Search GDR Data
Showing results 1 - 25 of 143.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Utah FORGE 2-2446: Report on Phase Field Modelling of Near-Wellbore Hydraulic Fracture Nucleation and Propagation
This is a report that describes the modelling of fracture nucleation and propagation in the near-wellbore region to understand the relationship between in situ stress and fracture patterns. A novel phase field formulation is described here, which represents fractures as a diffuse ...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Dec 31, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small nu...
Fu, P. and Carrigan, C. Lawrence Livermore National Laboratory
Jan 01, 2012
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales
Widespread adoption of geothermal energy will require access to deeply buried resources in granitic basement rocks at high temperatures and pressures. Exploiting these resources necessitates novel methods for drilling, stimulation, and maintenance, under operating conditions that ...
Walsh, S. et al Lawrence Livermore National Laboratory
Jan 01, 2012
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geomechanical Modeling for Thermal Spallation Drilling
Wells for Engineered Geothermal Systems (EGS) typically occur in conditions presenting significant challenges for conventional rotary and percussive drilling technologies: granitic rocks that reduce drilling speeds and cause substantial equipment wear. Thermal spallation drilling,...
Walsh, S. et al Lawrence Livermore National Laboratory
Aug 24, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 3-2535: Building a 3D Resistivity Model for Simulation and Survey Design of EM Measurements
The included report outlines the creation of three 3D resistivity models that will be used to determine the sensitivity of EM measurements for the hypothetical stimulated reservoir at FORGE as well as for EM survey design. FORGE project 3-2535 is planning on using a casing source ...
Alumbaugh, D. et al Lawrence Berkeley National Laboratory
Dec 01, 2022
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Utah FORGE 3-2535: Numerical Modeling of Energized Steel-Casing Source for Imaging Stimulated Zone
This short report details and tests the workflow that will be used to simulate steel well casings in deviated production/extraction boreholes at at the Utah FORGE site. Boreholes will be electrically energized and will serve as data sources for future proposed electromagnetic bore...
Um, E. et al Lawrence Berkeley National Laboratory
Nov 15, 2022
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Utah FORGE 3-2535: Modeling Studies of Energized Steel-Casing Source EM Method for Detecting Stimulated Zone
Numerical modeling Studies for electromagnetic (EM) Data Acquisition Survey Design this milestone report describes the 3D modeling studies of energized steel-casing source electromagnetic method for detecting stimulated zone at the Utah FORGE Site. FORGE project 3-2535 is planning...
Um, E. et al Lawrence Berkeley National Laboratory
Feb 06, 2023
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Stimulation at Desert Peak Modeling with the Coupled THM Code FEHM
Numerical modeling of the 2011 shear stimulation at the Desert Peak Well 27-15 using a coupled thermal-hydrological-mechanical simulator. This submission contains the finite element heat and mass transfer (FEHM) executable code for a 64-bit PC Windows-7 machine, and the input and ...
Kelkar, S. et al Los Alamos National Laboratory
Apr 30, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 3-2535: Compilation of Geodetic Data and Estimation of Associated Deformation
Report on possible geodetic signature of the 3 stimulations in April 2022 as well as a comparison with existing InSAR data gathered over the site before, during, and after the stimulation. In geothermal production it is important to understand the existing stress field and the cha...
Vasco, D. et al Lawrence Berkeley National Laboratory
Apr 29, 2022
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Utah FORGE 3-2514: A Strain Sensing Array to Characterize Deformation at the FORGE Site Workshop Presentation
This is a presentation on the Strain Sensing Array to Characterize Deformation at the FORGE Site project by Clemson University, presented by Lawrence Murdoch. The project's objective was to evaluate the feasibility of measuring and interpreting tensor strain data to improve the pe...
Murdoch, L. et al Clemson University
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: Data for 3-D Model Development Lithology, Temperature, Pressure, and Stress
This submission comprises two downloadable .zip archives. Each archive contains spreadsheets with 3-D data and a .txt document describing the data. The Mesh Files .zip download contains data regarding the lithologic contacts of the granitoid and overlying sedimentary basin fill. T...
Podgorney, R. Idaho National Laboratory
Mar 17, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: Phase 2C Topical Report
This is the topical report that wraps up the work and results achieved during Utah FORGE Phase 2C. The zip file includes several folders containing (1) an overview; (2) the results; (3) the lessons learned; and (4) the conclusions. It also contains a folder containing appendices i...
Moore, J. et al Energy and Geoscience Institute at the University of Utah
Dec 11, 2019
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2446: Closing the Loop Between In-situ Stress Complexity and EGS Fracture Complexity Workshop Presentation
This is a presentation on the Closing the Loop Between In-situ Stress Complexity and EGS Fracture Complexity project by Lawrence Livermore National Laboratory, presented by Dr. Matteo Cusini. The project's objective was to employ a combination of high-fidelity simulations and true...
Cusini, M. and Bunger, A. Lawrence Livermore National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE 5-2565: Hydrothermal Evolution of Fracture Properties Workshop Presentation
This is a presentation on the Evolution of Permeability and Strength Recovery of Shear Fractures Under Hydrothermal Conditions project by the U.S. Geological Survey, presented by Dr. David Lockner. The project's objective was to determine how thermal, hydraulic, mechanical, and ch...
Lockner, D. et al United States Geological Survey
Sep 08, 2023
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
CO2 Push-Pull Single Fault Injection Simulations
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a ...
Borgia, A. et al Lawrence Berkeley National Laboratory
Sep 21, 2017
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
STRESSINVERSE Software for Stress Inversion
The STRESSINVERSE code uses an iterative method to find the nodal planes most consistent with the stress field given fault frictional properties. STRESINVERSE inverts the strike, rake and dip from moment tensor solutions for the in-situ state of stress. The code iteratively solves...
Gritto, R. Array Information Technology
Oct 31, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: Well 16A(78)-32 Stimulation DFN Fracture Plane Evaluation and Data
This dataset includes files used to fit planar fractures through the preliminary earthquake catalogs of the three stages of the April 2022 well 16A(78)-32 stimulation which is linked bellow. These planar features have been used to update the FORGE reference Discrete Fracture Netwo...
Finnila, A. WSP Golder
Oct 27, 2022
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated
Snake River Plain Play Fairway Analysis: Phase 1 Report
This presents the results of Phase 1 of the Snake River Plain Play Fairway Analysis project, along with a proposed work for Phase 2. No new data were collected, but we list data sources for our compilation.
The Snake River volcanic province (SRP) overlies a thermal anomaly that e...
Shervais, J. et al Utah State University
Jan 25, 2016
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
EGS Collab: Modeling and Simulation Working Group Teleconference Series (1-98)
This submission contains the presentation slides and recordings from the first 98 EGS Collab Modeling and Simulation Working Group teleconferences. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and resul...
White, M. et al Pacific Northwest National Laboratory
Feb 04, 2020
100 Resources
0 Stars
Publicly accessible
100 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: SIMFIP Notch-164 GRL Paper
Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5...
Guglielmi, Y. Lawrence Berkeley National Laboratory
Sep 24, 2020
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Simulations of Brady's-Type Fault Undergoing CO2 Push-Pull: Pressure-Transient and Sensitivity Analysis
Input and output files used for fault characterization through numerical simulation using iTOUGH2. The synthetic data for the push period are generated by running a forward simulation (input parameters are provided in iTOUGH2 Brady GF6 Input Parameters.txt [InvExt6i.txt]). In gene...
Jung, Y. and Doughty, C. Lawrence Berkeley National Laboratory
Mar 09, 2018
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible