lack of available data 

 
 

4.2. Monte Carlo Simulation 

A Monte Carlo Simulation with 100,000 repetitions was coded in MatLab and performed 

on the RFC, RPIc, and RPIw for each reservoir, with inputs for parametric mean, standard 

deviation, and distribution. The simulation generated stochastic results for each reservoir, 

using the assigned uncertainty indices and parameter probability distributions in Tables 3 and 

4. From those data outputs, the 10th, 25th, 50th, 75th, and 90th percentile results were 

calculated. The 50th percentile is the median, or the most likely, result. 

4.3. Uncertainty Metric 

The metric deemed most useful for illustrating the uncertainty of each reservoir was the 

Coefficient of Variation (CV), which is the ratio of the standard deviation of the sample to 

the mean of the sample (Jensen et al., 2000). Using the CV allowed us to normalize the result 

(RFC, RPIc, and RPIw) of each reservoir by its uncertainty. For example, a reservoir with a 
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low CV has a smaller standard deviation relative to its mean, and therefore there is less 

uncertainty about its predicted RFC, RPIc or RPIw. 

5. Quality Thresholds for Mapping 

Thresholds for the reservoir favorability metrics are required to segregate the reservoirs 

into favorability ‘grades’ for mapping. A five-grade threshold map was required by the 

project SOPO. Threshold choices based on conversations with experts and the results of the 

Monte Carlo Simulation are listed below.  

5.1. Reservoir Flow Capacity Thresholds 

Because RFC was used primarily to rank reservoir favorability, the RFC thresholds were 

chosen based on the distribution of RFC for the entire reservoir population. The distribution 

of RFC across the entire basin is strongly left-skewed, and therefore is better illustrated on a 

semi-log plot (Figure 1). The RFC thresholds were chosen based on a logarithmic scale, base 

ten. RFC values range from 0.003–15500 mD-m, and thresholds were placed at 1000, 100, 

10, and 1. Reservoirs with RFC greater than 1000 mD-m are deemed most favorable. 
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Figure 1. Distribution of average Reservoir Flow Capacity for all natural reservoirs in the Appalachian Basin. 

	
5.2. Reservoir Productivity Index Thresholds 

RPIc and RPIw metrics thresholds were chosen based on information regarding economic 

productivity rates published in the geothermal literature.  

5.2.1. RPIw Thresholds 

Agemar et al. (2014) report that pressure drawdown for sedimentary geothermal systems 

typically range between 1-3 MPa. If we assume the greatest pressure drop of 3 MPa, and 

assume that 30 kg/s is the minimum mass flow rate acceptable for the water-based 

system, our RPIw threshold for the reservoir which would not require stimulation (i.e. no 

EGS) is approximately 10 kg/MPa-s. Because the distribution of RPIw in the basin is 
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strongly left-skewed, the remaining thresholds are logarithmic: 10, 1, 0.1, 0.01. Reservoir 

enhancement techniques can improve productivity by six to nine times (Cladouhos et al., 

2014; Cho et al., 2015), so reservoirs in the 10–1 kg/MPa-s may be suitable with EGS. 

5.2.2. RPIc Thresholds 

The thresholds for RPI with sCO2 as the working fluid were determined using the 

thresholds for RPIw as a baseline, which needed to be adjusted to normalize for the 

amount of heat extracted. For direct use heat applications, the difference in required mass 

flow rate of sCO2 instead of water should only be related to the difference in heat 

capacity. According to Chen and Lundqvist (2006), the heat capacity of sCO2 is about 4 

kJ/kg-K, assuming the CO2 is maintained at a constant pressure of 10 MPa and an 

average reservoir temperature of 60 ºC. At equivalent temperatures, the heat capacity of 

water is 4.2 kJ/kg-K. These values are very close, therefore the same thresholds were 

applied to RPIc. 

5.3. Thresholds for the Coefficient of Variation 

The Coefficient of Variation of the RPI ranges from 0.08-0.39. The thresholds were selected 

using equal interval groups, in order to best illustrate relative uncertainty across the reservoir 

population in the basin. The thresholds selected are: 0.14, 0.20, 0.27, and 0.33. 

6. Selection of Most Favorable Reservoirs 

In order to isolate the reservoirs that have the highest potential productivity with the least risk, 

the RPI or RFC can be combined with the CV results, depending on the desired outcome. If the 

interest is reservoirs that have a high predicted productivity, RPI can be used; whereas if the 

interest is in highlighting reservoirs with the most ideal geologic properties, RFC can be used. 

For the RPIc and RPIw maps, reservoirs with an RPI greater than 10 kg/MPa-s and with a CV 
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lower than 0.25 (25% uncertainty) were selected as the most favorable reservoirs. For the RFC 

map, reservoirs with an RFC greater than 100 mD-d and with a CV lower than 0.25 were 

selected as the most favorable reservoirs. The selected reservoirs with the highest potential but a 

greater risk can also be isolated for further research to better constrain and quantify the risk.  
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Memo 12: Natural Reservoirs Data Selection in GPFA-AB  

 

Erin Camp 
 

Last modified: August 31, 2016 
 

 
This memo is intended to augment the Natural Reservoirs Methodology memo, by providing 

additional details about the original databases and modified inputs for the Appalachian Basin 

Geothermal Play Fairway Analysis project. All research and literature that affected decisions for 

the reservoir data inputs are recorded here, including data for geologic formations in the 

Appalachian Basin.  

 

DATABASE INTEGRATION 

Two disparate databases were integrated for this project: 1) the Empire State Organized Geologic 

Information System (ESOGIS; data for reservoirs in New York), and 2) the Midwest Regional 

Carbon Sequestration Partnership (MRCSP; data for reservoirs in Pennsylvania and West 

Virginia). When the two databases were merged, there were discrepancies between the available 

data and the terminology used in each database.  

1. Geologic Formation Name: The following formation codes were listed in the MRCSP 

database. The decrypted formation name for each is listed next to the code. Very often, 

the name of a formation in Pennsylvania and West Virginia is different than the given 

name of the same formation in New York. For those formations, the New York formation 

name was used. If a reservoir is listed as having produced from a smaller unit within a 

larger formation, the formation name was used. Any formation name changes are listed in 

parentheses next to the original formation name, shown below.  
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a. BLDG: Bald Eagle 
b. BILDF: Bass Islands Formation 
c. BKMN: Beekmantown 
d. BNSN: Benson 
e. BERE: Berea 
f. BRRL: Brallier (Elk Group) 
g. CHZY: Chazy (Black River) 
h. CLNN: Clinton (Medina) 
i. DVSHL: Devonian Shale 
j. DVNNU: Devonian Unconformity Play 
k. ELKG: Elk Group 
l. GBRG: Gatesburg (Rose Run) 
m. GRDN: Gordon 
n. HDBG: Helderberg 
o. HRVL: Huntersville 
p. HVOK: Huntersville/Oriskany 
q. KEFR: Keefer 
r. LCKP: Lockport 
s. MDIN: Medina 
t. MLTI: “Multi” 
u. NWBG: Newburg 
v. ONDG: Onondaga 
w. ORSK: Oriskany 
x. RSRN: Rose Run 
y. SCHR: Scherr (Elk Group) 
z. SDCI: Silurian Devonian Carbonate Interval (Lockport) 
aa. TRNN: Trenton 
bb. TLLY: Tully 
cc. TCRR: Tuscarora 
dd. WEIR: Weir 

 
2. Average Reservoir Depth 

The MRCSP database holds values for each reservoir’s “Average Production Depth”, which 

is interpreted as the top of the reservoir production zone. The ESOGIS database does not 

have production depth data reported; therefore, reservoir depth was extracted manually from 

well completion reports downloaded from the ESOGIS website. To calculate an average 

production depth for the NY reservoirs, the reported reservoir tops from each well in a given 

reservoir were averaged. 
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3. NY Reservoir Polygons 

The MRCSP database includes shapefiles of the reservoir polygons, which is an estimate of 

the aerial extent of each reservoir. The ESOGIS database does not contain shapefiles, so 

they were created manually in a GIS. The buffer distance around producing wells in each 

reservoir in NY was chosen as 900 meters. This choice was made by comparing the only 

available polygons for NY reservoirs, which were the Trenton-Black River reservoirs 

(Patchen et al., 2006). Inputting those shapefiles into a GIS and comparing them to the 

locations of the wells showed that an average distance of 900 meters around all wells in a 

reservoir would create polygons compatible with Patchen et al.’s approach (Figure 1).  

 

 
 

Figure 1. Example of Trenton-Black River polygons in GIS, which aided in creating a systematic 
buffer zone for NY reservoirs. 0.009 degrees is equivalent to 900 meters. The West Virginia 

Database comes from Patchen et al. (2006). 
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4. Porosity and Permeability 

Porosity and permeability values were assigned based on the producing geologic 

formation in which the reservoir is located. New York reservoirs derivation required 

derivation of both porosity and permeability values from sources other than ESOGIS. 

The MRCSP database provided porosity data for reservoirs in Pennsylvania and West 

Virginia, so only permeability had to be input based on other sources. For all three states, 

empirical porosity-permeability relationships (if available) were applied to the porosity 

values for each formation. Otherwise, average permeability values were applied to all 

reservoirs of a given geologic formation.  

If empirical relationships were used, the calculated permeability values are not 

reported below because the data vary from reservoir to reservoir. However, if an average 

permeability value was applied to all reservoirs of a given formation, that value is listed 

below. The first section describes formations that are host to reservoirs in New York, and 

therefore require porosity inputs; however, these formations may also be host to 

reservoirs in Pennsylvania and West Virginia. In such cases, any differences in average 

values across the three states are noted below. The last section describes formations that 

are host to reservoirs only in Pennsylvania and West Virginia, and therefore only require 

permeability inputs.  

 

Formations located in New York: 

a. Queenston: Data chosen for the Queenston were taken from Lugert et al. (2006). 

Eighty-three samples from the Delany Core were analyzed by H.J. Gruy and 

Associates, which gave the following results:  
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i. Average porosity of core: 10.8%  

ii. Porosity-permeability fit from core data, where k is permeability in units 

of mD and ! is porosity in porosity units (p.u.):  

! = 0.0005exp (0.5478!) 

iii. Average core permeability for a porosity of 10.8% is 0.185 mD  

iv. Lithology: Sandstone 

b. Black River: Data chosen for the Black River Formation (also known as the 

Trenton-Black River in New York State) were taken from Lugert et al. (2006). 

Samples from the Whiteman #1 Core were analyzed by CoreLab, Inc.  

i. Average porosity of core: 7% 

ii. Porosity-permeability fit from core data, where k is permeability in units 

of mD and ! is porosity in porosity units (p.u.):  

! = 1.8716 exp 0.4967!  

iii. Average Permeability for a porosity of 7% is 60.56 mD. 

iv. Lithology: Limestone/Dolomite 

c. Galway/Theresa/Rose Run:  

i. New York: The Galway Formation has long been called the Theresa 

Sandstone play in the subsurface, but that name is inaccurate when 

compared to the outcrop stratigraphy. Smith et al. (2010) show that the 

Galway Formation is Upper Cambrian in age and occurs above the 

Potsdam Sandstone (earliest Upper Cambrian in age) and below the 

Little Falls Formation (uppermost Cambrian in age). The Theresa is 

Ordovician in age and is actually younger than even the Tribes Hill 
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Formation. The Theresa can only be found in northernmost New York in 

the Ottawa Graben. The producing formation in Western New York is 

the Galway Formation. Smith et al. (2010) confirm that Bockhahn, 

Cascade Brook, and Northwoods fields all produced from the Rose Run, 

in the Galway Formation. Those are 3 of the 10 Galway fields in the 

New York database, and those 10 fields are all in the same region. It is 

believed that the Rose Run is the unit within the Galway which 

produced gas (B. Slater, pers. comm.). The following porosity and 

permeability core data are from the Hooker Chemical #1 Well, which 

include measurements from the Potsdam Sandstone. For this work, the 

Potsdam data were removed, as they are not stratigraphically part of the 

Galway Formation.  

1. Average porosity: 6.5% for the Galway/Theresa/Rose Run 

reservoirs. (Smith et al., 2010) 

2. Porosity perm relationship fit from core data, where k is 

permeability in units of mD and ! is porosity in porosity units 

(p.u.): 

! = 0.6621! − 1.7261 

3. Average permeability is 2.6 mD for a porosity of 6.5%, according 

to the above equation 

ii. Galway in Pennsylvania and West Virginia: Data taken from reports of 

producing fields in Pennsylvania and West Virginia, in Roen and Walker 

(1996).  
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1. Porosity ranges from 2-25% and averages 10%.  

2. Permeability ranges from 0.01 to 198 mD and averages 5 mD.  

3. The MRCSP database reports porosities between 8-10 for the 

Galway/Rose Run fields, so an average of 5 mD was applied for all 

the PA and WV Rose Run reservoirs.  

iii. Lithology: Sandstone 

d. Medina: Data chosen for the Medina were taken from Lugert et al. (2006). No 

core data were available, so average values from a high-volume producing field–

the Lakeshore Field–were applied. The following values were applied to Medina 

reservoirs in all three states. 

i. Average porosity: The report states that porosity ranges between 6-8%, 

so an average porosity of 7% was chosen. 

ii. Average permeability: 0.1 mD. 

iii. Lithology: Sandstone 

e. Onondaga: Data for Onondaga reservoirs come from Roen and Walker (1996). 

Average porosity and permeability values were derived from plugs taken from a 

productive Onondaga field in Steuben County, NY. The following values were 

used for reservoirs in all three states, due to a lack of permeability data available 

for Onondaga reservoirs in Pennsylvania and West Virginia. Because reported 

porosity values from Onondaga reservoirs in Pennsylvania and West Virginia 

were similar to the average porosity of Onondaga reservoirs in New York, the 

average permeability value from Onondaga reservoirs in New York was applied 

to those in Pennsylvania and West Virginia as well. 
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i. Average porosity: 5.2%.  

ii. Average permeability: 22.4 mD. 

iii. Lithology: Limestone 

f. Oriskany: Data for the Oriskany reservoirs come from Appendix D of Riley et al. 

(2010). All the data presented there come from cores in Pennsylvania and Ohio, 

but were applied to reservoirs in New York and West Virginia as well.  

i. Average porosity: 5%. 

ii. Average permeability: 1 mD 

iii. Lithology: Sandstone 

g. Helderberg: There is one producing field from the Helderberg Formation in the 

database: the Stagecoach field. According to Lugert et al. (2006), geologists 

reclassified the producing formation of the Stagecoach to the Oriskany Formation 

(page 23). 

h. Bass Islands: There is no available porosity or permeability data for the Bass 

Islands Formation in the Appalachian Basin; however, there are data from the 

Bass Islands Formation in the Michigan Basin (Harrison III et al., 2009). The 

following value were used for Bass Islands reservoirs in all three states. 

i. Average porosity: 12.5%. This value from Harrison et al. (2009) agrees 

with the range of porosity values listed for Bass Islands reservoirs in the 

PA/WV database, which is 10–14% porosity.  

ii. Average permeability: 22.4 mD 

iii. Lithology: Dolomite 
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Formations found only in Pennsylvania and/or West Virginia regions of the Basin: 

i. Lockport: Data for the Lockport reservoirs come from Appendix A of Riley et al. 

(2010).  

i. Porosity-permeability relationship fit from core data, where k is 

permeability in units of mD and ! is porosity in porosity units (p.u.): 

! = 3.0×10!!exp (1.1716!) 

ii. Lithology: Dolomite 

j. Elk Group: For simplicity, the Brallier, Gordon, and Benson were combined into 

the Elk Group, based on formation grouping. Data for the Elk Group were taken 

from Roen and Walker (1996). 

i. Porosity of the Elk Group ranges from 5–10%  

ii. Permeability ranges from 0.1–2.0 mD.  

iii. Validation: The MRCSP database reports an average porosity of 11% 

for all the Elk Group reservoirs; therefore, the upper end of average 

permeability (2 mD) was used.  

iv. Lithology: Sandstone; clay-rich turbidite slope apron deposit (Roen and 

Walker, 1996). 

k. Lockhaven: Lockhaven was given the same permeability values as Elk Group, but 

not renamed. 

i. Lithology: Mudstone 

l. Bald Eagle: There is only one Bald Eagle reservoir in the MRCSP database: the 

Grugan field, located in Pennsylvania.  
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i. Permeability: 0.07 mD was reported in Roen and Walker (1996). Most 

permeability is from fractures.  

ii. Lithology: Sandstone 

m. Beekmantown: Lugert et al. (2006) state that there are no major distinctions 

between the reservoir properties of the Queenston and the Beekmantown, so they 

were not evaluated separately.  

i. Permeability: 0.185 mD 

ii. Lithology: Limestone/Dolomite 

n. Berea:  

i. Porosity: 12% (Roen and Walker, 1996) 

ii. Permeability: 3.84 mD (Roen and Walker, 1996) 

iii. Validation: The Berea reservoirs in the MRCSP database report 10% 

porosity, which is consistent with the Roen and Walker (1996).  

iv. Lithology: Sandstone 

o. Chazy: According to Walcott (1896), the Chazy is another term for the Black 

River limestone. These fields are listed as having porosity of 8% in the MRCSP 

database. Their formation name was therefore changed to Black River, and the 

empirical porosity-permeability relationship from the Black River reservoirs in 

New York was applied. This results in a permeability of 99.5 mD for all four 

reservoirs in Pennsylvania. 

p. Helderberg: According to Lewis et al. (2009), the permeability of the Helderberg 

Formation is very low, approximately 0.001 mD.  

i. Lithology: Limestone 
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q. Huntersville and Huntersville/Oriskany play: Riley et al. (2010) provides a 

maximum permeability of 0.003 mD for the Huntersville/Oriskany play. This 

value was used for the Huntersville reservoirs as well, due to a lack of data unique 

to the Huntersville.  

i. Lithology: Chert and Sandstone 

r. Loysburg: Applied values from Beekmantown Dolomite. No other data available. 

s. Newburg: The accompanying database to Roen and Walker (1996) contains two 

sets of core porosity and permeability data points. Because the other fields 

without permeability data had very similar porosity values, those data were fit to 

get an exponential relationship where permeability is in mD and porosity is in 

porosity units: 

! = 2.1591exp (0.1699!) 

i. Lithology: Limestone 

t. Weir: There are two Weir reservoirs with porosity data in the MRCSP database, 

and one of those reservoirs is listed in Roen and Walker (1996) and has average 

porosity and permeability values. Because the porosity values aligned with what 

was already reported in the MRCSP database, the following permeability value 

was applied to both reservoirs.  

i. Permeability: 8 mD  

ii. Lithology: Sandstone 
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u. Keefer:  

i. Permeability: Roen and Walker (1996) report an average permeability 

for the Keefer Formation of 7.06 mD. That value was applied to the 

single Keefer reservoir in the MRCSP database.  

ii. Lithology: Sandstone 

v. Devonian Unconformity Play:  

i. Permeability: Roen and Walker (1996) report an average permeability of 

15.3 mD for this formation.  

ii. Lithology: Limestone 

Formations with Very Limited Data: 

w. Tuscarora: Roen and Walker (1996) report one Tuscarora field with permeability 

ranging from 0 to 10.7 mD. Many reports note similarities between Tuscarora, 

Medina, and Clinton. Due to a lack of specific data, a value of 0.1 mD was used 

for the Tuscarora, consistent with the Medina Formation.  

i. Lithology: Sandstone 

x. “Multi”: These are reservoirs that produced hydrocarbons from a wide variety of 

undetermined formations. With no data to use, a high uncertainty and low 

permeability value of 0.1 mD was used.  

y. Trenton: This play is found only in West Virginia, where permeability is 

associated primarily with fractures. Just like similar play types, a permeability of 

0.1 mD was applied because more precise data cannot be found.  

i. Lithology: Limestone 
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z. Tully: There is only one Tully reservoir in the MRCSP database. There is no 

permeability data available, so it was assigned a low permeability value of 0.1 

mD with a high uncertainty.  

i. Lithology: Limestone 

aa. Mahantango: There is only one Mahantango reservoir in the MRCSP database. 

