Search GDR Data
Showing results 1 - 25 of 117.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Chemical Impact of Elevated CO2 on Geothermal Energy Production
Numerical simulations have shown that the use of supercritical CO2 instead of water as a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal energy production and...
Carroll, S. et al Lawrence Livermore National Laboratory
Jan 01, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Thermal Drawdown Induced Flow Channeling in Fractured Geothermal Reservoirs: Rock Mechanics and Rock Engineering
We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and t...
Fu, P. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Application of Neutron Imaging to Investigate Flow through Fractures for EGS
There is an ongoing effort at Oak Ridge National Laboratory to develop a unique experimental capability for investigating flow through porous and fractured media using neutron imaging techniques. This capability is expected to support numerous areas of investigation associated wit...
Polsky, Y. et al Oak Ridge National Laboratory
Feb 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Devices Suitable for Sectional Isolation Along Both Cased and Open-hole Wellbores Geomechanical Packer Formation Model Iteraction
The main goal of this project is to develop an annular isolation system capable to withstand geothermal downhole conditions and mitigate the problems experienced by conventional packers in FORGE wells. This presentation outlines the work in rock modelling and interaction with the ...
Ghassemi, A. et al Welltec
Jun 20, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Effective Elastic and Neutron Capture Cross Section Calculations Corresponding to Simulated Fluid Properties from CO2 Push-Pull Simulations
The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity...
Chugunov, N. and Altundas, B. Lawrence Berkeley National Laboratory
Mar 07, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS
EGS field projects have not sustained production at rates greater than half of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igne...
A., C. Pacific Northwest National Laboratory
Sep 25, 2013
19 Resources
0 Stars
Publicly accessible
19 Resources
0 Stars
Publicly accessible
Penn State Lab Testing Fluid-Rock Interaction in Geothermal Reservoirs
This project focused on assessment and discovery of fluid-rock interaction in geothermal reservoirs. We accomplished work in four main areas: 1) fracture formation and the relationship between fluid flow and shear failure, 2) assessment of fracture geometry and fluid permeability ...
Madara, B. et al Pennsylvania State University
Jan 01, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS
EGS field projects have not sustained production at rates greater than 1/2 of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneo...
A., C. Pacific Northwest National Laboratory
Sep 15, 2014
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Common Discrete Fracture Network
This package includes data and models that support hydraulic fracture stimulation and fluid circulation experiments in the Sanford Underground Research Facility (SURF). A paper by Schwering et al. (2020) describes the deterministic basis for developing a "common" discrete fracture...
Schwering, P. et al Sandia National Laboratories
Sep 18, 2019
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Lab-Scale Stimulation Results on Surrogate Fused Silica Samples
Lab-scale stimulation work on non-porous fused silica (similar mechanical properties to igneous rock) was performed using pure water, pure CO2 and water/CO2 mixtures to compare back to back fracturing performance of these fluids with PNNL's StimuFrac.
Fernandez, C. Pacific Northwest National Laboratory
Jul 06, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Updated Overpressures and Permeability Values for PNNL's StimuFrac Fluid
A corrigendum was submitted to the journal of Geothermics on our article "Environmentally friendly, rheoreversible, hydraulic-fracturing fluids for enhanced geothermal systems" Shao et al Geothermics 58 (2015) 22-31.
In the original article some permeability values were underesti...
Shao, H. et al Pacific Northwest National Laboratory
Apr 06, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Finite Element Analysis (FEA) for Water-Foam Fracturing of Granite Rock
In addition to the foam data that were obtained from literature and that were collected from the current study, simulation data was also generated from finite element analysis (FEA) conducted in this study using COMSOL Multiphysics software. The FEA models were built to simulate t...
Thakor, V. et al Temple University
May 04, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Fallon FORGE: Analogue Outcrop Samples
Compilation of results for mechanical and fluid flow properties of analogue outcrop samples experimental data for compressional and shear wave velocities, tensile strengths, and compressive strengths. Outcrop location and sample orientation data are documented in a separate csv file.
Blankenship, D. et al Sandia National Laboratories
Mar 12, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE 5-2428: Coupled Investigation of Fracture Permeability Impact on Reservoir Stress and Seismic Slip 2024 Annual Workshop Presentation
This is a presentation on the Coupled Investigation of Fracture Permeability Impact on Reservoir Stress and Seismic Slip Behavior by Lawrence Livermore National Laboratory, presented by Kayla Kroll. This presentation addresses testing and modelling related to the dependency of EG...
Kroll, K. et al Energy and Geoscience Institute at the University of Utah
Aug 27, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
EGS Collab Experiment 1: In-situ observation of pre-, co and post-seismic shear slip preceding hydraulic fracturing
Understanding the initiation and arrest of earthquakes is one of the long-standing challenges of seismology. Here we report on direct observations of borehole displacement by a meter-sized shear rupture induced by pressurization of metamorphic rock at 1.5 km depth. We observed the...
Guglielmi, Y. et al Lawrence Berkeley National Laboratory
May 22, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: SIMFIP Notch-164 GRL Paper
Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5...
Guglielmi, Y. Lawrence Berkeley National Laboratory
Sep 24, 2020
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 2: Earth Model Datasets
The EGS Collab Project performed a series of tests to increase the understanding the response of crystalline rock mass to stimulations and fluid circulation to efficiently implement enhanced geothermal systems (EGS) technologies. The EGS Collab team created two underground testbed...
Neupane, G. et al Idaho National Laboratory
May 29, 2022
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Utah FORGE: Fluid Injection Induced Shearing Experiments on Fractured Granitoid at Elevated Temperatures
This repository contains experimental data from a series of fluid injection-induced shearing tests conducted on Utah FORGE granitoid. The experiments were performed using an aluminum triaxial pressure vessel (TEMCO) apparatus at Pennsylvania State University. The primary aim was t...
Elsworth, D. et al Pennsylvania State University
Aug 12, 2024
16 Resources
0 Stars
Curated
16 Resources
0 Stars
Curated
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Nov 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations
This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key too...
Templeton, D. et al Lawrence Livermore National Laboratory
Apr 18, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible