OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 12 of 12.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"fluids"×
Geospatial Data×

Archuleta County CO Lineaments

This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fa...
E., R. Flint Geothermal, LLC
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible

Google Earth Locations of USA and Seafloor Hydrothermal Vents with Associated Rare Earth Element Data

Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in t...
Fowler, A. University of California
Feb 10, 2016
2 Resources
0 Stars
Publicly accessible

Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration prog...
Zehner, R. Flint Geothermal, LLC
Feb 01, 2012
11 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Patua Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically st...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Snake River Plain Geothermal Play Fairway Analysis Volcanic Vents, Lacustrine Sediments, and post-Miocene Faults KMZ files

This dataset contain raw data files in kmz files (Google Earth georeference format). These files include volcanic vent locations and age, the distribution of fine-grained lacustrine sediments (which act as both a seal and an insulating layer for hydrothermal fluids), and post-Mioc...
Shervais, J. Utah State University
Oct 10, 2015
10 Resources
0 Stars
Publicly accessible

Fort Bliss Geothermal Area Data: Temperature Profile, Logs, Schematic Model and Cross Section

This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. ...
Brandt, A. University of Utah
Nov 15, 2015
14 Resources
0 Stars
Publicly accessible

Low-Temperature Geothermal Geospatial Datasets: An Example from Alaska

This project is a component of a broader effort focused on geothermal heating and cooling (GHC) with the aim of illustrating the numerous benefits of incorporating GHC and geothermal heat exchange (GHX) into community energy planning and national decarbonization strategies. To bet...
Davalos Elizondo, E. et al National Renewable Energy Laboratory
Feb 06, 2023
6 Resources
0 Stars
Curated

Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of McGinness Hills Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service