There are no permeability data available, so it was assigned a low permeability 

value of 0.1 mD with a high uncertainty.  

i. Lithology: Mudstone 

UNCERTAINTY INDEX ASSIGNMENTS 

Permeability 
The following list describes how the uncertainty index was assigned to each reservoir's 
permeability value, and the respective assignment of standard deviation from the mean: 

0: Data is site-specific (pertains to that exact reservoir). This assignment was very 
uncommon. 0% SD 

1: Published porosity-perm equation available from local/nearby reservoirs of same 
formation. Standard deviation: 12.5% SD 

2: Data come from use of a published equation from data that is region specific. Standard 
deviation: 25% SD 

3: Computed equation from available data; Range or average value for the formation is 
available, or state/region specific data are available. Standard deviation: 50% SD 

4: Porosity-permeability relationship (or average value) can be applied from a similar 
formation or same formation from another state/region. Standard deviation: 100% SD 

5: Generic low value assigned due to lack of data or understanding. Standard deviation: 
200% SD 
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Reservoir Thickness 
The following list describes how the uncertainty index was assigned to each reservoir's thickness 
value: 

0 Not used for reservoir thickness. 0% SD 

1 Not used for reservoir thickness. 10% SD 

2 Assigned to all reservoirs in the project, because all reservoir thickness data are derived 
from the producing thickness of the hydrocarbon reservoir. 20% SD 

3 Not used for reservoir thickness. 30% SD 

4 Not used for reservoir thickness. 40% 

5 Not used for reservoir thickness. 50% 

Fluid Viscosity 
Because fluid viscosity is a function of the reservoir temperature, the uncertainty of the assigned 
viscosity values was dependent on the uncertainty underlying the calculation of the temperature 
of the reservoir. The following list describes how the uncertainty index was assigned to each 
reservoir's fluid viscosity value: 

0 Not used for fluid viscosity. 0% SD 

1 Assigned to all reservoirs in the project. One standard deviation of the reservoir 
temperatures is 10ºC, which equates to a viscosity standard deviation of approximately 
10% from the mean value. 10% SD 

2 Not used for fluid viscosity. 20% SD 

3 Not used for fluid viscosity. 30% SD 

4 Not used for fluid viscosity. 40% SD 

5 Not used for fluid viscosity. 50% SD 
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Figure 1: Mapped faults and other lineaments available in GIS form on the GPFA-AB server. Note the
uneven regional coverage and un-geological artifacts such as state-boundary truncations of structures.

Existing fault maps (Figure 1) do not share the Appalachian Basin Geothermal Play Fairway Analysis
(GPFA-AB) boundaries or scale. Hence, their use leads to problems of uneven coverage, varying interpre-
tation of faults vs. lineaments, and different mapping scales. For more uniformity across the GPFA-AB
region, we use an analysis of gravity and magnetic fields discussed next.

In order to provide a spatially uniform coverage of candidate faults, I turned to the Poisson wavelet
multi-scale edge analysis of potential fields – informally known for brevity as the ‘worm’ technique – my
co-workers and I developed starting nearly 20 years ago: Hornby et al. (1999) (independently derived by
Moreau et al., 1997). This technique, widely deployed in the mining community in Australia and else-
where (e.g. GoldCorp, 2001), uses gravity and magnetic fields to detect lateral contrasts in mass density or
magnetization strength respectively. Figure 2 displays a cartoon summary of the technique.

Some theoretical advantages of the technique include:

• Marrying wavelet theory and potential field physics by building a wavelet from the Green’s function
of the Poisson equation (Laplace’s equation with sources).

• The inverse wavelet transform has a physical interpretation as an induced inversion to a dipole source
distribution (Boschetti et al., 2001; Hornby et al., 2002) that produces a field that is exactly the starting
field. The regularizing assumption is that ‘Rocks Have Edges’.

• The field values at the locations of the multiscale edges (worms) alone, when combined with the
inverse wavelet transform above, produce a field that is a close approximation of the starting field via

1
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Figure 2: A vertical cross-section cartoon of the worm technique. The gravity or magnetic field is notionally
known completely at the ground surface. The field is upward continued to a suite of heights. Hornby
et al. (1999) show that each level of upward continuation corresponds to a (continuous) wavelet scale. The
locations of maxima in the horizontal gradient of the field at each height become an edge (or a ‘worm’)
for the corresponding scale (the intersection of these 1D features with the plane of section are shown as
blue dots above ground), the collection of edges at all scales are ‘multiscale edges’. A suite of worms
arising from connected locations on the ground is a ‘worm sheet’. As explained in the text, an underground
inversion is induced via a physical interpretation of the inverse wavelet transform as a distribution of dipole
sources. Draping the worm sheets underground (blue and red dots) results in a visualization of the locations
of highest density of dipole sources. These are interpreted as the locations of apparent lateral contacts.

2
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the result from Mallat and Zhong (1992).

Hornby et al. (1999) show that the magnitude of the horizontal gradient – normalized appropriately
to correspond with wavelet theory – changes amplitude with upward continuation/scale-change in such a
fashion as to identify the Lipschitz exponent (related to the fractal dimension) of the underlying singularity
in the source distribution. That is, if we define

M ≡ (z/z0)||
−−−−→
∂f/∂x+

−−−−→
∂f/∂y|| (1)

where f is our potential field (e.g. f = ||gz|| for gravity surveys, or f = pseudogravity for magnetic sur-
veys) then ∂M/∂z is the quantity of interest in determining the Lipschitz exponent. M is usually displayed
as the worm color, and one can visually assess ∂M/∂z from the graphical representation. The Lipschitz
exponent concept is closely related to the geophysically-more-widely-known ‘structural index’ from Euler
deconvolution (e.g. Reid et al., 1990). An in-prep. masters thesis (Navarrete, 2015) has shown that the
locations of worms and Euler solution routinely coincide, but that the worm technique offers significantly
enhanced lateral coverage over the Euler deconvolution solutions.

Some practical advantages of the worm method include:

• When draped underground as in Figure 2, the worms resemble lateral contacts and reproduce (at least
near the surface) the sense of dip of the contact. This provides an immediate cue towards a sensible
geologic interpretation. Unfortunately – once getting beyond ‘shallow’ and ‘steep’ – the magnitude of
dip is more problematic, since the field is due to more than one body and interactions between sources
cause complexities. Jessell (2001) summarizes a large number of cases of worm behavior for different
structural geologic settings.

• The worms commonly extend information about lateral discontinuities over large regions. This offers
the geological interpreter a chance to connect structures that might not be recognized as being related.

• Deep worms tend to represent (smoothed) major lateral boundaries. By following the worm sheets
upwards, the connected shallow expressions can be identified. At the scale of the GPFA, those major
lateral boundaries are commonly associated with terrane boundaries or other major tectonic sources.

The worms are best visualized in 3 dimensions in order to see their interrelations. In previous efforts,
that has led to working with them primarily in graphical visualization packages such as VTK (Schroeder
et al., 2004) and VisIt (Childs et al., 2005) or commercial mining industry visualization packages such as
FracSIS (RungePincockMinarco, 2015). For the GPFA-AB project, we need to incorporate the worms with
other GIS information, but few GIS packages deal fluidly with 3D visualization. ArcScene – a component
of ArcGIS – can in fact display 3D GIS information, but worms present a serious performance problem for
ArcScene due to the large number of individual items that must be displayed. For the GPFA-AB project,
we work around this problem by displaying worms from a restricted series of depths in 2D map view in
ArcMap or QGis, but the results are less useful than a wished-for performant 3D GIS could produce.

The worm results for the GPFA-AB project are calculated by open-source code described in Horowitz
and Gaede (2014). A git repository of that code may be found at https://bitbucket.org/fghorow/
bsdwormerwith its complete revision history. Figure 3 shows worms calculated using that software from a
2.5 km resolution interpolation of the gravity Bouguer anomaly calculated from the GPFA-AB study region.
The gravity station measurements were drawn both from the PACES database (Hildenbrand et al., 2002)
and from a preliminary compilation filling in gravity stations in Pennsylvania (Malinconico and Moore,

3
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Figure 3: Displayed are gravity worms from the GPFA-AB region. The worms are from upward-continued
heights (corresponding to depths as discussed above) ranging from 1 to 3 km inclusive. Each worm segment
is colored according to log10 of the M defined in equation (1) above. The worm color scale ranges from
violet for low values of M to red for high values of M . See text for a more complete description.

2013). The preprocessing for those data – performed in the commercial software Oasis/Montaj – included
selected removal of outliers and interpolation using a minimum curvature algorithm. Figure 4 shows worms
calculated using that software from a 1.25 km resolution interpolation (Ravat et al., 2009) of the magnetic
pseudogravity anomaly (e.g. Blakely, 1996) from the GPFA-AB study region. The pseudogravity calcula-
tion from the underlying magnetic grid was also performed in Oasis/Montaj.

Displayed in Figure 5 are locations of all earthquakes in the region retrieved from two catalogs: the
US National Earthquake Information Center’s (NEIC) catalog – from 1 January 1965 through 31 May 2015,
and EarthScope’s Transportable Array (TA) catalog of events from the Array Network Facility recorded
during the TA’s deployment in the region (currently being removed). The date range for events from the TA
are 16 March 2011 through 31 May 2015.

Importantly, the NEIC catalog, drawing on USGS seismologists’ manual efforts, identifies events that
are categorized as earthquakes – as opposed to (e.g.) blasting events associated with mining or quarrying –
enabling a simple database query to retrieve only earthquake events. Unfortunately, the TA catalog has no
such categorization underpinning it (Astiz et al., 2014) – which resulted in my initially including events that

4
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Figure 4: Displayed are magnetic worms from the GPFA-AB region. The worms are from upward-continued
heights (corresponding to depths as discussed above) ranging from 1 to 3 km inclusive. Each worm segment
is colored according to log10 of the M defined in equation (1) above. The worm color scale ranges from
violet for low values of M to red for high values of M . See text for a more complete description.
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Figure 5: Displayed are earthquake epicenters from the GPFA-AB region. Shown in green are earthquake
events drawn from the NEIC catalog. Shown in red are events not identified as potential blasts drawn
from the TA catalog after application of the approximate de-contamination algorithm described in the text.
Earthquake magnitudes ML are displayed proportional to the radius of each event.
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were almost certainly artificial blasts in the combined catalog. This was most discernible in the coal min-
ing areas of southwest West Virginia, which appeared to have a large and active region of seismicity when
plotting the raw TA data . After consultation with colleagues at the West Virginia Geological and Economic
Survey drew our attention to this error, GPFA-AB investigator Beatrice Magnani of SMU suggested im-
plementing an approximate de-contamination algorithm based on a time-of-day attribute of anthropogenic
mining blasts. Quoting Astiz et al. (2014), “...mine blasting in the United States is allowed only between
sunrise and sunset (Mining Safety and Health Administration, Title 30 CFR, MSHA, U.S. Department of
Labor).” This led me to remove all TA events in the GPFA-AB region occurring between 07:00 and 18:00
local times. While those are only approximate local hours for sunrise and sunset, that simple algorithm
removed the vast majority of TA events in the coal mining region of southwestern West Virginia – as well
as some suspicious events from quarries located near to the New York State Thruway corridor and others
possibly associated with shale gas hydraulic fracturing activities in regions of Pennsylvania associated with
Marcellus shale development (Figure 6). Clearly, however, some natural earthquakes might also have been
removed by this approximate algorithm. The odds of retaining detected natural seismicity in the TA results
are only 13 in 24 because 11 hours each day were rejected. This unfortunate feature of our analysis must re-
main until seismologists can evaluate seismograms for the characteristics of blasts (e.g. emergent P arrivals,
low amplitude S arrivals) from all 1647 TA events flagged as “daylight” in our region – deemed well beyond
the scope of this study.

One method for identifying active faults was to simply find (via GIS methods) those worms which are
physically close to a recorded earthquake. Under the assumption that any earthquake epicenters from sparse
seismometer locations and poorly known velocity structures would yield mislocations of some distance, I
felt this was an appropriate ‘objective’ way of identifying activated faults. Figure 7 displays a subset of
those worms from figures 3 and 4 that are near to earthquakes. These structures are deemed to have an
elevated risk factor for seismicity. The example distance ranges in 5 km increments shown in Figure 7 are
not the actual values chosen in the combined risk factor assessment map – see that memo for details. Also,
for error estimates, all earthquake locations were assumed to have 2.5 km standard deviation circles, while
gravity and magnetic worm point location errors were assumed to have 500m and 250m standard deviations
respectively. A clear drawback of the technique is that it only identifies structures active recently enough to
have instrumentally recorded earthquakes.

After discussions with several people both inside the project and outside (including David Castillo, a
former director of the oilfield borehole stability consultants Geomechanics International – now part of Baker-
Hughes), it became clear that a potentially more relevant approach to estimating the risk factor for seismicity
would be to determine the angle of a structure to the regional direction of the principal compressive stress
(σ1). This is supported by examination of figure 8, which shows some relevant Mohr’s circles along with
both Byerlee’s Law (Byerlee, 1978) and Griffith-Coulomb failure envelopes. In those Mohr-space figures,
two planes best oriented for failure by Byerlee’s Law are marked with red dots. (There are two additional
symmetrical orientations in the lower half of the Mohr diagram not shown for visual simplicity.) Those
planes with normals not parallel to the principal stress directions would plot in the interstitial crescents
between the circles. This leads to the conclusion that the angle a candidate plane normal makes from σ1 is a
sensitive parameter for proximity to failure under a Mohr-Coulomb failure model (Rick Allmendinger, pers.
comm., 2015).

One major caveat: that orientation-in-a-regional-stress-field conclusion holds true wherever the actual
state of stress is known (i.e. where the radii of the Mohr’s Circles in figure 8 are established). In our situa-
tion however, we have very little information about the magnitudes of the principal stresses – other than the
trivial vertical lithostatic case due to burial depth and ρgh. An unavoidable consequence of that fact is that
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Figure 6: Displayed are suspected mining and quarry blasts from the GPFA-AB region. Shown in red are
events identified as suspected mining and quarrying blasts drawn from the TA catalog after application of the
approximate de-contamination algorithm described in the text. Earthquake magnitudes ML are displayed
proportional to the radius of each event.
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Figure 7: The subset of worms from both figures 3 and 4 that are found within specified ranges of the
recorded earthquakes described in Figure 5. Shown in red are worm points within 5km of an earthquake; in
orange are points between 5 and 10km; in yellow are points between 10 and 15km; and in light green are
points from 15 to 20km.
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(a) 3D Mohr’s circles for notional principal stresses of 30,
25, and 10 MPa.
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σ(s)
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(b) 3D Mohr’s circles for notional principal stresses of 30,
25, and 20 MPa.

Figure 8: Shown in (a) are 3D Mohr’s circles, along with failure envelopes for both pre-existing fractures
(Byerlee’s Law – straight line envelope; coefficient of friction µ = 0.85) and failure of intact rock (Griffith-
Coulomb criterion – curved envelope). Similarly for (b), but with a different value of σ3 resulting in a
significantly further from failure situation. In both plots, the poles of the closest-to-failure planes are plotted
as a red dot on the circumference of the outer (σ1–σ3 plane) circle. The angles of poles to the closest-to-
failure plane are identical in the two situations even though (b) is less risky than (a) because its red dot is
further away from a failure envelope. Plotted using Rick Allmendinger’s MohrPlotter software.
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any risk estimates we make using this technique are local only. Local changes in risk nearby along worm
segments should be qualitatively captured – assuming locally smooth changes in stress magnitudes. How-
ever, quantitatively comparing the seismic risk factor from one location to another location at some distance
removed is not feasible because the unknown stress magnitudes also play a role not captured by orientation.
Hence, segments identified as possessing the same ‘risk factor’ using this technique will unavoidably have
different quantitative risks of seismicity. Another way of saying the same thing is that planes with poles
nearly normal to the Byerlee’s Law envelope in both figures 8a and 8b, will be estimated to have the same
risk using this technique, even though the situation in figure 8a is significantly closer to failure.

An alternative take on these drawbacks focusing more on induced seismicity in a geothermal field –
and due originally to Katie Keranen and Terry Jordan – is as follows:

...It is unavoidable that the products of the Phase 1 analysis at the regional scale are of
low reliability as indicators of the risk of induced seismicity for two reasons. First, some of
the critical information used to predict rock failure is only available by use of long distance
extrapolation of sparse data points. Second, the local details of rocks, fluids, and stresses are
not merely down-scaled samples of the regional tendencies. Instead, local details produce field-
specific conditions of stress and of failure even in the unlikely situation that the population of
fault orientations happens to be alike in two different fields, and even if the production/injection
fluid pressure design is equal in two different fields.

I turn the orientation-in-a-regional-stress-field sensitivity conclusion into a practical method for deter-
mining a quantitative index of seismic risk (and its error) via the the following procedures. Figure 9 shows
the relevant geometry for estimating worm orientation and error at each worm point. The worm azimuth at
node ni is estimated as αs

i , and the normal to that direction is the unit vector νi. The circular error variance
of both αs

i and νi is computed as follows. Briefly, if one half of the magnitude of the vector sum of unit
vectors in the αi and αi+1 directions is defined as R̄, the circular variance (S0) is defined as 1 − R̄ (Mar-
dia, 1972, Eq, 2.3.5). That procedure establishes the local worm orientation, its normal unit vector (under
an approximation of vertical dip), and provides an estimate of error for those quantities. Hence, via that
procedure all required quantities are assigned to nodes rather than edges.

Next, I turn to estimating the orientation of the regional stress field from the World Stress Map (WSM)
project (Heidbach et al., 2010). Figure 10 shows the locations of both the primary observations of σ1
orientations (in red), and the result of a smoothing algorithm that plots the orientations on a 0.5 degree of
arc grid (in black). Briefly, the WSM smoothing algorithm weights observed stress orientations by quality,
then at each candidate point where an interpolation is to be estimated it collects all observations within a
1000 km radius. If there are more than 5 observations included, it continues, otherwise it stops, “censors”
that point from the interpolation, and moves on to the next candidate interpolation point. If a candidate
interpolation point is still valid, the algorithm additionally weights those observations by the inverse of the
distance between an observation and the interpolation point (to a minimum allowed distance of 20 km),
takes those exact quantities, and performs a Mardia (1972) style average direction and error estimate. If the
standard deviation is less than 25◦, the procedure stops and those average orientations and error estimates
are used. If, however, the standard deviation is greater than 25◦, the algorithm reduces the search radius by
100 km, and repeats itself down to a minimum search radius of 100 km. Thus, there are 2 separate ways in
which a point can be “censored” from an interpolation: by having fewer than 5 observations within a search
radius, or never finding a standard deviation of less than 25◦ for all search radii down to 100 km.

Heidbach et al. (2010) cite Mardia (1972) as the origination of the quality and inverse-distance
weighted spatial interpolation algorithm they use. I believe that is inaccurate – because one of Mardia’s
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Figure 9: Map view of the relevant geometry of worm segments in a regional stress field. Displayed with
labels n and e are nodes and edges (respectively) of the worm segments computed by the code described by
Horowitz and Gaede (2014). All subscripts in this figure denote indices for consecutive elements of worm
geometry components. The angles αi denote the azimuthal (strike) angles for the corresponding segments ei.
The so-called secant line between nodes ni+1 and ni−1 is labeled si, and its azimuthal strike angle is labeled
αs
i . That azimuth αs

i is assigned to node ni, as is the orientation of a unit vector normal to si denoted here
as νi. Also shown at node ni is a unit vector in the direction of the maximum principal compressive stress
σ1i . The angle θi between νi and σ1i is the primary risk index for point ni under this approach. The analysis
described here and in the text is repeated for all worm nodes except for those at the ends of individual worm
segments – where angle variances are ill-defined. See the text for more discussion on why these quantities
were selected.
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Figure 10: Principal compressive stress (σ1) directions from the World Stress Map (WSM: Heidbach et al.,
2010). Plotted in red are all regional primary observations from the WSM drawn from their quality ratings
of A,B, or C. Plotted in black are their smoothed results. The smoothed directional field is evaluated on
gridpoints of spacing 0.5 degrees of arc, using a censoring procedure also described in their paper. Gaps in
the smoothed (black) field result from that decimation.
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key concepts is to always work on the unit circle, which is violated by weighting the vector lengths as de-
scribed above. Additionally, Mardia (1972) does not contain any mention of spatial interpolations – that I
was able to find at least. Hence, for better or worse, I attribute that algorithm to Heidbach et al. (2010). I
perform the algorithm just described to estimate the regional stress orientation and the associated angular
error at the position of each worm point.

