Search GDR Data
Showing results 1 - 25 of 240.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Utah FORGE: Well 16A(78)-32 Simplified Discrete Fracture Network Data
The FORGE team is making these fracture models available to researchers wanting a set of natural fractures in the FORGE reservoir for use in their own modeling work. They have been used to predict stimulation distances during hydraulic stimulation at the open toe section of well 1...
Finnila, A. Golder Associates Inc.
Jun 01, 2021
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
EGS Collab Experiment 1: Common Discrete Fracture Network
This package includes data and models that support hydraulic fracture stimulation and fluid circulation experiments in the Sanford Underground Research Facility (SURF). A paper by Schwering et al. (2020) describes the deterministic basis for developing a "common" discrete fracture...
Schwering, P. et al Sandia National Laboratories
Sep 18, 2019
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Utah FORGE 1-2551: Development of a Multi-Stage Fracturing System and Wellbore Tractor 2024 Annual Workshop Presentation
This is a presentation on the Development of a Multi-Stage Fracturing System and Wellbore Tractor by Colorado School of Mines, presented by William Fleckenstein. This video describes (1) the development and use of a low-cost and rapid multistage fracture stimulation technology wit...
Fleckenstein, W. Energy and Geoscience Institute at the University of Utah
Jan 13, 1970
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Applications of Fractured Continuum Model to Enhanced Geothermal System Heat Extraction Problems
This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environm...
Kalinina, E. et al Sandia National Laboratories
May 06, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE 3-2535: Joint Imaging of Fracture Growth and Estimation of Fracture Properties During EGS Development 2024 Annual Workshop Presentation
This is a presentation on the Joint Electromagnetic/Seismic/InSAR Imaging of Spatial-Temporal Fracture Growth and Estimation of Physical Fracture Properties During EGS Resource Development by Lawrence Berkeley National Laboratory, presented by David Alumbaugh. This is a video pres...
Alumbaugh, D. Energy and Geoscience Institute at the University of Utah
Aug 25, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Utah FORGE 3-2535: Joint EM-Seismic-InSAR Imaging of Fracture Properties Workshop Presentation
This is a presentation on the Joint Electromagnetic/Seismic/InSAR Imaging of Spatial-Temporal Fracture Growth and Estimation of Physical Fracture Properties During EGS Resource Development project by Lawrence Berkeley National Laboratory, presented by Dr. David Alumbaugh, Staff Sc...
Alumbaugh, D. Lawrence Berkeley National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations
This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key too...
Templeton, D. et al Lawrence Livermore National Laboratory
Apr 18, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Oct 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Improved Microseismicity Detection During Newberry EGS Stimulations
Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are oft...
Templeton, D. Lawrence Livermore National Laboratory
Nov 01, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Foam Fracturing Study for Stimulation Development of Enhanced Geothermal Systems
This is a final technical report for the project: Foam Fracturing Study for Stimulation Development of Enhanced Geothermal Systems (EGS). The goal is to demonstrate the feasibility of foam fracturing in EGS applications. The project, led by Oak Ridge National Laboratory (ORNL), wa...
Wang, H. et al Oak Ridge National Laboratory
May 17, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE 1-2551: Multi-Stage Fracturing System and Well Tractor to Enable Zonal Isolation During Stimulation and EGS Operations in Horizontal Wellbores Workshop Presentation and Report
Included here are a presentation recording, slides, and report on the Multi-Stage Fracturing System and Well Tractor to Enable Zonal Isolation During Stimulation and EGS Operations in Horizontal Wellbores project by Colorado School of Mines, presented by Dr. William W. Fleckenstei...
Fleckenstein, W. et al Colorado School of Mines
Sep 08, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: GeoThermOPTIMAL Presentation Video
This is a project description video by Dr. William W. Fleckenstein related to their "Development of Multi-Stage Fracturing System and Wellbore Tractor to Enable Zonal Isolation During Stimulation and EGS Operations in Horizontal Wellbores" R&D project at Utah FORGE which is linked...
Fleckenstein, W. Colorado School of Mines
Dec 12, 2022
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations
This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley-
sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis.
Datas...
Oldenburg, C. et al Lawrence Berkeley National Laboratory
Jul 20, 2017
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: Development of Multi-Stage Fracturing System and Wellbore Tractor to Enable Zonal Isolation During Stimulation and EGS Operations in Horizontal Wellbores
This paper discusses the progress on a project funded by the DOE Utah FORGE (Frontier Observatory for Research in Geothermal Energy) for the development of a subsurface heat exchanger for Enhanced Geothermal Systems (EGS) using unique casing sleeves cemented in place and are used ...
Fleckenstein, W. et al Colorado School of Mines
Oct 05, 2022
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
CO2 Push-Pull Single Fault Injection Simulations
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a ...
Borgia, A. et al Lawrence Berkeley National Laboratory
Sep 21, 2017
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Altona, NY EGS Field Site Radon Study
Data include 222Rn activities and complimentary geochemical data for multiple field experiments as part of an EGS project
Brown, S. and Christensen, J. Lawrence Berkeley National Laboratory
Sep 02, 2016
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Hawaii Play Fairway Analysis: Lanai Resistivity and Density 3D Inversion Models
To prepare for its third phase, the Hawaii Play Fairway project conducted groundwater sampling and analyses in ten locations in the Hawaiian islands, magnetotelluric (MT) and gravity surveys, as well as calculations of 3D subsurface stress due to the weight of the rock underlying ...
Lautze, N. et al University of Hawaii
Jun 01, 2020
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE 5-2557: Trixial Shear and Wellbore Breakout Tests Report and Data
Included are a report and data from triaxial shear tests on simulated Sierra White fault gouge and a borehole stimulation experiment. This serves as a progress report for the Role of Fluid and Temperature in Fracture Mechanics and Coupled Thermo-Hydro-Mechanical-Chemical (THMC) P...
Choens, C. and Yoon, H. Sandia National Laboratories
Apr 19, 2023
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Newberry Caldera Conceptual Geologic Model
Conceptual model for the Newberry Caldera geothermal area. Model is centered around caldera and evaluates geologic information in tandem with some geophysical datasets to derive a conceptual subsurface model.
Includes:
Geologic information from the USGS geologic map of Newberry...
Moser, M. et al National Energy Technology Laboratory
Mar 04, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible