OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 51 - 69 of 69.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"gravity study"×
Geospatial Data×

Cascades/Aleutian Play Fairway Analysis: Data and Map Files

Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant...
Shevenell, L. ATLAS Geosciences Inc
Nov 15, 2015
7 Resources
0 Stars
Publicly accessible

Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps

Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does inc...
Brandt, A. University of Utah
Nov 15, 2015
4 Resources
0 Stars
Publicly accessible

Tularosa Basin Play Fairway Analysis Data and Models

This submission includes raster datasets for each layer of evidence used for weights of evidence analysis as well as the deterministic play fairway analysis (PFA). Data representative of heat, permeability and groundwater comprises some of the raster datasets. Additionally, the fi...
Nash, G. Energy and Geoscience Institute at the University of Utah
Jul 11, 2017
8 Resources
0 Stars
Publicly accessible

Low-Temperature Geothermal Geospatial Datasets: An Example from Alaska

This project is a component of a broader effort focused on geothermal heating and cooling (GHC) with the aim of illustrating the numerous benefits of incorporating GHC and geothermal heat exchange (GHX) into community energy planning and national decarbonization strategies. To bet...
Davalos Elizondo, E. et al National Renewable Energy Laboratory
Feb 06, 2023
6 Resources
0 Stars
Curated

Passive Seismic Emission Tomography Results at San Emidio Nevada

The utility of passive seismic emission tomography for mapping geothermal permeability has been tested at San Emidio in Nevada. The San Emidio study area overlaps a geothermal field in production since 1987 and another resource to the south of the production field. Passive seismic...
Warren, I. et al Ormat Technologies, Inc.
Dec 01, 2016
2 Resources
0 Stars
Publicly accessible

Appalachian Basin Temperature-Depth Maps and Structured Data in support of Feasibility Study of Direct District Heating for the Cornell Campus Utilizing Deep Geothermal Energy

This dataset contains shapefiles and rasters that summarize the results of a stochastic analysis of temperatures at depth in the Appalachian Basin states of New York, Pennsylvania, and West Virginia. This analysis provides an update to the temperature-at-depth maps provided in the...
Smith, J. Cornell University
Oct 29, 2019
6 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Tuscarora Sandstone Geophysical Log Digitization

This dataset contains well log files collected from wells penetrating the Tuscarora Sandstone, structural geologic map of West Virginia and salinity information based on brine geochemistry in West Virginia and Pennsylvania. A combination of proprietary and free software may be re...
Moore, J. West Virginia University
Dec 18, 2019
6 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Reservoir Productivity Uncertainty Analysis for the Tuscarora Sandstone, Morgantown, WV

This dataset contains figures that summarize the Tuscarora Sandstone core permeability data collected from the Preston 119 well in Preston County, WV, and summary results of a stochastic analysis that was used to estimate reservoir productivity for the currently unexplored Tuscaro...
Smith, J. West Virginia University
Dec 19, 2019
4 Resources
0 Stars
Publicly accessible

SE Great Basin Play Fairway Analysis Heat and Permeability CRS

Within this submission are multiple .tif images with accompanying metadata of magnetotelluric conductor occurrence, fault critical stress composite risk segment (CRS), permeability CRS, Quaternary mafic extrusions, Quaternary fault density, and Quaternary rhyolite maps. Each of th...
Brandt, A. University of Utah
Nov 15, 2015
6 Resources
0 Stars
Publicly accessible

Utah FORGE: Groundwater Data

This submission includes two modeled drawdown scenarios with new supply well locations, a total dissolved solids (TDS) concentration grid (raster dataset representing the spatial distribution of TDS), and an excel spreadsheet containing well data.
Moore, J. Energy and Geoscience Institute at the University of Utah
Jul 20, 2016
5 Resources
0 Stars
Publicly accessible

Utah FORGE: Temperature Contours at 200 m

The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80 deg C) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with dept...
Moore, J. Energy and Geoscience Institute at the University of Utah
Feb 01, 2016
7 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Patua Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically st...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Appendices for Geothermal Exploration Artificial Intelligence Report

The Geothermal Exploration Artificial Intelligence looks to use machine learning to spot geothermal identifiers from land maps. This is done to remotely detect geothermal sites for the purpose of energy uses. Such uses include enhanced geothermal system (EGS) applications, especia...
Duzgun, H. et al Colorado School of Mines
Jan 08, 2021
12 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of McGinness Hills Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Utilization Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

This submission of Utilization Analysis data to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) is in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The submission includes data pertinent to th...
E., T. Cornell University
Sep 30, 2015
8 Resources
0 Stars
Publicly accessible
<< Previous123
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service