The final component of the orientation-in-stress-field risk estimation procedure is to calculate the
angle between the σ1 direction and the worm segment normal direction, and to compare that angle with
the angular values most favored for failure in Figure 8. For the depth ranges appropriate for this work, the
normal stresses are likely to be below 200 MPa and thus Byerlee’s Law (Byerlee, 1978) claims a coefficient
of friction of µ = 0.85 as appropriate for a broad range of rock types. I adopt that value here.

For reference, converting that coefficient of friction value to the angular orientation of the normals
ideally oriented for failure by Byerlee’s law (the red lines in Figure 8) proceeds as follows. Denoting θB as
the Mohr space angle between the Byerlee failure envelope and the σ1 direction, examination of the relevant
geometry implies that θB = tan−1(µ) ≈ 40.4◦. Hence, the complement of θB is about 49.6◦, and the
supplement of that (≈ 130.4◦) is the Mohr-space angular deviation from the σ1 direction of the highest-risk
orientation. Accordingly, by the properties of the Mohr diagram construction, the critical angle in real-space
is θcrit ≈ 130.4◦/2 = 65.2◦. There is another critical orientation with the opposite sense (not plotted for
visual simplicity) in Figure 8. The end result is that there are two critical angular deviations from the σ1
direction, θcrit = ±65.2◦.

Thus, I establish angular risk categorization for this orientation-in-stress-field analysis by identifying
arcs of orientations of ± a specified angular range around both sides of both critical orientations. Figure 11
illustrates that technique for ranges increasing by 5◦ between risk categories.

Once again, the specific break values in risk categorization discussed here may not be the final cate-
gorization used in the overall risk-factor merging process. Please consult that separate memo for details.
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Figure 11: Worms combined from both figures 3 and 4 showing relative risks due to orientation in the
estimated regional stress field. Points are colored red for the case where worm segments are within 5◦ on
both sides of the θcrit values; orange for an additional 5◦ arc outside the red range; yellow for an additional
5◦ arc outside the orange range; and light green for all positions on structures oriented outside the yellow
range. In this classification, all points on structures identified by worms have slightly elevated (“moderately
low”/light green) risks of seismicity simply due to the fact that they are on identified geological structures
– which are heterogeneities that might localize stresses. Points not on worms are assigned to the “low-risk”
category, and are not explicitly plotted in this figure. Also not shown in this figure are the error estimates
calculated from the procedure discussed in the text – although both the relative orientation and error values
were incorporated into the combined risk estimate phase of the GPFA-AB project.
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To:   Appalachian Basin GPFA  

From:   Jared Smith and Franklin Horowitz 

Date:   Original from September 15, 2015. Updated August 11, 2016 

Subject:  Conversion of Seismic Risk Data to Risk Maps 

Applicability: This memo presents detailed methodology that was used to convert the seismic 
risk data into two seismic risk maps. These data are the distance to the nearest 
earthquake, and the angular deviation from the two critical orientations for failure 
under Byerlee’s Law for pre-existing fractures. 

Earthquake Based Risk Map 

The goal of this analysis is to arrive at a map of the risk of an earthquake occurring based on 
nearby earthquakes and the gravity and magnetic potential field edges (“worms”). Refer to 
Memo 13 of this project by Horowitz for a detailed description of the worms. The worms trace 
contrasts in subsurface density and magnetic content, respectively, and may be indicative of 
faults at depth. Earthquakes would be more likely to occur on a fault than away from a fault. The 
distance to the nearest earthquake is described first, followed by a description of how the worms 
were used to identify higher risk areas near previous earthquakes. 

Note: each risk map in this project is placed on the same standardized 1 km2 raster grid. This is 
sometimes called a fishnet. The grid cell centers are stored as a points file (Fishnet2_label.shp). 

Distance to the Nearest Earthquake 

The distance from the grid cell centers to the nearest earthquake was determined in several steps. 
Voronoi tessellation was used on the epicenters in the earthquake database. This resulted in one 
Voronoi polygon per epicenter. The earthquake information was joined to the attribute table of 
each polygon. The epicenter nearest to all grid cell centers within a Voronoi polygon is the 
nearest epicenter for the grid cells located in that polygon.  

A spatial join was used to add the earthquake information for each polygon to the attribute table 
of the grid cell centers. The resulting attribute table contained the location (lat., long.) of the grid 
centers and the location (lat., long.) of the earthquake nearest to each grid cell center. The 
distance from a grid cell center to the nearest earthquake was determined using a simple spatial 
Postgres query. Any tool capable of calculating ellipsoidal distances using (lat., long.) or 
Euclidian distances for (easting, northing) would suffice. The grid cell centers were converted 
into a raster of the distance to the nearest earthquake for all locations in the basin using the 
Points to Raster tool in ArcGIS. 

Worm Proximity to Earthquakes 

The distance to the nearest earthquake information was combined with the gravity and magnetic 
potential field analyses to create the earthquake-based seismic risk factor map. First, the gravity 
and magnetic potential field edge points (“worm” points) that were within 20 km of an 
earthquake epicenter were selected. These points were buffered by 2 km. The buffers for gravity 
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and magnetic worms were dissolved independently, resulting in polygons for the gravity and 
magnetic buffered worms. A buffer around worm points is used because of potential hydrologic 
connectivity of the subsurface that may allow for fluid migration to the worm point within some 
distance of the point. The use of 2 km as the buffer is arbitrary. More detailed knowledge about 
the subsurface hydrology could better inform the buffer that would be most beneficial to limit the 
migration of fluids to activate faults at the location of each worm point.  

After buffering, the raster of distance to the nearest earthquake was clipped to the buffered worm 
polygons. This resulted in two clipped rasters (one for gravity worms and one for magnetic 
worms). These clipped rasters represent the distance to the nearest earthquake for all grid points 
within 2 km of a worm point that is within 20 km of an earthquake. The ArcGIS Extract Multi 
Values to Points tool was used to add the clipped raster information to the grid cell centers. This 
information was assigned the field names GravDist and MagDist, representing the distance to the 
nearest earthquake for gravity worms and magnetic worms, respectively.  

The GravDist and MagDist fields cannot be used directly to determine the most risky value 
(smallest distance to an earthquake) for each grid cell center. The gravity and magnetic worm 
points did not cover the same areas, so some gravity and magnetic points were co-located (within 
the same 1 km2 pixel) and others were not co-located. Points that were co-located have the same 
value for GravDist and MagDist, so the distance value for both is the risk value. The risk 
distance field is called the RiskDist. In areas without co-located gravity and magnetic worms, 
one of GravDist or MagDist will be the RiskDist. The other field will have the value that is 
assigned to a grid cell center that does not have nearby gravity or magnetic worms within the 
buffered state boundaries (see Processing Notes section below). This value was arbitrarily 
selected as 1,234,567 m. This value is greater than the distance to any earthquake. So, the 
minimum distance to an earthquake for each grid cell was determined using a query for the 
minimum of the GravDist and MagDist. The result of the query was written to the RiskDist field.  

The standard deviation (see Uncertainty section below) corresponding to the minimum distance 
(GravDist or MagDist) was placed in a new field called RiskVar. For collocated points 
(GravDist = MagDist), the smaller standard deviation was selected. Finally, the RiskDist and 
RiskVar grid points were converted into a raster (Point to Raster tool in ArcGIS) to create the 
earthquake-based seismic risk factor map and uncertainty map.  

Uncertainty 

Simply put, the uncertainty in the distance to the nearest earthquake is the sum of the uncertainty 
in the earthquake location and the potential field point location (one of magnetic or gravity). 
These measurements are independent. Uncertainties in this case are taken as standard deviations 
of distance, so the overall uncertainty of earthquake and worm point positioning error is  

𝑅𝑖𝑠𝑘𝑉𝑎𝑟 =
𝑠!"! + 𝐺𝑟𝑎𝑣𝑉𝑎𝑟!, 𝐺𝑟𝑎𝑣𝐷𝑖𝑠𝑡 < 𝑀𝑎𝑔𝐷𝑖𝑠𝑡

𝑠!"! +𝑀𝑎𝑔𝑉𝑎𝑟!, 𝑀𝑎𝑔𝐷𝑖𝑠𝑡 < 𝐺𝑟𝑎𝑣𝐷𝑖𝑠𝑡
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where 𝑅𝑖𝑠𝑘𝑉𝑎𝑟 is the standard deviation of the earthquake-based risk, 𝑠!" is the standard 
deviation of the earthquake position, 𝐺𝑟𝑎𝑣𝑉𝑎𝑟 is the standard deviation of the gravity worm 
position, and 𝑀𝑎𝑔𝑉𝑎𝑟 is the standard deviation of the magnetic worm position.  

The uncertainty in earthquake locations is not available for all earthquakes in the database. As a 
result, a conservative estimate of the uncertainty is selected as 2.5 km in any lateral direction 
from the epicenter, regardless of the magnitude of the earthquake. Earthquakes with greater 
magnitudes likely have smaller uncertainty in their epicenter location. 

The uncertainty in the potential field point locations is difficult to quantify as a result of the 
many processing steps involved. Lacking the time to quantify the uncertainty in the potential 
field points via a Monte Carlo analysis, 20% of the distance between potential field points is 
assumed as the uncertainty for all points. Therefore, gravity points have an assumed uncertainty 
of 500 m (2500 m spacing between points), and magnetic points have an assumed uncertainty of 
250 m (1250 m between points).  

The uncertainty values in the earthquake locations and worm point locations are treated as 
standard deviations. Therefore, the RiskDist standard deviation, RiskVar, under these 
assumptions is 2550 m for gravity points and 2515 m for magnetic points. For both gravity and 
magnetic points, the standard deviation corresponds to 3 pixels at the resolution of the risk factor 
maps. 
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Stress Field Based Risk Map 

The goal of this analysis is to arrive at a map of the risk of an earthquake occurring based on the 
orientation of the gravity and magnetic worm segments relative to the critical orientations for 
failure of pre-existing fractures in the region (Byerlee’s Law; see Memo 13 of this project by 
Horowitz for a description of how the critical orientations were found). 

The gravity and magnetic worm points calculated by Horowitz contain information about the 
angle normal to the principal compressive stress (values ranging from 0° to 180°), and the 
uncertainty (standard deviation) in that angle. The critical failure orientations are located at 65.2° 
and 114.8° on [0°, 180°] relative to σ!. The angles of interest for calculating risk are the angles 
between the normal angle and each of the critical orientations. These are referred to as the 
GravAng and MagAng.  

The GravAng and MagAng fields are calculated as the minimum of the absolute value of the 
angle needed to arrive at each of the critical orientations, in degrees. The minimum is selected 
because this represents the greatest risk (closer to one of the critical angles). Note that the 
following equation is only valid if the normal angle is on [0°, 180°]. If the normal angle ranges 
from 0° to 360°, then 180° may be subtracted from all angles greater than 180° to convert to [0°, 
180°]. 

𝐺𝑟𝑎𝑣𝐴𝑛𝑔 = min abs 𝑛𝑜𝑟𝑚𝑎𝑙_𝑎𝑛𝑔𝑙𝑒 − 65.2° , abs 𝑛𝑜𝑟𝑚𝑎𝑙_𝑎𝑛𝑔𝑙𝑒 − 114.8°  
Next, the gravity and magnetic worm points were buffered by 2 km, for the reasons described 
above. These buffers were dissolved independently, and converted into 4 rasters: angle for 
gravity (GravAng), uncertainty for gravity (GravVar), angle for magnetic (MagAng), and 
uncertainty for magnetic (MagVar). The values in each of these rasters were added to the 
standardized grid cell centers using the Extract Multi Values to Points tool in ArcGIS. 

For each grid cell center, the minimum of the GravAng and MagAng was assigned as the 
RiskAng. The assigned uncertainty (standard deviation) was the uncertainty corresponding to the 
minimum of GravAng and MagAng (either GravVar or MagVar) and was called the RiskVar. 
Note that the RiskVar in this case assumes that errors in the positioning of the worm points are 
captured in the error of the angle, because the same positioning error is assumed for all points 
along a worm segment (see above discussion for earthquake-based uncertainty). Therefore, 
positioning errors in the worms are assumed to be implicitly captured. A Monte Carlo analysis 
that includes positioning errors could be used to verify this assumption. 

Because many points overlap a single grid cell center, a raster plotting priority field called 
Weight was added to the worm data. This field was equal to 65.2° – RiskAng, where 65.2° is the 
maximum number of degrees that an angle could be from one of the critical angles on [0°, 180°]. 
This field is used to determine plotting preference when converting this data into a raster dataset 
– higher values have higher preference. This ensures that a RiskAng value of 0° has the highest 
plotting preference, and therefore will be selected as the raster value over larger RiskAng values. 

Finally, the stress field based seismic risk factor maps were created by converting the RiskAng 
and RiskVar grid cell centers into rasters using Point to Raster conversion in ArcGIS.  
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A Note on Uncertainty 

The standard deviation in some angles is large enough that the nearest critical failure orientation 
is not the one used to calculate the RiskAng. For example, if an angle has a mean of 20° and a 
standard deviation of 40°, then it is possible that the true angle is closer to 114.8° than to 65.2° 
on [0°, 180°]. This is accounted for in the Monte Carlo analysis that is used to create the scaled 
risk factor maps, and the uncertainty in the scaled risk factor maps. The R code used to do this is 
in “make_interp_tables.R”. An excerpt of this code is provided below. In this code, “rand” is 105 
Monte Carlo replicates. The first while loop converts all negative angles to positive angles by 
adding 360 degrees. The second while loop converts all angles to [0°, 180°]. Variables a1 and a2 
are the angles to each of the two critical angles. The final value assigned to rand is the minimum 
of a1 and a2 (most risky angle). 

 

Memo 17 in this project describes how the scaled risk factor maps and their scaled uncertainty 
were created from each individual unscaled risk factor. 

Processing Notes: 

Before each seismic risk factor map was converted to a final map, information about whether or 
not a standardized grid cell center was located within the 50 km buffered states region was added 
to the point features (binary variable, in [1] or out [0] of the region). The grid cell centers that are 
not located within the state boundaries are assigned a value of -9999 to indicate that these areas 
were not assessed for seismic risk. The grid points within the state boundaries that did not 
intersect buffered worm points are assigned a value of 100° for stress-based risk maps and a 
value of 1,234,567 m for earthquake-based risk maps. These areas have low seismic risk. These 
arbitrary high values were selected because they are numbers greater than the maximum 
RiskAng and RiskDist, respectively, and are easily identified by data processing programs. In 
contrast, 1,000,000 m was not used because it is converted to 1E+6 in some programs, which is 
further converted to text in some programs. Text fields are not numbers, and cannot be displayed 
on rasters. 
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Memo for Utilization Assessment 
Original from October 2015. Updated October 2016 

 

Projected included members from Cornell University, Southern Methodist University, and West Virginia 
University. 

Memo Written by:  Maria Richards SMU, mrichard@smu.edu; Revised 2016 by Calvin Whealton and 
Teresa Jordan 

Project Effort Overseen by:  Brian Anderson WVU, Brian.Anderson@mail.wvu.edu and Jeff Tester 
Cornell University, (jwt54@cornell.edu) 

Work completed by the following students:  Xiaoning He (WVU), Zachary Frone (SMU), Kelydra 
Welker (WVU), Calvin Whealton (CU) 

 

DISCLAIMER	
The information, data, or work presented herein was funded in part by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 

____________________________________________________________________________________ 

The Utilization effort for the Geothermal Play Fairway Analysis of the Appalachian Basin (GPFA-AB) 
included two broad types of data:  1) residential – community ‘Places’ and 2) site specific users with high 
heating demands such as universities, industrial users, government facilities, etc. to be considered as part 
of Phase 2.  Below is a description of the data collected, and the programs used.  For results and a 
discussion of the effort, see the Final Report for Phase 1 of the Low Temperature Geothermal Play 
Fairway Analysis for the Appalachian Basin, DOE Contract Award Number:  DE-EE0006726. 

The process for the GPFA-AB was primarily based on the previous research by students at Cornell 
University and West Virginia University.  Below are main steps from this project and the last section 
includes the Chapter 3 details submitted by Tim Reber (2013) for his MS degree with every parameter 
described. 

Steps in Determining the Surface Levelized Cost of Heat   
The foundation source code used for the utilization risk assessment is the program GEOPHIRES, 
(GEOthermal Energy for Production of Electricity and Heat Economically Simulated). The software uses 
key data as input to calculate Levelized Cost of Heat (LCOH).  Because we have characterized the 
subsurface as part of other tasks (thermal resources and natural reservoir quality), we modified 
GEOPHIRES to only focus on those remaining elements, which includes demand for heat as calculated 
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from population and climate data, and the surface costs associated with delivering that heat to those in 
demand.  Thus, in our implementation, the final output is a Surface Levelized Cost of Heat (SLCOH).  
The SLCOH includes the surface piping, heat exchange equipment (residential and/or commercial), 
operations, upfront capital cost, and maintenance costs over the lifetime of a 30 year project.  A 
MATLAB1 program serves as an interface between the Microsoft Excel files of collected input data and 
the GEOPHIRES program.  The MATLAB code and Microsoft Excel files are included with the resulting 
data as part of the Catalog submission to the National Geothermal Data System (NGDS).  

1. The U.S. Census Bureau maintains a database of information that includes state, county, 
and county subdivision, under the broader term ‘Place.’ A Place is used to identify all 
individual cities, towns, villages, boroughs, universities, and other Census-Designated 
Places (CDP’s) defined as “settled concentrations of population that are identifiable by 
name but are not legally incorporated” (Census Bureau, 2012). The population and scope 
of a single Place may vary from the whole of New York City proper, with a population of 
over 8,000,000, to the smallest villages with populations as low as 10. In the New York, 
Pennsylvania, and West Virginia area we are using the 2010 Census data collection that 
includes 3,355 Places.  These were downloaded via the FactFinder website 
(http://factfinder.census.gov). 

2. Starting from the 3,355 places in New York, Pennsylvania, and West Virginia, using 
ESRI ArcGIS, the broader Place data were linked to their county and county subdivision.  
In order to complete this task, shapefiles of the Census Places and county subdivisions 
were loaded into ArcGIS. By using a spatial join and having the program find the Places 
within the county subdivision, this resulted in joining the attributes tables of the two files, 
allowing for the information for Places to have corresponding county subdivision data. 
Finally, all sites were checked and any places without a successful join had data manually 
added. This process was repeated to relate places with county information. 

3. The place list was next limited to only those within this project’s Appalachian Basin 
outline. We used the Golden Software program Mapviewer and ArcGIS for a comparison 
to confirm accuracy of locations within the project boundary.  This reduced the number 
of possible Places for the project to 1,697.  

4. To represent cooperation and coordination among smaller U.S. Census Places, which are 
generally townships or villages, we merged small places with their neighbors. Neighbors 
were determined by buffering around all of the U.S. Census Places polygons a distance of 
50 m. Buffered polygons that intersected were neighbors. The small buffer was used 
because many of the places were quite close, but did not exactly share a border and this 
made neighbors for places that were within 100 m of each other. The U.S Census Places 
were sorted by population. Starting with the lowest population Place, it was checked to 

																																																													
1	http://www.mathworks.com/products/matlab/	
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see if it had already been merged. If it had been merged, then no further action was taken 
for that place and the analysis moved to the next smallest Place. If the Place had not been 
merged, then we checked for neighbors. If there were neighbors, the Place was merged 
with all of its neighboring places. The analysis began again. If the Place had no 
neighbors, then the analysis continued to the next place. The merging stopped when all 
places below 10,000 population had already been merged or had no neighbors. Note that 
a Place was not merged multiple times. Below, these are referred to as “Cooperating 
Places” or, when the context is generic, simply as “places.” 

5. For this Play Fairway Analysis project, a minimum population threshold of 4,000 
residents per Place or Cooperating Place was applied for all three states, to focus on those 
communities with a sufficient number of users to justify the initial capital investment 
associated with a district heating system.  There were 1,442 Places with populations of 
less than 4,000, leaving the final number of Places for the SLCOH analysis to be 255. 
Thereafter, in order to have those Places and Cooperating Places with fewer than 4,000 
people appear as red (unfavorable) on the final maps, they were assigned the same 
arbitrarily high SLCOH of $100/MMBTU. The actual input data associated with these 
places would lead to a different SLCOH and can still be calculated for future analyses as 
appropriate.  The population threshold can be set as low as 1,500 residents per Place, and 
in doing so, makes the majority of the Places meet the criteria of good enough to 
consider.  Although a positive outcome, we determined the 4,000 resident level for 
population of increased value in focusing the attention to sites most likely to be first users 
of this regionally new energy concept.   

