OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 10 of 10.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"predictions"×
Website×

Stanford Thermal Earth Model for the Conterminous United States

Provided here are various forms of the Stanford Thermal Earth Model, as well as the data and methods used for its creation. The predictions produced by this model were visualized in two-dimensional spatial maps across the modeled depths (0-7 km) for the conterminous United States....
Aljubran, M. and Horne, R. Stanford University
Mar 14, 2024
9 Resources
2 Stars
Publicly accessible

Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32

This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results

Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: DNA tracer data on transport through porous media

This submission contains DNA tracer data that supports the analysis and conclusions of the publication, "DNA tracer transport through porous media The effect of DNA length and adsorption." https://doi.org/10.1029/2020WR028382. This experiment used DNA as an artificial reservoir t...
Zhang, Y. et al Stanford University
Nov 21, 2020
3 Resources
0 Stars
Publicly accessible

Publications and Datasets from Play-Fairway Retrospective Analysis with Emphasis on Developing Improved Hydrothermal Energy Assessments

Previous moderate and high-temperature geothermal resource assessments of the western United States utilized data-driven methods and expert decisions to estimate resource favorability. Although expert decisions can add confidence to the modeling process by ensuring reasonable mode...
Mordensky, S. et al United States Geological Survey
Feb 07, 2023
7 Resources
1 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report

This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible

3-D Geologic Controls of Hydrothermal Fluid Flow at Brady Geothermal Field, Nevada using PCA

In many hydrothermal systems, fracture permeability along faults provides pathways for groundwater to transport heat from depth. Faulting generates a range of deformation styles that cross-cut heterogeneous geology, resulting in complex patterns of permeability, porosity, and hydr...
Siler, D. and Pepin, J. United States Geological Survey
Oct 01, 2021
4 Resources
0 Stars
Publicly accessible

Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk

In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible

Appalachian Basin Temperature-Depth Maps and Structured Data in support of Feasibility Study of Direct District Heating for the Cornell Campus Utilizing Deep Geothermal Energy

This dataset contains shapefiles and rasters that summarize the results of a stochastic analysis of temperatures at depth in the Appalachian Basin states of New York, Pennsylvania, and West Virginia. This analysis provides an update to the temperature-at-depth maps provided in the...
Smith, J. Cornell University
Oct 29, 2019
6 Resources
0 Stars
Publicly accessible

INGENIOUS Great Basin Regional Dataset Compilation

This is the regional dataset compilation for the INnovative Geothermal Exploration through Novel Investigations Of Undiscovered Systems (INGENIOUS) project. The primary goal of this project is to accelerate discoveries of new, commercially viable hidden geothermal systems while re...
Ayling, B. et al GBCGE, NBMG, UNR
Jun 30, 2022
16 Resources
1 Stars
Publicly accessible
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service