OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 7 of 7.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"5-2557"×
Microseismicity×

EGS Collab Experiment 1: Microseismic Monitoring

The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
46 Resources
0 Stars
Publicly accessible

Utah FORGE 5-2428: Fracture Permeability Impact on Reservoir Stress and Seismic Slip Behavior Workshop Presentation

This is a presentation on the Fracture Permeability Impact on Seismic Slip Behavior project by Lawrence Livermore National Laboratory, presented by Dr. Kayla A. Kroll. The project's objective is to develop, apply and validate a holistic thermal, hydrologic, mechanical, and chemic...
Kroll, K. et al Lawrence Livermore National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible

Hybrid machine learning model to predict 3D in-situ permeability evolution

Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible

Processed Lab Data for Neural Network-Based Shear Stress Level Prediction

Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a n...
Marone, C. et al Pennsylvania State University
May 14, 2021
3 Resources
0 Stars
Publicly accessible

Newberry EGS Demonstration: Well 55-29 Stimulation Data 2014

The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to ru...
Cladhouhos, T. et al AltaRock Energy Inc
Sep 03, 2015
54 Resources
0 Stars
Publicly accessible

Newberry EGS Demonstration: Well 55-29 Stimulation Data

The Newberry Volcano EGS Demonstration in central Oregon, a 3 year project started in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to ...
T., T. AltaRock Energy Inc
Dec 08, 2012
136 Resources
0 Stars
Publicly accessible

Utah FORGE: Fault Reactivation Through Fluid Injection Induced Seismicity Laboratory Experiments

Included are results from shear reactivation experiments on laboratory faults pre-loaded close to failure and reactivated by the injection of fluid into the fault. The sample comprises a single-inclined-fracture (SIF) transecting a cylindrical sample of Westerly granite. All expe...
Yu, J. et al Pennsylvania State University
Jul 01, 2023
27 Resources
0 Stars
Publicly accessible
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service