6. The next parameter is the building density and heating demand per building (i.e. detached 
single-family, attached single-family, 2 unit buildings, 3-4 unit buildings, 5-9 unit 
buildings, 10-19 unit buildings, 20-49 unit buildings, and 50+ unit buildings).  These 
detailed data are included within the Census Factfinder under “American Community 
Survey” using the 2010 5-year estimates and code B25024, representing the number and 
type of housing units per residential building category. The Energy Information Agency 
(EIA) performs a Residential Energy Consumption Survey (2009) that we used to 
determine average square footage of each designated unit and related heating load on a 
Census region basis.   

7. Within many Places are commercial buildings, which can be put into 12 categories: 1) 
Accommodation, 2) Food, & Other Services, 3) Administrative and Waste Management 
and Remediation Services, 4) Arts, Entertainment, and Recreation, 5) Educational 
Services, 6) Health Care & Social Assistance, 7) Information Geographic Area Series, 7) 
Manufacturing, 8) Other Services, 9) Professional Scientific & Technical Services, 10) 
Real Estate & Rental and Leasing, 11) Retail Trade, and 12) Wholesale Trade.   
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a. In order to determine the heating loads for commercial sites within our Place 
dataset, we combined the energy consumption for building types, the square 
footage of a building, and the type of commercial application based on the 12 
categories above.  Three datasets were used:  the EIA manufacturing energy 
consumption data (http://www.eia.gov/consumption/manufacturing/), the EIA’s 
2006 report of Commercial Buildings Energy Consumption Survey (CBECS) for 
the floor space, and the US Factfinder 2007 ‘Economic Data’ for categories.  

b. From these files, the number of establishments and number of employees were 
collected for each “economic place”. Unfortunately, the term “economic place” 
did not equate to that of the census definition of Place.  The “economic place” can 
be related to the census classification of “county subdivision”, which we did have 
linked to each Place.  Following the methodology of (Reber, 2013) and Tester et 
al. (2015), in the instance where a single “county subdivision” (i.e. “economic 
place”) contained multiple Places (typically around metropolitan areas) the data 
on commercial establishments for that county subdivision was divided amongst 
the Places within that county subdivision based on the relative population of each 
Place. In addition, due to the potentially identifiable nature of the reported 
economic data, some employment sizes were represented by a letter which stood 
for a range of values (ex.  “A” meant an establishment had less than 20 
employees, “B” meant an establishment may have between 20 to 99 employees, 
“C” means 100 to 249 employees, etc.). For these sites, the average of the range 
rounded up to the next integer was used for the model (ex. “A” would have 10 
employees, “B” would have 60 employees, “C” would have 175 employees, etc.). 
This allowed for the MATLAB/GEOPHIRES model to have a numerical value to 
perform the calculations.  

8. Another dataset included was the location of roads (Road shapefiles from the TIGER 
dataset).  The total length of roads within each Place was used as a method to estimate the 
required piping length required to service a given location (Reber, 2013) and Tester et al. 
(2015).  Based on Reber’s conclusions, the GEOPHIRES program uses 75% road 
coverage to provide adequate piping density required to reach all buildings for 
geothermal district heating system. 

9. The MATLAB script estimated the cost of a system for a lifetime of thirty years. The 
program uses a fixed annual charge rate (FACR), which allows the user to specify several 
factors, including discount rates.  As reported by Shaalan (2001), this annual fixed-charge 
rate “represents the average or ‘levelized’ annual carrying charges including interest or 
return on the installed capital, depreciation or return of the capital, tax expense, and 
insurance expense associated with the installation of a particular generating unit” 
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(Shaalan, 2001). A FACR of 6% was used for this Play Fairway Analysis effort. 
According to the U.S. Department of Commerce it calculated an effective discount rate of 
3% in 2011 for Federal and Public energy projects.  Therefore 1% was also added to this 
value, resulting in a discount rate of 4% applied to SLCOH.  

10. The GEOPHIRES result output of SLCOH is a spreadsheet (.csv format).  The output 
was grouped by state and then sorted based on the population size and the resulting 
SLCOH in the units of dollars per one million BTU (British Thermal Unit). $/MMBTU.  
For all Places with a population of less than 4000 the SLCOH was assigned an arbitrary 
but high value of $100/MMBTU.  This allows us to continue to keep smaller 
communities in the workflow as we get ready for Phase 2.  We will be able to improve 
our cost estimates for the entire Place list, since the GEOPHIRES and MATLAB 
programs allow updates for a few or many sites with the same amount of effort.   

For the resulting 255 Places assessed, the best case (least expensive SLCOH) is 7 $/MMBTU and the 
highest (most expensive SLCOH) is 65 $/MMBTU. The Places were differentiated into three thresholds 
with the best case scenario for the SLCOH between $7 and $13.5, good between $13.5 and $16, and low 
or unlikely potential as $16 to $25 SLCOH.  Among the 255 Places, Table 1 shows the distribution of the 
236 Places whose SLCOH is less than or equal to $25. In addition, there were 1,449 places assigned an 
SLCOH of $100 because of low population (< 4000 people).   

Table 1: Distribution of 255 Census Places and Cooperating Places over 4,000 in population within 
the Appalachian Basin for NY, PA, and WV based on a three color ranking of the calculated 
Surface Levelized Cost of Heat (SLCOH). 

State	 Best	Case	(Green)	
$5	–	$13.5/	MMBTU	

SLCOH	

Good	(Yellow)	
$13.5	-	$16/	MMBTU	

SLCOH	

Unlikely	(Red)	
$16	-	$25/	MMBTU	

SLCOH	
New	York	 30		 27		 30		
Pennsylvania	 37		 52		 27		
West	Virginia	 21		 10		 2		
	

A second set of values were assigned for the five-threshold risk assessment.  Here the values were $5 to 
$12 (green - best), $12 to $13.5 (greenish yellow), $13.5 to $16 (yellow), $16 to $20 (orange) and $20+ 
(red - worst).  The level of detail in this Phase 1 project does not provide enough site knowledge, even at 
the Place level, to assign increased levels of significance in the dollar amounts for the SLCOH.  These 
were developed for the consistency of the combined risk task input files (see Catalog for the Combining 
Risk Factors Memo).  

Error estimates for the Utilization risk factor were not calculated. Rather for the level of detail of Phase 1, 
the entire area is given a uniform uncertainty of approximately 5% based on changes in population and 
cost.   
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Steps for Inclusion of Site Specific Industrial Sites 
In addition to the US Census ‘Place’ areas, this project researched low-temperature direct use geothermal 
energy applications for numerous industries, including aquaculture, green houses, and food processing 
such as dehydration and dairy processing (Lienau, et al., 1994).  For the Appalachian Basin region and the 
anticipated temperatures at depths shallower than 3 km, potential users of the geothermal heat occur in the 
following industry categories:  paper mills, wood drying kilns, dairy processing (includes yogurt and milk 
pasteurization products), college and university campuses, and select military locations.  Typical 
temperature ranges for these applications are listed in Table 2.  

Table 2:  Site-Specific industries of interest and required temperature ranges. 

Industry	 Temperature	Range	

Dairy		
Butter/Yogurt	production		80	–	90	°C	
Traditional	pasteurization		72	–	75	°C	

Wood	Drying	 43	–	82	°C	
Paper/Pulp	Mills	 66	-	150	°C	
University/College	Campus	 100	-	150	°C	
Military	Bases/Stations	 100	-	150	°C	

 

Each industrial site was located using a Google Map search for each category, except for the locations of 
the diary processing sites found on the Dairy Plants USA website.  All of these potential industrial users 
have a component of their process(es), which could benefit from incorporating a geothermal element into 
their system, either by preheating or reducing electrically heated steps. 
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To:  Appalachian Basin Geothermal Play Fairway Analysis Group 
 
From:  Calvin Whealton, Jery Stedinger, Frank Horowitz, and Jared Smith 
 
Date:   September 17, 2015 (Revised October 2016 by T.E. Jordan) 
 
Subject:  Risk Analysis and Required Risk Factor Descriptions 
 
In preparation for the analysis of the combined risk factors, it is wise to resolve what 
information will be needed to construct the final 4 risk-factor maps and the resultant 
summaries, and to conduct appropriate sensitivity and uncertainty analyses. Having this 
discussion now will allow more time for implementation later, and for those generating 
critical results to include in their analysis the ability to generate the needed information. 
 
This memo focuses on required map data and formats, including methodologies for 
uncertainty analysis and sensitivity analysis of the final risk matrix. Methods of scaling 
each risk factor to a 3-point or 5-point scale are also described. Two critical issues are 
addressed:  (i) completing the risk-matrix tasks as they are described in the SOPO, and 
(ii) being creative and innovative in methodologies for the analysis of the risk matrix 
information, and visualization of the results. 
 
We emphasis that, when possible, map colors for 3-color or 5-color maps should be 
related to the actual acceptability of a location measured on that risk index at the scale of 
the analysis. Using this point of view, they are not relative metrics providing just a 
comparison to other locations or projects, but absolute evaluations of project 
acceptability. If color ranking represents the scale of project acceptability, then it is 
reasonable, for example, to consider the minimum value across the four risk factors as a 
criterion for project acceptability. Other options for representing the combined risk maps 
are presented below. 
 
We claim that it is critical for groups who are contributing to a combined risk product 
submit correctly formatted component maps to 1) construct the risk matrices, 2) 
efficiently complete the effort which requires analysis of alternative projects, and 3) 
conduct uncertainty analysis and visualization of results. 
 
List of Appendices: 
1: Methods for creating the standardized raster grid for all risk factors, and converting 
vectors to the standardized raster grid.  
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Map Data and Formats 
 
This section outlines the required data for each risk factor map. There should be two or 
three raster maps submitted for each risk factor:  
 

1) the value of a continuous risk variable (one raster), and  
2) the uncertainty, described by either the standard deviation or coefficient of 

variation (1 raster), or 5-95% CI (2 rasters), of the estimated risk value at each 
point.  

 
The raster should include a value for “no information,” which is equivalent to stating that 
we do not have data to estimate the risk. The selected value for “no information” is         
“-9999” for this project (a numerical value is used because raster formatting does not 
allow text).  
 
“No information” should be distinguished from areas that have information, but are not 
suitable for a geothermal project. One may wish to consider development in regions for 
which no data exists; however we would not consider development where a risk factor 
has an infeasible value. When mapping, no information (-9999) may be represented as 
white pixels for individual risk factors. These pixels would remain white when 
combining risk factors into a summary statistic. For example, if no information about 
reservoirs exists, but data regarding seismic, thermal, and utilization risk factors are 
available, then a summary statistic considering all risk factors would receive a white 
pixel; whereas a map that considers only seismic, thermal, and utilization risk factors 
would be colored according to the selected color scheme.  

 
Groups must also submit thresholds for a 3-color map (2 thresholds) or 5-color map (4 
thresholds). When possible, threshold values should be based on previous studies of what 
is considered high, medium, and low risk (or performance levels) for each risk factor. 
Level 3 for a 3-color map and level 5 for a 5-color map are considered to be excellent 
conditions.  Level 1 in both color schemes represents unsatisfactory levels, indicating a 
project would not be successful, regardless of the values of the other risk factors.  

 
Finally, for the purpose of scaling or transforming the continuous risk variables into 
composite or summary values, we request for each risk factor a maximum and a minimum 
value be specified.  We do not anticipate that these are the maximum and minimum 
values within this dataset across the map, but rather the maximum and minimum values 
that might be generated (or values we wish to employ for scaling to a 3-point or 5-point 
scale). The maximum and minimum values may also be viewed as extreme thresholds. 
For example, all values below the minimum useful temperature of 50 °C (scaled to a 
value of 0.0) also receive a scaled value of 0.0 because the temperature below 50 °C is 
not useful for this project’s consideration. 
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Required deliverables: 
 

1. Raster map* of the continuous risk factor (in original units) on the grid 
developed for the project (Raster grid name: GridNAD.tif). 

2. Raster map(s)* representing  the uncertainty of the continuous risk factor. 
3. A set or sets of 2-thresholds for defining a 3-color map, including a third 

value for no information. 
4. A set or sets of 4-thresholds for defining a 5-color map, including a fifth value 

for no information. 
5. Maximum and minimum values for each risk factor. 
*    See Appendix 1 for a description of how the project grid was developed, and 

how vector files (e.g. reservoirs) were converted into rasters. 
 
It may be unclear how to adequately represent one or more of the risk factors as a single 
raster set (risk metric and uncertainty rasters). In this case, we recommend that the risk 
factor be submitted in a manner that captures the complexity. The values of the ranking 
thresholds do not have to change between submitted sets of rasters. For example, a single 
depth at which the thermal risk factor should be represented is unclear because many 
depths could be selected and justified as reasonable (maximum economical drilling depth, 
minimum depth to reach the minimum use temperature, average depth between these two 
extremes, etc.). It is plausible that each of these depths could be evaluated using the same 
thresholds to arrive at a composite thermal risk. Alternatively, because the temperature 
corresponding to, for instance, “unfavorable” will change depending on the depth, 
temperatures in depth slices can be evaluated separately in the risk matrix analysis to 
provide depth-specific thermal risk factor contributions to the composite project risk. 
Therefore, when complexities exist with depth, we recommend that raster sets be 
submitted in incremental depth slices of the risk factor to allow for flexibility in 
computing the composite project risk. Thermal and reservoir risk factors have been 
submitted in this manner.  
 
 
Proposed Simple Risk Standardization 
 
A first computational task is to convert the continuous variable for each risk factor into 
the play fairway color scheme. The conversion into the play fairway ranking system (e.g. 
0 to 3) will be accomplished using the thresholds, unique to each risk factor. For 
example, for a 3-color scheme with thresholds at 15 and 25, a risk metric value ≤ 15 
would be plotted as red, a value between 15 and 25 would be yellow, and a value > 25 
would be plotted as green. The map will not be colored using a continuous color bar; 
however values of the risk variable will be continuous. 
 
Using the continuous values of each risk variable with its specified thresholds allows 
plotting the 3- or 5-levels of each variable across the map. But, how to combine these 
variables when they have completely different units, and perhaps very different scales is 
unclear. We propose to use the thresholds and min/max values with linear interpolation to 
generate standardized values for each risk variable. 
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For a 3-color system, one expects that 1 and 2 represent the thresholds. Zero is 
appropriate to represent a score for the minimum value of the variable, and three is 
appropriate to represent the best value of the variable. (This may require reversing the 
scale of some variables so that 3 is good and 0 is bad.) 
 
Thus the ranges are: 
 

0 – 1   Red = Bad, unacceptable 
 
1 – 2  Yellow = okay, marginally acceptable 
 
2 – 3 Green = good, advantageous 

 
For a 5-color scheme, thresholds are located at 1, 2, 3, and 4, with 0 representing the 
minimum, and 5 representing the maximum value.  

 
 
 
 
 

 
After linear interpolation of continuous risk variables to this standardized scheme, all of 
the variables will be on a 0-3 score for 3-colors, and a 0-5 score for 5-colors.  Using these 
scores it would be reasonable to compute the minimum value of the standardized scores, 
their geometrical mean, or a weighted average (functional forms, below).  Perhaps of 
special interest would be the average score, 𝑠, for all pixels whose minimum score 
exceeds smin for each risk factor, where one might take smin to be any of the thresholds 
(e.g. 1 or 2, or an intermediate value such as 1.6). Thus one would consider among all of 
the acceptable projects, those that appeared to do best overall.  
 
 
  

Very 
Unfavorable 

Unfavorable Neutral Favorable Very 
Favorable 

0.0                1.0 1.0                2.0 2.0         3.0 3.0             4.0 4.0            5.0 
 Threshold 1 Threshold 2 Threshold 3 Threshold 4  
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Uncertainty Analysis and Visualization 
 
A final step will be to select a few interesting locations for visualization of the four 
individual project risk factors, and consideration of uncertainty in the computed values.  
 
Map-level 
 
The SOPO deliverable is to combine all of the risk factors using a single objective 
function (risk matrix) to calculate the combined risk. The combined risk factor (CRF) for 
pixel (i,j) may be calculated using one of these suggested functions in Table 1. 
 
Table 1: Functional forms for the combined risk factor calculation, along with 
advantages and disadvantages of each function.  
  
Functional Form Advantages and/or Disadvantages 

Average of Risk Factors Equal weighting. Not dependent on the scale (min/max 
values to represent color) 

Geometric Mean of Risk 
Factors 

Penalizes areas where there is one especially low value. 
Highlights areas with one especially high value. 
Therefore the min/max values representing 0 and 3 (or 
5) become very important. 

Minimum of Risk Factors 

Focuses on the most unfavorable risk factor at a 
location because all of the other risk factors are at least 
as good as the minimum. Unclear how much better a 
location is in other risk factors.  

 
Combinations of the approaches listed in Table 1 are also feasible. For example, one 
might first compute the minimum risk factor, and accept only those location above a 
selected threshold (say 2.0), and then plot the average risk factor for acceptable locations.  
 
Examples of the functional forms listed in Table 1 are provided in the equations below. 
The utilization risk factor has a tilde accent because it will be calculated as the maximum 
of the utilization values within a certain distance d of the pixel of interest. The distance d 
can be thought of as a pumping distance to reach the utilization target. In this calculation 
of the CRF map, each pixel is where to develop the resource, not necessarily where 
surface utilization is present. Using a utilization distance avoids potential problems with 
sharp edges to reservoirs. Areas without reservoir information would be “whited out” in 
the risk factor maps and also in the CRF map because of no information, which might 
lead to abrupt transitions from high CRF areas to no information CRF areas. The 
utilization distance would alleviate this problem because areas on the no information side 
of such a boundary would be able to utilize the resource a few pixels away. 
 

CRF i, j =
!!!"#$%&' !,! !!!!"#"!$%&! !,! !!!!"#!$#% !,! !!"!"#$#%&"#'( !,!,!

!
,   Average

∜(RF!"#$%&' i, j ∗ RF!"#"!$%&! i, j ∗ RF!"#!$#% i, j ∗ RF!"#$#%&"#'( i, j, d ),      Geometric Mean
min RF!"#$%&' i, j ,RF!"#"!$%&! i, j ,RF!"#!$#% i, j ,  RF!"#$#%&"#'( i, j, d ,   Minimum
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For the commensurate function calculated using any of the above equations, a combined 
play fairway map is defined. The advantage of using a continuous variable on the play 
fairway scheme is that it allows for more precision in numerical values used to compute 
the final map, and the uncertainty analyses as compared to a discretized metric (e.g. 3.2 
vs. 3). The risk factor map coloring should only be discrete 3- or 5- colors as opposed to a 
continuous coloring scheme that could cause slight color differences in areas to appear 
meaningful. 
 
Project-level 
 
Once the final combined risk map is generated, a few project sites should be selected for 
more detailed presentation of results. For these individual sites, and with the uncertainty 
for each risk factor map, a Monte Carlo or first-order Taylor Series analysis can be used 
to arrive at the distribution of the commensurate risk statistic for that site. An example of 
such a plot is given in Figure 1. Using such methods will allow for: 
 

1. Evaluation of whether a project might really be unsatisfactory 
2. Test of statistically significant differences in the play fairway metric among 

project sites 
3. Easy visualization of sites that seem to be more or less certain 
4. Overall comparison of play fairway metrics across the most promising sites 

 
Technically, we have a four-objective problem that was commensurated into the single 
play fairway metric. Once a group of a few potential project sites is selected, the problem 
can be represented again as a four-objective problem. One method of comparing sites is 
with a parallel axis plot, such as shown in Figure 2. Once the initial map has shown some 
likely good areas for development, a parallel axis plot will show four objectives for the 
same resource and will convey more information to a decision maker. It could be that 
there are large tradeoffs in the objectives, for instance the highest utilization might be 
near seismically active areas.  Conveying more information for a few cases can be 
informative for a decision maker. 
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Figure 1: Example of plots comparing uncertainty in the computed commensurate play 
fairway objective for selected project locations. The circle would represent the combined 
risk factor map value and the bars could be the 5 and 95% limits based on Monte Carlo or 
first-order Taylor series analysis. 
 
 

 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
Figure 2: Example of a parallel axis plot where the objectives are plotted separately for 
each site. Such a plot would allow a decision-maker to look at the various objectives for a 
few sites and select places for further study. 
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Sensitivity Analyses 
 
Sensitivity analysis of any CRF map will proceed by considering the impact of: 
 
 (i) Varying the thresholds for the individual risk factor maps, and 
 (ii) Varying the pumping distance d used to represent distance to utilization. 
 
Other variables may also be explored.  
 
This sensitivity analysis of the map does not address the uncertainty of inputs or of the 
economic model. The analysis in (i) addresses the thresholds used for green/yellow/red 
classification on the output summary. If we changed our thresholds, would the output 
map be very similar or drastically different? (ii) This set of results looks at the impact of 
the selected value of d describing feasible pumping distance. 
 
Discussion of Weighting 
 
It was the original intent for this Geothermal Play Fairway analysis of the Appalachian 
Basin to introduce weighting when combining the risk maps. One can assign weights, but 
if one does not have a justification for the weighting scheme, then it is arbitrary and could 
be (unknowingly) manipulated to favor certain sites or general conclusions. Also, weights 
can easily be manipulated by specifying special cases for certain geographic areas. 
 
One justifiable method of weighting would be based on an economic model of the system 
for each pixel. In this case the weights would be derived economically because the cost of 
the project could be divided into portions associated with each risk factor. For instance, 
the levelized cost of heat (LCOH) would reflect the thermal quality of the reservoir, the 
natural quality of the reservoir, and the utilization infrastructure and pricing. Seismic 
hazard could be reflected by insurance premiums. 
 
A problem with the use of an economic model is that, although it might be related to the 
cost of the project, it does not model the preferences of different agents. It is possible that 
willingness-to-pay for geothermal heat will be different across the agents, and this would 
be difficult to capture accurately in a model without clear agent preference data. 
Additionally, accurately specifying all inputs, or input distributions, would be very time 
consuming. 
 
After consideration of these factors and the preliminary exploratory nature of this project, 
we determined that weights initially be assigned equally to all risk factors in calculating 
the commensurate play fairway metric. Time permitting in follow-on projects, other 
options can be explored. 
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Closing Thoughts 
 
Using simple metrics will provide easy to interpret results for decision makers. The map 
itself should not be considered a complete analysis of whether developing a geothermal 
resource at that site is appropriate because a much more detailed analysis should be done 
before a major decision is made. Completing a holistic analysis is outside the scope of 
this initial portion of the project. Realistic economic and risk analyses would include a 
range of factors and considerations, which would be unique for each developer. The 
individual risk factor (RF) maps and composite risk factor (CRF) maps described here 
support and allow an initial or exploratory analysis of the development of geothermal 
resources in the Appalachian Basin. 
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Appendix 1: Methods for creating the risk factor grid, and converting vectors to rasters 

Creating the raster grid 

From a computational perspective, there is a need to have a single grid on which to plot 
all risk factors so that calculations of the combined risk factor metric may be easily 
performed without manipulation of the original data to a different grid via resampling of 
the risk factor products. Two main considerations are needed for the grid: 1) what should 
the spatial extent be, and 2) what should the resolution of the grid be? 
 
The spatial extent of the grid was determined based on the rectangular area enclosing the 
50 km buffered states of New York, Pennsylvania, and West Virginia 
(State_NADBuff.shp). Much of the grid area will not have data for most risk factors, but 
rasters must be rectangular, so this is the smallest possible extent of the grid.  
 
In this project, a 1 km2 pixel size is selected for the grid. This size was selected based on 
the minimum expected size of a single risk factor output. In this case, seismic risk and 
reservoir risk are determined based on buffered points. The minimum reservoir extent is 
slightly greater than 1 km2, so the pixel size needed to capture these reservoirs is 1 km2. 
 
Using this information, the project grid was created in three formats: points (cell centers) 
and polygons using the Create Fishnet tool in ArcGIS. The resulting files are 
Fishnet2_label.shp and Fishnet2.shp, respectively. It is important to note that this grid 
was created in coordinate system NAD83 UTM Zone 17N so that cells were all of equal 
size (1 km on each side). The input cell size in UTM coordinates is 1000 m x 1000 m, 
with a “template” plotting extent of the buffered states. The polygons were converted into 
a raster called GridNAD.tif using the Polygon to Raster tool in ArcGIS. A combination of 
points, polygons, and the raster grid were used in extracting individual risk factor data to 
this standardized grid format.  
 
For final maps, this grid was projected into WGS84, so the cell sizes may warp, but they 
will occupy a 1km2 area. 
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Converting vector files to rasters 
 
The thermal risk factor is computed directly on the grid and does not require any 
conversion from vector to raster; however some processing is required (see Thermal 
section below). All other risk factors are computed as vector files that must be converted 
to rasters on this standardized grid. A simple tool called PolygonToRaster_wPolygons 
was developed in ArcGIS Model Builder for this conversion process. The steps of the 
tool are outlined here. 
 

1) Spatial Join of the risk factor polygons to the standard grid polygons, ensuring 
that many risk factor attributes can be joined to a single grid cell. This is 
important when overlapping occurs within a single risk factor (for example, 
reservoirs at different depths in the same surface location). 

2) Convert the specified field in the joined data files to a raster using the Polygon to 
Raster tool. The cell size of the resulting raster should be specified as the cell size 
of the GridNAD.tif raster. The result is a raster of the risk factor. 

 
This tool was sufficient for converting the utilization vectors to rasters. Reservoir and 
seismic risks required additional processing. 
 
 
Reservoirs: 
 
Specific to reservoirs, a model was built to deal with overlapping reservoirs in the same 
spatial location. This model was called ReservoirConversion_FINAL. The steps of this 
model are summarized below. 
 
Prior to processing, reservoirs must be sorted into depth slices from 1000 m to 4000 m in 
500 m increments, plus one file for reservoirs shallower than 1000 m, for a total of 7 
vector files. 
 

1) Call the PolygonToRaster_wPolygon tool, with inputs as the depth slice of 
interest and the standardized grid polygons. This resulted in a raster of the risk 
factor and an intermediate file. 

2) The intermediate file from this tool is the polygons containing the joined risk 
factor data. The uncertainty of the risk factor is a field in the attribute table of this 
file, so this field is converted to a raster using Polygon to Raster tool in ArcGIS. 
This resulted in a raster of the uncertainty in the risk factor. 

3) These files contain data in the spatial extent of the reservoir polygons and ArcGIS 
default NoData elsewhere. NoData values are not desirable for calculations, so all 
of these NoData points are converted to -9999 to indicate no information using 
the Raster Calculator tool. This processing takes place in a separate model 
developed for this project, called FullRegionGrid, described below. 

 
The FullRegionGrid model takes an input raster and converts NoData locations to -9999. 
The steps are as follow: 
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1) Use the Extract Values to Points tool to extract the raster with NoData values to 

the cell centers of the standardized grid (Fishnet2_label.shp). This field will be 
named the Arc default RASTERVALU 

2) Use the Add Field tool to add a field name to the attribute table. This will be the 
field for the resulting raster. 

3) Use the Calculate Field tool to populate the values in the added field with the 
RASTERVALU.  

4) Convert the points to a raster using the Point to Raster tool. 
5) Use Raster Calculator to convert all NoData (IsNull) fields to -9999. 

 
 
Seismic:  
 
Earthquake-Based Maps 
 
A tool called SeismicEQ_ToRaster was created to convert the distance to the nearest 
earthquake information to a raster of distance to nearest earthquake.  
 

1) Use the Spatial Join tool to join the distance to nearest earthquake attribute table 
to the standardized grid points.  

2) Use the Point to Raster tool to convert these points into a raster. 
 
A tool called New_EQJoin was created to make rasters of the  
 

1) Clip the raster of distance to nearest earthquake to the buffered gravity worm 
points (buffering is described in Memo 14, “Seismic Risk Map Creation 
Methods”). 

2) Clip the raster of distance to nearest earthquake to the buffered magnetic worm 
points. 

3) Use Extract Multi Values to Points tool to add this clipped raster information to 
the standardized grid points.   

 
This results in a point file that has distance to the nearest earthquake for the buffered 
gravity and magnetic worm locations. These are processed to obtain the risk metric, as 
described in Memo 14, “Seismic Risk Map Creation Methods”. Post processing, the risk 
metric and the uncertainty are converted into rasters on the standardized grid using the 
Polygon to Raster tool. 
 
Stress Field-Based Maps 
 
A tool called SeisStressMagGrav was developed to convert the information about angle 
to normal into a raster. 
 

1) Buffer and dissolve the magnetic or gravity points by a selected amount (2 km in 
this project). 
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2) Use the Polygon to Raster twice: once to convert the prediction angle, and once to 
convert the uncertainty. The priority field should be set to the Weight field. 

3) Use the Extract Multi Values to Points tool to add the prediction and uncertainty 
information to the standardized grid points. 

 
This results in a point file that has the angle to the critical stress and the uncertainty in 
that angle. These points are processed to obtain the risk metric as described in the memo 
“Conversion of Seismic Risk Data to Risk Maps”. Post processing, the risk metric and the 
uncertainty are converted into rasters on the standardized grid using the Polygon to 
Raster tool. 
 
 
Thermal: 
 
Converting separate raster files to a single raster 
 
The thermal risk factor maps are created using laterally stratified boundaries. This means 
that the resulting rasters do not occupy the original extent of the standardized grid. In 
order to convert these files into a single raster in standardized grid format, two tools were 
developed. 
 
The Final_MosaicPred tool takes all of the resulting rasters for the thermal risk factors 
and combines them into a single raster. 
 

1) Make a copy of one of the rasters to be combined, save it in a different directory, 
and rename it. This will be the combined raster file. 

2) Use the Mosaic tool in ArcGIS to combine the individual rasters. The target raster 
is the raster that was copied. 

 
The resulting raster is on the standardized grid, but it does not occupy the full extent of 
the grid. The ThermalFiles_Final tool converts the mosaicked raster onto the full extent 
of the standardized grid. 
 

1) Use the Extract Multi Values to Points tool to extract the prediction map and the 
uncertainty map raster information to the standardized grid cell centers. 

2) Convert these points to 2 rasters: one for the prediction map, and the other for the 
uncertainty map. 

3) Use Raster Calculator to convert all of the locations with values less than 0 to the 
no information value of -9999. 

teresajordan
Typewritten Text
Memo 16: p. 13



Combining Risk Factors: Detailed 
Calculations and Extended Results 

 
Calvin A. Whealton, Jared D. Smith, Teresa Jordan 

Original from September 30, 2015. Updated October 2016. 
 

Table	of	Contents	

OVERVIEW	..............................................................................................................................................................	2	
1.	INDIVIDUAL	RISK	FACTORS	.........................................................................................................................	3	
1.1	THERMAL	.............................................................................................................................................................................	3	
1.2	RESERVOIRS	........................................................................................................................................................................	7	
1.3	SEISMIC	..............................................................................................................................................................................	13	
1.4	UTILIZATION	....................................................................................................................................................................	17	

2	COMBINED	RISK	FACTORS	..........................................................................................................................	22	
2.1	OVERVIEW	OF	THREE	COMBINATIONS	OF	RISK	........................................................................................................	22	
2.2	UNCERTAINTY	OF	RISK	FACTORS	AND	UNCERTAINTY	FOR	COMBINED	RISK	MAPS	...........................................	22	
2.3	ALL	RISK	FACTORS	COMBINED	.....................................................................................................................................	25	
2.3.1	Average	........................................................................................................................................................................	25	
2.3.2	Geometric	Mean	.......................................................................................................................................................	28	
2.3.3	Minimum	.....................................................................................................................................................................	32	

2.4	GEOLOGY	ONLY	................................................................................................................................................................	34	
2.4.1	Average	........................................................................................................................................................................	34	
2.4.2	Geometric	Mean	.......................................................................................................................................................	36	
2.4.3	Minimum	.....................................................................................................................................................................	38	

2.5.	NO	RESERVOIRS	..............................................................................................................................................................	40	
2.5.1.	Average	.......................................................................................................................................................................	40	
2.5.2	Geometric	Mean	.......................................................................................................................................................	42	
2.5.3	Minimum	.....................................................................................................................................................................	43	

3	ROBUSTNESS	OF	COMBINING	FUNCTIONS	............................................................................................	45	
4	POTENTIAL	PROJECT	LOCATIONS	............................................................................................................	46	
5	REFERENCES	CITED	.......................................................................................................................................	50	
	

DISCLAIMER	
The information, data, or work presented herein was funded in part by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

teresajordan
Typewritten Text

teresajordan
Typewritten Text
Memo 17: Combining Risk Factors in GPFA-AB

teresajordan
Typewritten Text

teresajordan
Typewritten Text

teresajordan
Typewritten Text
Memo 17: p. 1



	 2	

recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
 

Overview	
 
This document outlines detailed calculations and extended results for the individual risk factor 
maps and the combined risk factor (common risk segment, CRS) maps. Individual risk factors 
are addressed first. For each individual risk factor the values (thresholds, minimum, and 
maximum) used in converting the risk factor to the common play fairway favorability scale, the 
frequency distribution of the scaled risk factor, and the play fairway scaled risk factor maps (3- 
and 5-color versions) are shown. Some risk factors have additional challenges or assumptions 
that were used in processing and these are also discussed. 
 
The second section outlines the methods used to combine the individual risk factor maps into a 
single play fairway map (CRS map). Results are presented for combining the 3- and 5-color 
maps separately, including the distribution of the combined play fairway metric for the whole 
map. The combinations are completed separately and presented for all four risk factors, for the 
three geologic risk factors (thermal, seismic, and reservoirs), and for a “no reservoir” set 
(utilization, thermal, and seismic). 
 
The next section discusses the uncertainty in the maps. Although uncertainty maps are presented 
near their related maps, this section gives the details of those calculations. The two main issues 
discussed are the methods used to derive uncertainty of each individual risk factor play fairway 
map and the uncertainty of each combined map. 
 
The last two sections show the robustness of the methods of combining the risk factors, and 
show some results for specific project locations. The robustness is illustrated by plotting the 
results of different combined play fairway metrics against each other. Project-specific results 
show the individual risk factors for a set of locations thought to be of interest for Phase 2. 
 
Some common terms used throughout this report are defined below. 
Play Fairway Metric (PFM): A formula used to generate an aggregate measure of how favorable 

a place (site, raster cell) is based on input risk factors. 
Scaled Risk Factor (SRF): A value for an individual risk factor (RF) that has been converted to 

the play fairway scale of [0,3] or [0,5], depending on the map. 
Thresholds: Values used to assign an input risk factor to the range [0,3] or [0,5], depending on 

the map. These thresholds delineate different color groups on the maps and represent 
boundaries of favorability. 

 
Further explanations and treatment of most of this material can be found in Whealton (2016). 
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1.	Individual	Risk	Factors	
 
Individual risk factors are presented in the following sections. If there were special 
considerations when calculating the risk factor, these are outlined as well. Generally, each input 
risk factor was converted into the play fairway metric by linearly scaling its continuous value 
between the selected thresholds. If an unscaled value was greater than the selected maximum on 
the play fairway scale for that risk factor, it was assigned the maximum (3 or 5). Similarly, if an 
unscaled value was less than the selected minimum on the play fairway scale for that risk factor, 
it was assigned the minimum (0). On the map figures, areas colored white are areas with no data 
for the calculation. These are areas where the risk factor could not be evaluated at that location 
(e.g. no information), or areas outside of the region. Histograms show the selected thresholds 
with respect to the original, unscaled input risk factor map. 
 

1.1	Thermal	
 
The depth to 80 °C is used as the map for the thermal risk factor as per the Statement of Project 
Objectives (SOPO) requirements. The thresholds are based on the memo titled “Assignment of 
Thresholds for Depth-to-Temperature and Temperature-at-Depth Maps” (August 25, 2016). 
Table 1 provides the scaling values and thresholds, Figure 1 shows the histogram of the input 
risk factor map. Figures 2 and 4 show the 3- and 5-color maps for the scaled values.  
 
There were no special calculation considerations for this risk factor. All conversions used a 
linear scale. 
 
The uncertainty was estimated using the mean and standard error of prediction. The distribution 
was assumed to be normal, with mean and standard deviation defined from the mean and 
standard error of prediction. After this, the methods discussed in the uncertainty section were 
used to derive the uncertainty maps shown in Figures 3 and 5. 
 
Table 1: Table of minimum, maximum, and favorability thresholds used in scaling the thermal 

map (depth to 80 °C [m]). The scale is reversed so that high values are unfavorable 
because shallow depths should result in a reduced cost. 

Min 5000 
Max 1000 

3-Color Thresholds {3750, 2350} 
5-Color Thresholds {4000, 3000, 2500, 2000} 
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Figure 1: Histogram of the thermal risk factor with the 3- and 5-color thresh-olds noted. Points 
beyond the minimum and maximum of the scale are assigned the minimum and maximum of the 
scale, respectively (e.g. 0, and 3 or 5). Density is proportional to the frequency or count in the 
bins, but the values have been rescaled so the total area of the histogram is 1. 
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Figure 2: Map of the thermal risk factor with a 3-color scheme. Red areas are unfavorable and 
green areas are favorable values of the scaled risk factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Map of the standard deviation of the scaled thermal risk factor with a 3-color scheme. 
Dark colors are more certain and light colors are less certain. 
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Figure 4. Map of the thermal risk factor with a 5-color scheme. Red areas are unfavorable and 
green areas are favorable values of the scaled risk factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Map of the standard deviation of the scaled thermal risk factor with a 3-color scheme. 
Dark colors are more certain and light colors are less certain. 
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1.2	Reservoirs	
 
The reservoir play fairway risk is in terms of Reservoir Productivity Indices for water as a 
working fluid (RPIw) and for supercritical carbon dioxide as a working fluid (RPIg), measured 
in units of kg/MPa-s, as well as another metric that expresses only the natural in situ capacity to 
hold fluids, the Reservoir Fluid Capacity metric (RFC). These reservoir quality indices are the 
calculated expressions of the reservoir's favorability for geothermal applications. More 
information is available in the memo “Natural Reservoirs Task Methodology”. The reservoir 
data were divided into 500 m depth slices, with the shallowest slice being 1000-1500 m and the 
deepest being 3500-4000 m. These depth slices were combined into a single risk factor map by 
taking the maximum (high values are good) value at each spatial location. Reservoirs shallower 
than 1000 m were ignored in the combination because they will likely not meet the minimum 
temperature requirements for our projects.  
 
A point of reference for the selection of thresholds at which to divide RPIw into a non-
dimensional reservoir metric is the anticipated need to achieve the equivalent of 30 kg/sec flow 
rate for a water-based geothermal well. Assuming that the greatest pressure drop would be 3 
MPa, the RPIw threshold for the reservoir which could achieve 30 kg/sec flow with no reservoir 
stimulation is approximately 10 kg/MPa-s. A conversion of potential heat transfer and transport 
by supercritical carbon dioxide to this water-based flux provides a basis for determining that the 
thresholds for RPIg should be approximately the same as for RPIw. Table 2 gives the thresholds, 
and Figure 6 gives the histograms of all three reservoir productivity indices (transformed to base-
10 log). Figures 7a, 8a, and 9a plot the 3-color maps of RPIw, RPIg, and RFC factors converted 
to the 3-point scale, respectively. Figures 10a, 11a, and 12a plot the 5-color maps of the play 
fairway conversion for RPIw, RPIg, and RFC. 
 
Table 2 gives the thresholds, and Figure 6 gives the histograms of all three reservoir productivity 
indices (transformed to base-10 log). Figures 7a, 8a, and 9a plot the 3-color maps of RPIw, RPIg, 
and RFC risk factors converted to the 3-point scale, respectively. Figures 10a, 11a, and 12a plot 
the 5-color maps of the play fairway conversion for RPIw, RPIg, and RFC. 
 
The thresholds are defined mainly for orders of magnitude, so the conversion was linear on a 
logarithmic scale. The steps in this analysis were first to convert the raster of the maximums by 
taking the base-10 log of the values. Similarly, the thresholds were converted to base-10 logs. 
Once the raster and the thresholds were converted, the conversion was linear. 
 
Because the reservoir data are limited to a subset of the study area, regions with no reservoir data 
in this project’s compilation appear on the maps as white zones. These  white zones portray no 
significance relative to the existence or not of potential reservoirs for geothermal heat extraction. 
Yet they do portray a high degree of risk because the lack of data. 
 
The uncertainty of the reservoir map was calculated by assuming that the provided mean and 
coefficient of variation defined a log-normal distribution. The parameters were specified in real-
space, not log-space, so they had to be converted. The log-space variance, σ2, can be solved for 
from the real space coefficient of variation, CV, as shown in Equation 1. The log-space mean, µ, 
can be solved using the real-space mean, m, and the log-space variance, σ2, as shown in Equation 
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2. The uncertainty of the individual maps was then calculated based the methods discussed in the 
uncertainty section of this document and the results are shown in  Figures 7b, 8b, 9b, 10b, 11b 
and 12b. 
 
    𝜎2 = ln(1 + CV2)    (1) 
 

𝜇 = ln 𝑚 −  !!!     (2) 
 
Table 2: Table of minimum, maximum, and favorability thresholds used in scaling the reservoir 

map. RPIw, RPIg, and RFC can each be considered as a measure of risk for the reservoir 
risk factor. 

 RPIw (kg/MPa-s) RPIg (kg/MPa-s) RFC (mD-m) 
Min 1 X 10!! 1 X 10!! 1 X 10!! 
Max 10 10 1 X 10! 

3-Color Thresholds {0.1, 1} {0.1, 1} {10, 100} 
5-Color Thresholds {0.001, 0.01, 0.1, 1} {0.001, 0.01, 0.1, 

1} 
{1,10,100,1000} 
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           (a)      (b) 

 
   (c)       

 
Figure 6: Histograms of the reservoir risk 
factors with the 3- and 5-color thresholds noted 
in Table 2. Points beyond the minimum and 
maximum of the scale are assigned the 
minimum and maximum of the scale, 
respectively (e.g. 0, and 3 or 5).  Density is 
proportional to the frequency or count in the 
bins, but the values have been rescaled so the 
total area of the histogram is 1. a) for RPIw; b) 
for RPIg; c) for RFC. 
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 A.      B. 

 
 
Figure 7. a) Map of the reservoir risk factor RPIw with a 3-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Map of the standard 
deviation of the scaled risk factor for reservoirs for a 3-color scheme. Dark colors are more 
certain and light colors are less certain.  
 
 A.      B. 

 
Figure 8. a) Map of the reservoir risk factor RPIg with a 3-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Map of the standard 
deviation of the scaled risk factor for reservoirs for a 3-color scheme. Dark colors are more 
certain and light colors are less certain.  
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 A.      B. 
 

 
Figure 9. a) Map of the reservoir risk factor RFC with a 3-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Map of the standard 
deviation of the scaled risk factor for reservoirs for a 3-color scheme. Dark colors are more 
certain and light colors are less certain.  

 

A.      B. 

Figure 10. a) Map of the reservoir risk factor RPIw with a 5-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Map of the standard 
deviation of the scaled risk factor for reservoirs for a 5-color scheme. Dark colors are more 
certain and light colors are less certain. 
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A.      B. 

 
Figure 11. a) Map of the reservoir risk factor RPIg with a 5-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Map of the standard 
deviation of the scaled risk factor for reservoirs for a 5-color scheme. Dark colors are more 
certain and light colors are less certain. 
 
A.      B. 

Figure 12. a) Map of the reservoir risk factor RFC with a 5-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Map of the standard 
deviation of the scaled risk factor for reservoirs for a 5-color scheme. Dark colors are more 
certain and light colors are less certain. 
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1.3	Seismic	
 
The seismic risk factor had two separate measures of risk: one for proximity to earthquakes and 
one for orientation of “worms” to the stress field. These were considered separate estimates of 
the risk, so they were averaged to create a seismic risk map. Both were converted into the play 
fairway scale before averaging. The stress map has values calculated as the minimum angle 
between the “worms” and the stress field failure angle according to Byerlee’s Law for failure of 
preexisting fractures. The earthquake map uses proximity to earthquakes and has units of meters. 
 
Table 3 presents the thresholds used in creating the maps and Figure 13 plots the histograms of 
the earthquake- and stress-based risks. Figures 14a and 15a are the earthquake based risk maps 
for 3- and 5-color schemes, Figures 16a and 17a are the stress based risk maps for 3- and 5-color 
schemes, and Figures 18a and 19a are the averaged seismic risk map for the 3- and 5-color 
schemes. The same scale is used in the averaged map as in the input maps. The averaged seismic 
maps show that the areas with earthquakes are still high risk, but many of the “worms” with 
favorable orientation but no earthquakes nearby have been discounted in the average. 
 
The uncertainty for the earthquake-based map was calculated by assuming a normal distribution 
with mean and standard deviation given as the prediction and the error, respectively. Because 
being 1 km from a worm should be equivalent to being -1 km from a worm, the absolute value 
was taken. The methods described in the uncertainty section were used to develop uncertainty 
maps, which are shown in Figures 14b and 15b. 
 
The uncertainty for the stress-based map was calculated by assuming that the mean and standard 
deviation defined a normal distribution. Because being 1° from a critical failure orientation 
should be equivalent to being -1° from a critical failure orientation, the absolute value was taken. 
All angles were converted to [0°, 180°] because the critical angles were calculated in this domain. 
The two critical orientations are 65.2° and 114.8° on [0°, 180°]. The risk factor was calculated by 
finding the smallest angle to one of the critical angles. The methods described in the uncertainty 
section were used to develop uncertainty maps for this metric, which are shown in Figures 16b 
and 17b. 
 
When the two stress maps were averaged (multiplied by 0.5 each), the variance of the average 
could be calculated by summing the two individual variance uncertainty maps and multiplying 
the total by a value of 0.25. The results are given in Figures 18b and 19b. Generally, the 
earthquake-based maps have much higher certainty than the stress angle-based maps (more 
details in the memos “Identifying Potentially Activatable Faults for the Appalachian Basin Play 
Fairway Analysis” and “Conversion of Seismic Risk Data to Risk Maps”). 
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 (a) Earthquake-based (m)   (b) Stress-based (degrees) 
 
Figure 13. Histograms of the seismic risk factor for earthquakes and stress with the 3- and 5-
color thresholds noted. Points beyond the minimum and maximum of the scale are assigned the 
minimum and maximum of the scale, respectively (e.g. 0, and 3 or 5). Density is proportional to 
the frequency or count in the bins, but the values have been rescaled so the total area of the 
histogram is 1. 
 
 
Table 3: Table of minimum, maximum, and favorability thresholds used in scaling the seismic 

maps. Earthquake units are in meters and stress units are in degrees. Minimum values 
were not set to zero to avoid possible numerical problems. 

Scaling Earthquake (m) Stress Angle (°) 
Min 0.1 0.001 
Max 25000 25 

3-Color Thresholds {8000, 16000} {8, 16} 
5-Color Thresholds {5000, 10000, 15000, 20000} {5, 10, 15, 20} 
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A.      B. 

 
Figure 14. a) Map of the seismic risk factor for earthquakes with a 3-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Standard deviation 
of the scaled earthquake-based seismic risk factor for a 3-color scheme. Dark colors are more 
certain and light colors are less certain. 
 
 
A.      B. 

 
 
Figure 15. a) Map of the seismic risk factor for earthquakes with a 5-color scheme. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. b) Standard deviation 
of the scaled earthquake-based seismic risk factor for a 5-color scheme. Dark colors are more 
certain and light colors are less certain. 
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A.      B. 
 

Figure 16. a) Map of the seismic risk factor for slip tendency in the regional stress field with a 3-
color scheme. Red areas are unfavorable and green areas are favorable values of the scaled risk 
factor. b) Map of the standard deviation of the scaled risk factor for slip tendency in the regional 
stress field with a 3-color scheme. Dark colors are more certain and light colors are less certain. 

A.      B. 

Figure 17. a) Map of the seismic risk factor for stress-based assessment with a 5-color scheme. 
Red areas are unfavorable and green areas are favorable values of the scaled risk factor. b) Map 
of the standard deviation of the scaled risk factor for slip tendency in the regional stress field 
with a 5-color scheme. Dark colors are more certain and light colors are less certain. 
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A.      B. 

 
Figure 18. a) Map of the seismic risk factor (averaged stress-based and earthquake proximity-
based) with a 3-color scheme. Red areas are unfavorable and green areas are favorable values of 
the scaled risk factor. b) Map of the standard deviation of the scaled risk factor for averaged 
seismic risk factor with a 3-color scheme. Dark colors are more certain and light colors are less 
certain. 
 
A.      B. 

 
Figure 19. a) Map of the seismic risk factor (averaged stress and earthquake) with a 5-color 
scheme. Red areas are unfavorable and green areas are favorable values of the scaled risk factor. 
b) Map of the standard deviation of the scaled risk factor for averaged seismic risk factor with a 
5-color scheme. Dark colors are more certain and light colors are less certain. 
 

1.4	Utilization	
 
The utilization risk factor is based on the surface levelized cost of heat (SLCOH, \$/MMBTU), 
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which was calculated using methods described in the utilization methodology section. The 
calculations are based on district heating only, not other potential direct-use applications. There 
were several special considerations. Because this analysis focused on geothermal district heating 
systems, the communities must be of sufficient size to afford the upfront capital cost associated 
with the project. Therefore, places with fewer than 4,000  people had the SLCOH set to an 
arbitrary value, 100 $/MMBTU, to represent that a district heating system of sufficient size to be 
of interest for this project would be infeasible for this population. 
 
Occasionally a place with fewer than 4,000 people was located adjacent to a place with enough 
people such that the sum of the two places was greater than 4,000 people. As a result of this 
finding, all census places with fewer than 4,000 people were merged with available adjacent 
places within 100 m. Places were merged until the combined population was greater than or 
equal to 10,000 people. After a set of places reached 10,000 people, the resulting set only gained 
those places that were adjacent to it and had populations fewer than 4,000 people. 
 
Our project requires co-location of the utilization location with the reservoirs, but it is reasonable 
to assume that the utilization location can be a small distance from the location of the reservoir. 
Therefore, the input utilization map was buffered. All pixels (raster cells) whose center was 
within 5 km of the center of the middle cell were included in the buffer. The best utilization 
value (lowest SLCOH) among these cells was assigned to only the center value. Figure 20 shows 
an example of the cells considered in the calculation.  
 
The 3-color thresholds are based on recommendations from the utilization team, including K. 
Welcker, Z. Frone, and M. Richards. Based on these values, the 5-color thresholds were assigned. 
The minimum and maximum values were assigned as well. 
 
Table 4 summarizes the thresholds, Figure 21 gives the histogram of the utilization risk factor 
(only values less than $100/MMBTU are plotted), Figures 22 and 23 give the utilization map 
converted into the 3- and 5-color play fairway scheme without buffering to account for the 
utilization distance, whereas Figures 24 and 25 illustrate the utilization map with the buffers. 
 
No uncertainty was assigned by the utilization team to their calculations or model prior to these 
calculations being made. 
 
Table 4: Table of minimum, maximum, and thresholds used in scaling the utilization map. The 

measure of risk is the surface levelized cost of heat ($/MMBTU). The scale is reversed 
because high SLCOH is unfavorable. 

Min 25 
Max 5 

3-Color Thresholds {13.5,16} 
5-Color Thresholds {12,13.5, 16, 20} 
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Figure 20. Weighting matrix used when evaluating the best utility for the pixel (raster cell). The 
maximum of the neighboring pixels within a certain distance is taken (best of cells in yellow). 
Cells whose center is farther than 5 km from the center (black dot) are not considered and are 
marked as red. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Histogram of the utilization risk factor with the 3- and 5-color thresholds noted. 
Points beyond the minimum and maximum of the scale are assigned the minimum and maximum 
of the scale, respectively (e.g. 0, and 3 or 5). Only values less than 100 are plotted to avoid large 
distortions in the scale.  Density is proportional to the frequency or count in the bins, but the 
values have been rescaled so the total area of the histogram is 1. 
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Figure 22. Map of the utilization risk factor with a 3-color scheme with no buffer. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Map of the utilization risk factor with a 5-color scheme with no buffer. Red areas are 
unfavorable and green areas are favorable values of the scaled risk factor. 
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Figure 24. Map of the utilization risk factor with a 3-color scheme with a 5 km radial buffer. Red 
areas are unfavorable and green areas are favorable values of the scaled risk factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Map of the utilization risk factor with a 5-color scheme with a 5 km radial buffer. Red 
areas are unfavorable and green areas are favorable values of the scaled risk factor.  
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2	Combined	Risk	Factors	
 
The following sections outline extended results for combining risk factors. The results for all risk 
factors are presented first, followed by geology variables only (no utilization), and then the 
results without reservoirs (potentially enhanced geothermal systems [EGS]). 
 

2.1	Overview	of	Three	Combinations	of	Risk	
 
The risk factors can be combined in several ways. We considered taking the average, geometric 
mean, or minimum value. Equations 3 to 5 show the formulas used, where PFM is the combined 
play fairway metric, SRFi is the ith risk factor scaled into the play fairway system (e.g. 0 to 3, or 
0 to 5), n is the number of risk factors, and (j, k) is the raster cell location. Areas without a risk 
factor defined appear as white in the final map, indicating insufficient data to evaluate the PFM 
at that location.  
 
The following subsections present the results for 3- and 5-color maps for each method of 
combining the maps (Figures 26-34).  
 
Table 5: Table of thresholds for the different methods of combining risk factors.  

Scaling 3-Color 5-Color 
Average   

Geometric Mean {0,1,2,3} {0, 1, 2, 3, 4, 5} 
Minimum   
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2.2	Uncertainty	of	Risk	Factors	and	Uncertainty	for	Combined	Risk	Maps	
 
We are not only interested in the mean value of the play fairway metric, but also the uncertainty. 
Each group working on a geologic risk factor submitted an uncertainty map. The uncertainty 
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sometimes is statistically based, and in other cases based on the professional judgment of 
members in the group. The first objective was to convert the uncertainty in a risk factor into the 
uncertainty of the scaled risk factor (risk factor converted into the play fairway scheme), and 
display these results in a map. The second objective was to use the uncertainties in the scaled risk 
factors to estimate the uncertainty in the combined play fairway metric. 
 
There are two main methods of approximating the variance (uncertainty) of a function given the 
uncertainty in the inputs: Taylor series approximations and Monte Carlo simulation. Both are 
used in this analysis of uncertainty. 
 
The Taylor series approximation is given in Equation 6. This equation is used to approximate the 
uncertainty variance of the PFM at each pixel. Here PFM is the combined play fairway metric 
(e.g. average or geometric mean), RFi is the ith risk factor (e.g. thermal or seismic), SRFi is the ith 
scaled risk factor (scaled to the play fairway system using the favorability thresholds), Var(.) is a 
variance, µRF is the mean value of risk factor RF at the pixel, and n is the number of risk factors. 
This approach is useful for many applications, but in our case the function used to map RFi to 
SRFi based on the thresholds has many kinks and is often constant over large ranges. The kinks 
make the partial derivative discontinuous, and the constant areas make the derivative equal to 
zero; however, we still anticipate some uncertainty in SRFi. One advantage of the Taylor Series 
approach is that it could be completed with the existing rasters fairly easily [Note: Equation 6 
assumes that there is no covariance between the risk factors]. 
 

 𝑉𝑎𝑟 𝑃𝐹𝑀 ≈ !"#$ !!"#
!!"#!

! !!"#! !!"
!!"!

!!
!!! 𝑉𝑎𝑟(𝑅𝐹!) 

   
(6) 

 
The Monte Carlo simulation approach to calculating the variance of the PFM is to generate a 
random sample from the distribution of each risk factor at a pixel (raster cell) and then calculate 
the variance of the resulting distribution of the PFM. In principle this should be more accurate, 
but using a separate Monte Carlo trial for each pixel becomes challenging computationally. This 
approach is also limited in accuracy by the distribution (e.g. normal, lognormal) used to generate 
replicates (random values) of each risk factor. 
 
We used a hybrid procedure that used both Taylor Series and Monte Carlo analysis to quantify 
the uncertainty in PFMavg and PFMgm. The uncertainty addressed with this method was only 
based on the mean (typical value) and uncertainty (variance, coefficient of variation) of the risk 
factors and not based on propagating uncertainty in variables used to calculate each risk factor. 
Table 6 shows the risk factor model (left-most column) that was the source of the uncertainty, 
the method used to estimate the uncertainty, the assumed distribution of the data, and the 
assumed distribution model for the Monte Carlo analysis of scaled risk factors.  
 
In order to evaluate the uncertainty variance in the scaled risk factors (SRFs), we built an 
interpolation table of the SRF variance. This interpolation table was referenced by the mean 
(rows) and uncertainty (columns) of the unscaled RFs. The interpolation table mean values and 
uncertainty values were based on the range (minimum to maximum over the region) of inputs for 
the unscaled RF of interest. A separate interpolation table was made for each RF. The resolution 
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in each table was at least 13% of the range in each dimension. 100,000 replicates were used to 
build the interpolation table. Next, based on the mean and uncertainty of each unscaled RF at 
each pixel in the map, we linearly interpolated in the table for the uncertainty values of the RF to 
estimate the resulting variance of the SRF, Var(SRF). Next, we used the Taylor series 
approximation in equation 7 to quickly approximate the variance in each PFM based on the 
Taylor series expansion, where PFMgm  and PFMavg were substituted for PFM. The computations 
for the geometric mean were done in log space (described below), and the computations for the 
average were done in real space. 
 
Table 6: Risk factor uncertainties and distributions used in propagating uncertainty in the 
combined risk analysis. The uncertainties can arise from several sources. The right most column 
provides the distributions used in the Monte Carlo analysis described in the uncertainty analysis 
section. 
SRF Uncertainty 
source 

Uncertainty 
Estimation 

Distribution SRF Uncertainty 
Model 

Thermal 
Spatial Interpolation Kriging Standard 

Error 
normal normal 

Reservoirs 
Permeability (κ) 
Thickness (η) 
Viscosity (µ) 
Area Factor (fa) 

Expert Judgment 
Expert Judgment 
Expert Judgment 
Expert Judgment 

log-normal 
triangular 

normal 
triangular 

log-normal 

Seismic based on Stress Field and Edge Orientations 
Stress Map 
Interpolation and 
Edge Orientation 

From Resolution of 
Data 

von Mises folded normal 

Seismic Based on Earthquake Proximity to Edges 
Hypocenter 
Location Error 

Typical Error from 
Catalog 

normal normal 

Utilization 
Approximations of 
Piping and Network 
and other 
Infrastructure 

Professional 
Judgment 

normal normal 

 
 

𝑉𝑎𝑟 𝑃𝐹𝑀 ≈  !"#$ !!"#
!!"#!

!
𝑉𝑎𝑟(𝑆𝑅𝐹!)!

!!!    (7) 
 
The uncertainty is expressed as the standard deviation for the average of all the risk factors in 
Figures 27d, e, f and 28d, e, f. 
 
The expansion of the geometric mean could be completed either in terms of PFMgm 

(real-space) or ln(PFMgm) (log-space). Both have advantages and disadvantages.  
In real-space, the variances of the SRFs are always defined, but for small values of the geometric 
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mean (close to zero) the expansion becomes undefined or unstable. In log-space, the variance of 
the SRFs is not defined if the distribution of the variable includes any real-space zeros; however, 
in log-space the geometric mean is a simple average and the variance of an average of 
independent uncertainties is just the sum of the variances with their weights squared. 
 
We used a log-space method for the geometric mean, and in our Monte Carlo analysis we also 
generated the variance of the logarithms of the four SRFs. To avoid issues of undefined log-
space variances, if any generated value of a SRF was less than 0.2 in the Monte Carlo analysis, it 
was set to 0.2. Such areas will likely not be of great interest because they have low favorability, 
and it allowed the analysis to proceed. Because seismic was the average of two factors, the log-
space variance was estimated from a Taylor series expansion based on the real-space variance of 
those two factors. To avoid numerical problems, when the average of the seismic variables was 
less than 0.2 the average was set to 0.2. After developing the log-space variance of the geometric 
mean, it was transformed to real-space using a Taylor series. 
 
The uncertainty expressed as standard deviation for the combination of all the risk factors by 
geometric mean is displayed in Figure 30d, e, f and 31d, e, f. 
 
The uncertainty in the minimum of several random variables (risk factors) is more complicated. 
The variance of the minimum should not be approximated using the Taylor series equations 
above. The minimum function is very poorly approximated by the Taylor series if the risk factor 
that defines the minimum is not always the same (e.g. always utilization). As a result of this 
complication, we opted to Monte Carlo the uncertainty of the minimum using the same 
distributions for each RF as provided in Table 6. We used 10,000 replicates for computational 
time savings relative to 100,000 replicates. We also only made minimum uncertainty maps for 
the 5 color scheme for computational time savings. 
 
The uncertainty expressed as standard deviation for the combination of all the risk factors by 
minimum is displayed in Figure 34d, e, f.  

2.3	All	Risk	Factors	Combined	
This subsection gives the results for combining all four risk factors. The results are given for 
combinations based on the average, the geometric mean, and the minimum of the individual risk 
factors. For each combination function, histograms of the distribution of combined play fairway 
metric values are also provided. 
 

2.3.1	Average	
 
The following results are for averaging the individual risk factors. The thresholds are given in 
Table 5. Figure 26 shows the histograms (specific to RPIw as the reservoir metric) for the 5-
color map. Figures 27 and 28 show the 3- and 5-color maps, respectively, for all combinations of 
four categories of risk factors, solved three times to utilize the three different reservoir metrics. 
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Figure 26. Histogram of the combined risk metric for RPIw as the reservoir metric using an 
average with 5-color schemes. Density is proportional to the frequency or count in the bins, but 
the values have been rescaled so the total area of the histogram is 1. 
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 a) With RPIw   (b) With RPIg   (c) With RFC 

 (d) With RPIw   (e) With RPIg   (f) With RFC 
 
Figure 27. Maps of the combined risk with a 3-color scheme using averaging. Red areas are 
unfavorable and green areas are favorable values of the play fairway metric. a) For reservoir 
quality described by RPIw. b) For reservoir quality described by RPIg. c) For reservoir quality 
described by RFC. d) Standard deviation on the average of all four  individual risk categories, 
using RPIw as the reservoir quality metric. e) Standard deviation on the average of all categories, 
using RPIg as the reservoir quality metric. f) Standard deviation on the average of all categories, 
using RFC as the reservoir quality metric. 
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 (a) With RPIw   (b) With RPIg   (c) With RFC 

 (d) With RPIw   (e) With RPIg   (f) With RFC 
 
Figure 28. Maps of the combined risk with a 5-color scheme using the average. Red areas are 
unfavorable and green areas are favorable values of the play fairway metric. a) For reservoir 
quality described by RPIw. b) For reservoir quality described by RPIg. c) For reservoir quality 
described by RFC. d) Standard deviation on the average of all four individual risk categories, 
using RPIw as the reservoir quality metric. e) Standard deviation on the average of all categories, 
using RPIg as the reservoir quality metric. f) Standard deviation on the average of all categories, 
using RFC as the reservoir quality metric. 
 
 

2.3.2	Geometric	Mean	
 
The following results are for taking the geometric mean of the risk factors. The thresholds are 
given in Table 5. The histogram for the 5-color map (specific to RPIw as the reservoir metric) is 
given in Figure 29, and the 3- and 5-color maps for all three reservoir metrics are given in 
Figures 30 and 31, respectively. The geometric mean of the four categories of risk is shown three 
times, once for each of the choices of reservoir metrics. Note that there is a large portion of the 
data at zero mainly because the utilization values gave many zeros, which set the geometric 
mean to zero. 
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Figure 29. Histogram of the combined risk metric for RPIw as the reservoir metric using a 
geometric mean with the 5-color schemes. Density is proportional to the frequency or count in 
the bins, but the values have been rescaled so the total area of the histogram is 1. 
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 a) With RPIw   (b) With RPIg   (c) With RFC 

 (d) With RPIw   (e) With RPIg   (f) With RFC 
 
Figure 30. Map of the combined risk map with a 3-color scheme using geometric mean. Red 
areas are unfavorable and green areas are favorable values of the play fairway metric. a) For 
reservoir quality described by RPIw. b) For reservoir quality described by RPIg. c) For reservoir 
quality described by RFC. d) Standard deviation on the geometric mean of all categories, using 
RPIw as the reservoir quality metric. e) Standard deviation on the geometric mean of all 
categories, using RPIg as the reservoir quality metric. f) Standard deviation on the geometric 
mean of all categories, using RFC as the reservoir quality metric. 
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 (a) With RPIw   (b) With RPIg   (c) With RFC 

  
  
 (d) With RPIw   (e) With RPIg   (f) With RFC 
 
Figure 31. Maps of the combined risk with a 5-color scheme using geometric mean. Red areas 
are unfavorable and green areas are favorable values of the play fairway metric.  a) For reservoir 
quality described by RPIw. b) For reservoir quality described by RPIg. c) For reservoir quality 
described by RFC. d) Standard deviation on the geometric mean of all categories, using RPIw as 
the reservoir quality metric. e) Standard deviation on the geometric mean of all categories, using 
RPIg as the reservoir quality metric. f) Standard deviation on the geometric mean of all 
categories, using RFC as the reservoir quality metric. 
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2.3.3	Minimum	
 
The following results are for taking the minimum of the risk factors. The thresholds are given in 
Table 5. The thresholds are based on the original scale of the colors, so green would mean that 
the lowest risk metric is green at that location (very good). Because of the choice of scale, the 
area is dominated by reds. Figure 32 plots the histogram for the 5-color map (specific to RPIw as 
the reservoir metric). Figures 33 and 34 plot the 3- and 5-color maps, respectively, of the 
combined risk of the four risk factors, solved three times to utilize each of the reservoir metrics. 
The large number of zeros is because many of the utilization locations did not meet the 
requirement of 4,000 people, so they had the high SLCOH assigned, which in turn means that 
their scaled risk factor value was zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Histogram of the combined risk metric for RPIw as the reservoir metric, for a 
combination based on using a minimum, with the 5-color schemes. Density is proportional to the 
frequency or count in the bins, but the values have been rescaled so the total area of the 
histogram is 1. 
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 a) With RPIw   (b) With RPIg   (c) With RFC 

Figure 33. Map of the combined risk map with a 3-color scheme using minimums. Red areas are 
unfavorable and green areas are favorable values of the play fairway metric. a) For reservoir 
quality described by RPIw. b) For reservoir quality described by RPIg. c) For reservoir quality 
described by RFC. 
 
 
 (a) With RPIw   (b) With RPIg   (c) With RFC 

 (d) With RPIw   (e) With RPIg   (f) With RFC 
 

Figure 34. Maps of the combined risk with a 5-color scheme combined based on minimums. Red 
areas are unfavorable and green areas are favorable values of the play fairway metric.  a) For 
reservoir quality described by RPIw. b) For reservoir quality described by RPIg. c) For reservoir 
quality described by RFC. d) Standard deviation on the minimum of all categories, using RPIw 
as the reservoir quality metric. e) Standard deviation on the minimum of all categories, using 
RPIg as the reservoir quality metric. f) Standard deviation on the minimum of all categories, 
using RFC as the reservoir quality metric. 
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2.4	Geology	Only	
This section presents the results for combining the three risk categories that relate to geology 
only. No utilization factor is included. Furthermore, only the natural properties of the reservoir 
rather than the design of a well field and extraction process are to be included, thus RFC is the 
reservoir metric used. This would represent the best areas to develop the resources independent 
of the current location of population centers and the engineering design of an extraction project. 
The results are given for combinations based on the average, the geometric mean, and the 
minimum of the three individual risk factors. For each combination function, histograms of the 
distribution of combined play fairway metric values are also provided. 
 

2.4.1	Average	
 
The following results are for averaging the geologic risk factors. The thresholds are given in 
Table 5. Figure 35 shows the histogram for the 5-color map of the resulting metric, and Figures 
36 and 37 show the 3- and 5-color maps, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Histograms of the combined risk metric using an average with the 5-color scheme for 
geology only.  Density is proportional to the frequency or count in the bins, but the values have 
been rescaled so the total area of the histogram is 1. 
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       (a)         (b) 
Figure 36. a) Map of the combined risk with a 3-color scheme using an average for geology only, 
and using RFC as the reservoir quality metric. Red areas are unfavorable and green areas are 
favorable values of the play fairway metric. b) Map of the standard deviation of the uncertainty 
related to computing the combined risk by averaging. Dark tones indicate a high degree of 
certainty, and light tones a low degree of certainty. 
 
 
 
 

       (a)         (b) 
Figure 37. a) Map of the combined risk with a 5-color scheme using an average for geology only, 
and using RFC as the reservoir quality metric. Red areas are unfavorable and green areas are 
favorable values of the play fairway metric. b) Standard deviation on the average of the three 
geological categories, using RFC as the reservoir quality metric. Dark tones indicate a high 
degree of certainty, and light tones a low degree of certainty. 
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2.4.2	Geometric	Mean	
 
The following results are for taking the geometric	mean	of the risk factors. The thresholds are 
given in Table 5. The histogram for the 5-color map is given in Figure 38 and the 3- and 5-color 
maps are given in Figures 39 and 40, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Histogram of the combined risk metric using a geometric	mean	with the 5-color 
scheme for geology only.  Density is proportional to the frequency or count in the bins, but the 
values have been rescaled so the total area of the histogram is 1. 
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       (a)         (b) 
Figure 39. a) Map of the combined risk with a 3-color scheme using a geometric mean for 
geology only, and using RFC as the reservoir quality metric. Red areas are unfavorable and 
green areas are favorable values of the play fairway metric. b) Map of the standard deviation of 
the uncertainty based on a combination by geometric mean. Dark tones indicate a high degree of 
certainty, and light tones a low degree of certainty. 
 
 

       (a)         (b) 
Figure 40.  a) Map of the combined risk with a 5-color scheme using minimum for geology only, 
and using RFC as the reservoir quality metric. Red areas are unfavorable and green areas are 
favorable values of the play fairway metric. b) Standard deviation on the minimum of the three 
geological categories, using RFC as the reservoir quality metric. Dark tones indicate a high 
degree of certainty, and light tones a low degree of certainty. 
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2.4.3	Minimum	
 
The following results are for taking the minimum of the risk factors. The thresholds are given in 
Table 5. The thresholds are based on the original scale of the colors, so green would mean that 
the lowest risk metric is green at that location (very good). Because of the choice of scale, the 
area is dominated by reds. Figure 41 plots the histogram for the 5-color map and Figures 42 and 
43 plot the 3- and 5-color maps, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 41. Histogram of the combined risk metric using a minimum with the 5-color scheme for 
geology only.  Density is proportional to the frequency or count in the bins, but the values have 
been rescaled so the total area of the histogram is 1. 
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Figure 42. Map of the combined risk map with a 3-color scheme using minimums for geology 
only, and using RFC as the reservoir quality metric. Red areas are unfavorable and green areas 
are favorable values of the play fairway metric.  
 

       (a)         (b) 
Figure 43. a) Map of the combined risk map with a 5-color scheme using minimums for geology 
only, and using RFC as the reservoir quality metric. Red areas are unfavorable and green areas 
are favorable values of the play fairway metric. b) Standard deviation on the minimum of the 
three geological categories, using RFC as the reservoir quality metric. Dark tones indicate a high 
degree of certainty, and light tones a low degree of certainty.  
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2.5.	No	Reservoirs  
	

This section presents the results for combining three categories of risk (thermal, utilization, 
induced seismicity) but omitting reservoirs. This analysis is intended to inform consideration of 
the regional variability of opportunities for enhanced geothermal systems (EGS), in which a 
reservoir is produced by engineering rather than provided by natural conditions. The results are 
given for combinations based on the average, the geometric mean, and the minimum of the 
individual risk factors. For each combination function, histograms of the distribution of 
combined play fairway metric values are also provided. 
 

2.5.1.	Average	
The following results are for averaging the three risk factors. The thresholds are given in Table 5. 
Figure 44 shows the histograms for the 3- and 5-color maps, respectively, of the resulting metric 
and Figures 45 and 46 show the 3- and 5-color maps, respectively. 

 A.      B. 
 
 
Figure 44. Histograms of the combined risk metric using an average with a) 3- and b) 5-color 
schemes for the thermal, seismic and utilization risk factors (no natural reservoirs). Density is 
proportional to the frequency or count in the bins, but the values have been rescaled so the total 
area of the histogram is 1. 
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 A.      B. 

 
Figure 45. a) Map of the combined risk map with a 3-color scheme using an average for all risk 
factors except natural reservoirs. Red areas are unfavorable and green areas are favorable values 
of the play fairway metric. b) Map of the standard deviation of the combined risk computed by 
averaging. Dark tones indicate a high degree of certainty, and light tones a low degree of 
certainty. 
 
 A.      B.  

 
Figure 46. a) Map of the combined risk map with a 5-color scheme using an average for all risk 
factors except natural reservoirs. Red areas are unfavorable and green areas are favorable values 
of the play fairway metric. b) Map of the standard deviation of the combined risk computed by 
averaging. Dark tones indicate a high degree of certainty, and light tones a low degree of 
certainty. 
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2.5.2	Geometric	Mean		
 
The following results are for taking the geometric mean of the risk factors. The thresholds are 
given in Table 5. The histograms for the 3- and 5-color maps are given in Figure 47 and the 3- 
and 5-color maps are given in Figures 48 and 49, respectively. 
 
 A.      B.  

 
Figure 47. Histograms of the combined risk metric using a geometric mean with a) 3- and b) 5-
color schemes for all risk factors except natural reservoirs. Density is proportional to the 
frequency or count in the bins, but the values have been rescaled so the total area of the 
histogram is 1. 
 
 A.      B. 

 
Figure 48. a) Map of the combined risk map with a 3-color scheme using a geometric mean of all 
risk factors except natural reservoirs. Red areas are unfavorable and green areas are favorable 
values of the play fairway metric. b) Map of the standard deviation of the combined risk 
computed using the geometric mean. Dark tones indicate a high degree of certainty, and light 
tones a low degree of certainty. 
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 A.      B. 

Figure 49. a) Map of the combined risk map with a 5-color scheme using a geometric mean of all 
risk factors except natural reservoirs. Red areas are unfavorable and green areas are favorable 
values of the play fairway metric. b) Map of the standard deviation of the combined risk 
computed using the geometric mean. Dark tones indicate a high degree of certainty, and light 
tones a low degree of certainty. 
 

2.5.3	Minimum	
 
The following results are for creating the Play Fairway Metric by taking the minimum of the 
three non-reservoir risk factors. The thresholds are given in Table 5. The thresholds are based on 
the original scale of the colors, so green would mean that the lowest risk metric is green at that 
location (very good). Because of the choice of scale, the area is dominated by reds. Figure 50 
plots the histograms for the 3- and 5-color maps and  
 
Figure 51 presents the 3- and 5-color maps. The large number of zeros is because many of the 
utilization locations did not meet the requirement of 4,000 people, so they had the high SLCOH 
assigned, which in turn means that their scaled risk factor value was zero. 
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 A.      B. 

Figure 50. Histograms of the combined risk metric using a minimum with 3- and 5-color 
schemes for all risk factors except reservoirs.  Density is proportional to the frequency or count 
in the bins, but the values have been rescaled so the total area of the histogram is 1. 
 
 A.      B. 
 

 
 
 
 
 
 
 
 
 
 
 
 

       C. 
Figure 51. Maps of the combined risk map with 
a) a 3-color scheme and b) a 5-color scheme 
using the minimum of all risk factors except 
natural reservoirs. Red areas are unfavorable and 
green areas are favorable values of the play 
fairway metric. c) Map of the standard deviation 
of the combined risk computed using the 
minimum, corresponding to the 5-color ranking 
scheme. Dark tones indicate a high degree of 
certainty, and light tones a low degree of 
certainty. 
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3	Robustness	of	Combining	Functions	
 
It is not clear which method of combining the risk factors is best. Therefore, the consistency of 
the different methods of combining the risk factors should be investigated. If the methods are 
fairly similar, then locations with a high value for the average should also have a high value for 
the geometric mean, for example. The locations of US Census places were found and then the 5-
color average, geometric mean, and minimum PFMs were sampled at those locations using the 
function extract from the Raster package in R. The combined play fairway metrics were for the 
5-color scheme. Figure 57 plots the comparison of the metrics, provided that all points had all 
risk factors defined and the minimum value was greater than zero (105 total points).  
 
Generally, the metrics seem to match fairly well provided that all of the values are greater than 
zero. This could be a reasonable indication that the metrics would tend to give the same relative 
rankings. The coloring scheme is discrete, so the maps could look significantly different even if 
the relative rankings are the same.  
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   A.             B. 

 
          C. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 53. Scatter plots comparing the play fairway metric for the three different functions 
(average, geometric mean, minimum) when combining all four risk factors for areas with non-
zero utilization scaled risk factor values. (a) Compares the geometric mean to the average. (b) 
Compares the minimum to the geometric mean. (c) Compares the minimum to the average. 
 
 

4	Potential	Project	Locations	
In addition to the maps, we can also consider a specific set of project locations and show the risk 
factors in more detail for these sites. Locations selected for this scrutiny are listed in Table 7, 
selected mainly because the geological factors are fairly favorable with a reasonable population 
or other special demand for heat.  
 
The processing used to obtain values was that the values at the center of each raster cell were 
obtained using the extract function in the R package `raster'. The raster was defined on the UTM 
17N projection. The locations of each place in Table 7 were converted into the NAD83, 
UTM17N projection, and the distance between each of the raster cell centers and the project 
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locations was calculated. Next, the cells within 10 km of the project locations were considered as 
representing reasonable locations near the project location. The maximum value of the combined 
risk map of all four risk factors was used to select the values for the project location. If multiple 
sites had the same value, the site with the smallest variance was selected. If multiple sites had the 
same variance, the site closest to the project location was selected. 
 
Figures 54 and 55 plot the combined metrics by the average method and their uncertainty for 
these locations. The uncertainty for the geologic risk factor combination using RFC as the 
reservoir metric is represented by boxplots (Figure 54). These are a representation of the data 
that indicate the center and general spread of the data. The distributions of the geologic risk 
factors are also illustrated as violin plots for the average, geometric mean, and minimum 
combination method (Figure 55). There are clear differences in the symmetry and spread of the 
distributions among sites, and also for each metric. The geometric mean and the minimum plots 
have long lower tails as a result of zeros. 
 
Figure 56 is a parallel axis plot of the project locations. The lines are color-coded by location. 
This plot illustrates that there can be trade-offs between locations, so a more favorable value in 
one risk factor might mean you have to accept a less favorable value in another.  
  

Table 7. Sites selected for location-specific examination 
 

Town/City/Area State 
Corning/Elmira NY 

Jamestown NY 
Mansfield College PA 

Meadsville PA 
Sayre PA 

Charlestown WV 
Morgantown WV 

Pineville WV 
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Figure 54. Boxplots showing the Monte Carlo distribution of the combined play fairway metric 
(PFM) for the average of the geologic risk factors, using RFC as the reservoir metric. The box 
extends from the 25th to 75th percentiles with a line at the median. The whiskers extend to the 
most extreme point that is within 1.5 times the interquartile range (25th to 75th percentiles 
distance). Points beyond the whiskers are plotted individually. High values are favorable. 
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Figure 55. Violin plots showing the Monte Carlo distribution of the combined play fairway 
metric (PFM) for the average (top) geometric mean (middle) and minimum (bottom) of the 
geologic risk factors, using RFC as the reservoir metric. The violins show a smoothed density 
function of the data. The interior of the violins is a boxplot with a white circle at the median. 
High values are favorable.  
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Figure 56. Parallel axis plot for nine illustrative site locations. The reservoir metric illustrated is 
RFC and the risk factor combination method is the average. The lines are color-coded by 
location. High values are favorable and low values are unfavorable. 
 

5	References	cited	
 
Whealton, C. A., 2016, Statistical Data Analysis, Global Sensitivity Analysis, and Uncertainty 
Propagation Applied to Evaluating Geothermal Energy in the Appalachian Basin: Cornell 
University, Ithaca, NY, USA, Ph.D. dissertation, 250 pp. 

teresajordan
Typewritten Text
Memo 17: p. 



Memo on Permits for Geothermal District Heating Project 
 

Before we start the permitting process at the state or local level during Phase 2, it will be important for 
us to begin discussing our projects at a local level to educate the public on the project and more broadly 
on geothermal energy, geothermal district heating, and how these compare/contrast to geothermal 
heat pump applications and oil and gas production.  Marian Higgins’ PhD research (TAMU, December 
2015) in Matagorda County, Texas, observed that geothermal energy development was received more 
favorably if the local community understood the expectations and had an opportunity to ask questions 
and discuss concerns (Figure 1).  There are currently only geothermal heat pumps in use in New York, 
Pennsylvania and West Virginia.  These three States do not yet have established laws on the geothermal 
mineral right for larger projects such as geothermal district heating or electrical generation from a 
geothermal reservoir that utilizes former and gas fields.  Therefore, an effort to establish and lead 
grassroots discussions to educate the public about higher temperature geothermal consumption, and 
include the concerns about drilling, injection, building codes, etc. will be necessary in order to alleviate 
the potential for negative campaigns as is occurring related to hydraulic fracturing. This effort will be 
part of the effort of the Phase 2 permitting team’s time and expenses. 

 

 

Figure 1. Charts showing the opinions of citizens in Matagorda County, Texas at beginning and end of 
grassroots effort to educate them on possible geothermal projects (Higgins, SMU Power Plays 
Conference, 2015). 

 

During Phase 2 of this project, a combination of Federal, State and Local permits will be required for any 
new wells we plan to drill.  Permits are also required for performing tests of an existing well.  Local 
contractors with existing permits for entering an oil/gas well will be hired to perform these tests, thus 
reducing the permitting timeline, and reducing out-of-pocket expenses for permits.   

Additional permits will be necessary during Phase 3 of the project.  When we are working on a site to 
convert it over to geothermal district heating, there will be building and plumbing permits required.  The 
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owner of the property will most likely be the entity who applies for these related permits.  Being aware 
of all the permits required from start to end of a project, regardless of who is responsible for their 
submission, will be important to keep the development on a tight timeline for us to complete it within 
the timeframe of the DOE allocations. 

This memo reviews the permitting process starting with the Federal Government permits and then 
outlines the permits for each of the three States.  There are many overlapping requirements between 
the Federal and State permits.  Considerable work will be needed to keep track of all the different forms 
and requirements, along with the timelines and fees associated with each permit. 

Federal Permits 
Geothermal projects may be subject to the following Federal Laws: 

• National Environmental Policy Act (NEPA)  
• Clean Air Act of 1970 
• Clean Water Act of 1987 
• Endangered Species Act 
• National Historic Preservation Act.   

We are expecting to have to hire a specialist to complete reconnaissance of the National Environmental 
Policy Act (NEPA) documentation.  Other Federal policies to be reviewed are the Clean Water Act of 
1987, Endangered Species Act, and National Historic Preservation Act.   

Pursuant to the Geothermal Steam Act of 1970 (Title 30 U.S.C. Chapter 23), as amended, the Bureau of 
Land Management (BLM), an agency of the U.S. Department of the Interior, leases federal lands and 
reviews permit applications for geothermal development on those lands. The U.S. Forest Service, an 
agency of the U.S. Department of Agriculture, manages federal public lands in national forests and 
grasslands.  Allegany National Forest in PA and the Monongahela National Forest in WV fall within our 
study area but these are not expected to have the required heat demand for a project in the near 
future. The Federally owned land within the NY, PA, and WV Appalachian Basin vicinity are typically 
related to military bases (Figure 2).  There are many of them, but the total land holdings by the federal 
government is small.   
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Figure 2. The US Federal Land sites for military 
facilities in New York, Pennsylvania and West 
Virginia shown as red dots.  

 

 

 

 

 

 

 

 

 

 

Federal law, however, does not preempt state water laws and even on Federal land, all state laws must 
be met.  The exact steps that are required to permit a geothermal resource vary depending upon where 
it is located and the land use at the time of development.  Generally the steps can be summarized as 
follows: 

• Gain access to lands. 
• Contact local and state agencies to determine the requirements for local land use laws including 

zoning, land use, and building permits. 
• Contact federal agencies, if required. 
• Secure water rights, if applicable. 
• Secure mineral rights as needed. 
• Prepare environmental review as required by the National Environmental Policy Act or state 

environmental laws. 
• Obtain well construction permit. 
• Drill exploration wells. 
• Identify the composition of the resource, which may affect the level of environmental impacts, 

waste disposal, etc. 
• Determine fluid disposal plan and obtain permits for underground injection or surface disposal. 
• Contact state agricultural department or state fish and wildlife agency if developing an 

aquaculture project. 
• Drill production and injection wells. 
• Drill monitoring wells if required. 

 
As geothermal projects involve many notification forms, permits, and licenses to be submitted, the 
process can take months to a year to get all approvals required.  There is the OpenEI website for some 
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Western US States that is helpful for us to understand the potential Federal requirements for 
geothermal sites in the Appalachian Basin (http://en.openei.org/wiki/RAPID/Geothermal).   

There are fees for Federal Land Permits.  According to the 2012 documentation by Witherbee et al. 
(2013) the fees will be approximately $1500 (Table 1). 

According to the Flowchart for the Geothermal Development Process completed in 2012 by the 
Regulatory Roadmap Committee, it can take three to five years for all the exploration and permitting 
processes to be completed.  The goal of this project is to speed up this timeline by working with private 
individual/corporation/federal sites where they own both land surface and mineral rights and are 
capable of using the produced heated fluids.  

Table 1.  BLM Fees for Processing Geothermal and Oil and Gas Documents and Applications on BLM 
and USFS lands as of 2012 (Witherbee et al., 2013). 
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Native American Lands 

As Sovereign Nations, tribes have inherent authority over their land. Their approval must be obtained to 
use or lease tribal resources, e.g., land, water, and minerals. Tribes are not subject to state regulation; 
they can negotiate with state and local 
governmental agencies. Permitting for a 
project on Indian land may take different 
paths and will be through the Tribal Agency 
and the Department of Interior.   

 

Figure 3. Map of Native American 
reservations in the study area and adjacent 
states, also showing county boundaries. New 
York has 8 federally recognized reservations, 
whereas West Virginia and Pennsylvania 
have none. Tribal lands codes: 6 – Allegany; 
33 – Cattaraugus; 165 – Oil Springs; 167 – 
Oneida; 168 – Onondaga; 253 – St. Regis; 265 
–Tonawando; 274 – Tuscarora.  

 

 

State Permits and Licenses  

The following are examples of types of permits and licenses a geothermal developer may have to obtain 
from the state: 

• Conditional use 
• Exploration 
• Well construction and drilling 
• Water rights 
• Air emissions 
• Fluid disposal 

• Building construction 
• Power facility 
• Hazardous waste disposal 
• License for direct uses 
• Endangered species. 

 

Permits for Geothermal in Local Communities 

In addition to state agencies, a developer must also contact local and county agencies to determine the 
licenses and permits they may require. Relevant local and county agencies include:  

• Local land use boards 
• Local planning commissions 
• Zoning boards 
• County boards of commissioners 
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• Local sewer and water districts  
• Regional boards, e.g., air pollution and water control districts. 

 

New York Geothermal Permitting 

In New York State, geothermal wells deeper than 500 feet are permitted in the same manner as oil and 
gas wells.  There are required permits for water withdrawal for sites producing more than 100,000 gpd. 
There is also a permit for brine injection wells following the US EPA regulations.  

The permitting authority is the New York Division of Mineral Resources within the Department of 
Environmental Conservation. 

NYSDEC 
Division of Mineral Resources 
625 Broadway 
3rd Floor 
Albany NY 12233-6500 
518-402-8056 
oilgas@dec.ny.gov 
 
The DEC website is very helpful.  The main site for oil and gas 
is http://www.dec.ny.gov/energy/205.html  

There are links from there to all the other information and forms required. 

Drilling Permit 

Application for drilling can be made through an onsite paper form or online submission if outside the 
area.  The application consists of the following steps: 

1) Oil and Gas Organization Report - to be notarized, submitted and approved before the permit 
application is submitted. 

a.  This report includes: contact information, person(s) responsible for correspondence, 
and type of well drilled (geothermal is listed as a choice). 

 
2) Financial Security documents – there is a worksheet to calculate the amount.  You can chose 

between A. Bond, B. Cash, C. Escrow account, D. Irrevocable letter of credit, E. Certificate of 
Deposit 

 
3) Drilling Permit application form and the following: 

• three copies of a plat (i.e. a survey map) 
• three copies of a map of the proposed spacing unit (for geothermal there will be at least two 

wells) 
• Affirmation of Acreage Control and Rights in Target Formation 
• the proposed drilling program (note there are casing requirements) 
• fee:  examples 4000 ft = $1620, 6000 ft = $2380, 8000 ft = $3140   
• Division of Mineral Resources' well permitting Environmental Assessment Form 

mailto:oilgas@dec.ny.gov
http://www.dec.ny.gov/energy/205.html
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o Includes information about the physical setting of the proposed project, the general 
character of the land and land use, the size of the area disturbed and the length of 
time the drilling rig will be on the site. The applicant must also describe the 
procedures that will be used to construct the access road, supply water for drilling, 
contain and dispose of wastes and how to reclaim the site. 

o Note:  Drilling must be performed by a drilling contractor registered with the NY Division of 
Mineral Resources. 

o Note:  The operations must be commenced within the 180 day permit period. 
 

Drilling Permit Fees 

As stated above, fees are based on well depth (eg. 4000 ft. = $1620, 6000 ft. = $2380, 8000 ft. = $3140).   

Water Withdrawal Permits 

The forms for Water Withdrawal Permits are found on the DEC website 
- http://www.dec.ny.gov/lands/94327.html.  Applications for "New Permits" are submitted to the Division of 
Environmental Permits in the DEC region where the water extraction will be located. Projects expected 
to produce at least 100,000 gpd are required to submit a permit.  

Injection Well Permits 

A well permit is required from the Division of Mineral Resources for any brine disposal well deeper than 
500 feet.  Also a Class IID Underground Injection Control permit must be obtained from the Region II 
Office of the USEPA before operating any well for brine disposal.  EPA staff review proposed operations 
with respect to protection of groundwater aquifers. Parameters reviewed by the EPA may include well 
construction and plugging plans, proposed injection rate and pressure, injectate composition, and 
proposed injectate and groundwater monitoring plans.  The EPA contact for New York permits is: 

Ms. Nicole Foley Kraft 
USEPA Ground Water Compliance Section 
290 Broadway, 20th Floor 
New York, NY 10007-1866 
(212) 637-3093  Fax: (212) 637-3953 
 
County/City Building Permits 

There is a State of New York 2010 Building Codes and Energy Code that all buildings must meet.  
Depending on the county size and city size, there may be local building permits.  For example, the city of 
Ithaca, NY requires a building permit if changes occur to building plumbing. The usual permitting process 
approval/rejection timeframe for Ithaca is 30 days.  Whereas, the county of Steuben has a planning 
office that will provide technical assistance to local municipalities in land use planning and regulation, 
economic development and environmental protection.  If there are not specific requirement for permits 
related to construction, buildings, drilling, etc., then zoning requirements will need to be followed along 
with all the state codes.   

http://www.dec.ny.gov/lands/94327.html
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Pennsylvania Geothermal Permitting 

Pennsylvania Department of Environmental Protection (PADEP) is the agency overseeing the permitting 
of the Oil and Gas Industry.  As there are no established mineral rights for geothermal energy in 
Pennsylvania, our project well depth falls most closely within the permits of this agency.   

Oil and gas exploration is regulated under the state's oil and gas laws (Oil and Gas Act, Coal and Gas 
Resource Coordination Act, and Oil and Gas Conservation Law) and the environmental protection laws 
that include the Clean Streams Law, the Dam Safety and Encroachments Act, the Solid Waste 
Management Act, the Water Resources Planning Act and the Community Right to Know Act.  As we 
develop a geothermal district heating system, the wells drilled for production and injection will be 
regulated under these laws.  
http://www.portal.state.pa.us/portal/server.pt/community/laws%2C_regulations___guidelines/20306  

Drilling Permit 

With so many permits required, Pennsylvania has an online tool to help determine which type of 
permits, bonds, licenses are needed.  It is called the Permit Application Consultation Tool 
(PACT) http://www.ahs.dep.pa.gov/PACT/.   There is a Pre-Application Conference with PADEP to discuss and 
verify project results and permit coordination.   

Once the required specific documentation is determined, we will find them in the Permit/Authorization 
Packages in the e-Library.  Forms and information for the Oil and Gas Industry can be found 
at http://www.elibrary.dep.state.pa.us/dsweb/View/Collection-8294.  

Tracking the progress of permits through Pennsylvania's Environment Facility Application Compliance 
Tracking System (eFACTS) is possible through the website http://www.ahs.dep.pa.gov/eFACTSWeb/default.aspx.  
It is also possible to receive updates from PADEP's Electronic Notification System (eNOTICE).  This will be 
helpful for confirming the project permits are staying on the designated timeframe.  

Note – In Pennsylvania there is a lot of underground coal mining so this is something they look at closely 
when a permit is submitted.   

During Phase 1 of this project, our team has held two meetings with the Pennsylvania Department of 
Conservation and Natural Resources (PADCNR) to discuss their existing well data and to update them on 
our results.  We plan on working with them throughout the permitting process as they provide valuable 
input and can help liaise with PADEP.   In the most recent meeting in August 2015, PADCNR were 
especially interested in working with us to find locations we could develop for geothermal district 
heating.  The permitting process with their assistance will take time, but is expected to have a workable 
solution to fit the considerations of geothermal drilling into the oil and gas regulations. 

Drilling Permit Fees 

Fees are calculated using drill depth.  For example, 5000 feet = $650, 10,000 feet = $1650 

Water Withdrawal Permits 

In general, there is no comprehensive legal or institutional approach to water use in Pennsylvania.  The 
Department of Environmental Protection Bureau of Water Supply Management grants allocation 
permits to public water systems that use surface water. We will contact this agency to see if they 
require a permit for our project.   

http://www.portal.state.pa.us/portal/server.pt/community/laws%2C_regulations___guidelines/20306
http://www.ahs.dep.pa.gov/PACT/
http://www.elibrary.dep.state.pa.us/dsweb/View/Collection-8294
http://www.ahs.dep.pa.gov/eFACTSWeb/default.aspx
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Reinjection Wells 

In Pennsylvania, deep injection wells or brine disposal wells are regulated by the Environmental 
Protection Agency through the Underground Injection Control Program (UIC). The US EPA took over the 
task of permits, inspections and enforcement from state regulators in 1985. 

County/City Building Permits 

Pennsylvania has a statewide building code, the Uniform Construction Code (UCC), which falls under the 
Department of Labor and Industry.  The UCC is administered and enforced locally and at the state level.  
Municipalities within PA can opt-in or opt-out.  The status of municipalities is available from 
http://www.portal.state.pa.us/portal/server.pt?open=514&objID=553835&mode=2.   

As we move into Phase 2 of the Play Fairway Analysis Project and narrow down the locations of most interest for 
development in Phase 3, the city/county required permits and codes can be determined.   

 

West Virginia Geothermal Permitting  

In West Virginia, geothermal wells are not yet established as a specific category.  There are no legislative 
rulings on how geothermal projects will be classified or how the royalties associated with extracting 
geothermal fluids from the ground will be linked with the mineral rights owner or the surface owner.  To 
get around this potential barrier of no legislative predetermination of geothermal rights, the focus for 
West Virginia will look to locations where the surface and mineral right owner is the same entity and 
there is a large enough tract of land to contain both the production and injection wells.   

Drilling Permit 

The depth of the wells we are anticipating to drill for this project are similar to those in the oil and gas 
industry.  Therefore as a starting place the permits for drilling and exploration fall within the West 
Virginia Department of Environmental Quality Office of Oil and Gas.  The details for permitting can be 
found through their website http://www.dep.wv.gov/oil-and-gas/Pages/default.aspx.   

West Virginia has many documents rather than a combined few to submit.  A check list for all the filings 
required is provided (see list below).  For a new well, the requirements include the same items as New 
York, with the addition of surface and royalty owner signatures needed and a worker’s comp plan 
established.   

Table of West Virginia Check List of forms to submit for Permitting a well. 

_____ WW-2B 
_____ WW-2B signed off by inspector 
_____ WW-2A 
_____ Certified Mail Receipts or affidavit of personal service 
_____ Surface Owner Waiver 
_____ Coal Owner/Lessee/Operator Waiver 
_____ WW-2A (1) including page and book and royalty percentage 
_____ WW-2B (1) (If sources to be tested –names, addresses and location on topo listed as water testing)      
_____ WW-9 (page 1 and 2) 
_____ Inspector Signature on WW-9 
_____ Reclamation Plan 
_____ Mylar Plat  
_____ Topography Map of the proposed location 

http://www.portal.state.pa.us/portal/server.pt?open=514&objID=553835&mode=2
http://www.dep.wv.gov/oil-and-gas/Pages/default.aspx
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_____ Database for Coal Depths, Permits, Boundaries 
_____ Bond Agreements  
_____ A check for $650.00 shallow well, $900.00 Deep well  
_____ Workers Comp/Employ/Registered with the SOS. 

 

Drilling Permit Fees 

As stated above, fees are based on well depth with a fee of $650.00 for shallow wells (wells drilled and 
completed in a formation above the top of the uppermost member of the "Onondaga Group"), and 
$900.00 for deep wells (wells drilled and completed in a formation at or below the top of the uppermost 
member of the "Onondaga Group").   

Water Withdrawal Permits 

There are permits for withdrawal of water from surface streams, lakes, etc. and drinking water aquifers, 
that our project will not fall under. The brine fluids expected to be produced in this district heating 
project will be from formations deeper than potable water sources.   

Reinjection Wells 

There is a permit for a geothermal reinjection well under the code for the UIC Industrial Commercial 
Septic Application.  This is expected to be only for geothermal heat pumps and not for the larger district 
heating project brine injection wells. There is also a permit for brine injection wells with a set of permits 
to submit through the Office of Oil and Gas, which has developed a comprehensive permit package to 
assist in the preparation of a UIC permit application.  Our geothermal district heating project will be 
under the category of WV Code 1479 Solution Mining wells (3S) that includes recovery of geothermal 
energy to produce electric power from geothermal injection wells.  Although not generating power from 
the well fluids, the size and flow rates for the wells are more closely tied to electric generation than 
geothermal heat pumps.  For a detailed description and required forms see the 
document:  Underground Injection Control (UIC) Permit Application Package Class 2 & 3. The application 
fee of $550.00 is submitted with the completed documentation to: 

West Virginia Department of Environmental Protection 
Office of Oil and Gas 
Underground Injection Control (UIC) 
601 57th Street, SE 
Charleston, WV 25304 
http://www.dep.wv.gov/oil-and-gas/GI/Forms/Documents/UIC%20APPLICATION%20PACKAGE%2006-25-2014.pdf  

There is a form for Oil and Gas companies injecting more than 300,000 gallons of water to hydrofrac a 
well.  They are concerned about the flowback and thus disposal of that water.  The water produced in 
this project will be contained within the pipes and be injected properly into a permitted injection well.   

County/City Building Permits 

The State of West Virginia follows the 2012 International Building Code, 2012 International Plumbing 
Code, and the 2009 International Energy Conservation Code.  Depending on the county size and city size, 
there may be additional local building permits and fees.  For example, the county of Kanawha does not 
require any additional permits related to construction, buildings, drilling, etc., but it does have the 
Kanawha County Commission Department of Planning and Development with additional requirements 
for oil and gas well drilling pertaining to floodplains.  The Kanawha County Health Department has an 

http://www.dep.wv.gov/oil-and-gas/GI/Forms/Documents/UIC%20APPLICATION%20PACKAGE%2006-25-2014.pdf
http://www.dep.wv.gov/oil-and-gas/GI/Forms/Documents/UIC%20APPLICATION%20PACKAGE%2006-25-2014.pdf
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Environmental Division, which oversees water (typically well or surface water), who are an example of a 
group to contact as part of the effort for grassroots education on geothermal development.  For 
locations with no specific requirement for additional permits then we will need to be follow all the state 
codes.   
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