Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada

Publicly accessible License 

The vast supply of geothermal energy stored throughout the Earth and the exceedingly long time required to dissipate that energy makes the world's geothermal energy supply nearly limitless. As such, this resource holds the potential to provide a large supply of the world's energy demands; however, like all natural resources, it must be utilized in an appropriate manner if it is to be sustainable. Understanding sustainable use of geothermal resources requires thorough characterization efforts aimed at better understanding subsurface properties. The goal of this work is to understand which critical subsurface properties exert the most influence on sustainable geothermal production as a means to provide targeted future resource characterization strategies.

Borehole temperature and reservoir pressure data were analyzed to estimate reservoir thermal and hydraulic properties at an active geothermal site. These reservoir properties then served as inputs for an analytical model which simulated net power production over a 30-year period. The analytical model was used to conduct a sensitivity analysis to determine which parameters were most critical in constraining the sustainability of a geothermal reservoir. Modeling results reveal that the number of preferential flow pathways (i.e. fractures) used for heat transport provides the greatest impact on geothermal reservoir sustainability. These results suggest that early and pre-production geothermal reservoir exploration would achieve the greatest benefit from characterization strategies which seek to delineate the number of active flow pathways present in the system.

Citation Formats

University of Wisconsin. (2018). Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada [data set]. Retrieved from https://gdr.openei.org/submissions/1077.
Export Citation to RIS
Patterson, Jeremy R. Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada. United States: N.p., 11 Jul, 2018. Web. https://gdr.openei.org/submissions/1077.
Patterson, Jeremy R. Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada. United States. https://gdr.openei.org/submissions/1077
Patterson, Jeremy R. 2018. "Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada". United States. https://gdr.openei.org/submissions/1077.
@div{oedi_1077, title = {Understanding Constraints on Geothermal Sustainability Through Reservoir Characterization at Brady Geothermal Field, Nevada}, author = {Patterson, Jeremy R.}, abstractNote = {The vast supply of geothermal energy stored throughout the Earth and the exceedingly long time required to dissipate that energy makes the world's geothermal energy supply nearly limitless. As such, this resource holds the potential to provide a large supply of the world's energy demands; however, like all natural resources, it must be utilized in an appropriate manner if it is to be sustainable. Understanding sustainable use of geothermal resources requires thorough characterization efforts aimed at better understanding subsurface properties. The goal of this work is to understand which critical subsurface properties exert the most influence on sustainable geothermal production as a means to provide targeted future resource characterization strategies.

Borehole temperature and reservoir pressure data were analyzed to estimate reservoir thermal and hydraulic properties at an active geothermal site. These reservoir properties then served as inputs for an analytical model which simulated net power production over a 30-year period. The analytical model was used to conduct a sensitivity analysis to determine which parameters were most critical in constraining the sustainability of a geothermal reservoir. Modeling results reveal that the number of preferential flow pathways (i.e. fractures) used for heat transport provides the greatest impact on geothermal reservoir sustainability. These results suggest that early and pre-production geothermal reservoir exploration would achieve the greatest benefit from characterization strategies which seek to delineate the number of active flow pathways present in the system.}, doi = {}, url = {https://gdr.openei.org/submissions/1077}, journal = {}, number = , volume = , place = {United States}, year = {2018}, month = {07}}

Details

Data from Jul 11, 2018

Last updated Aug 23, 2018

Submitted Jul 25, 2018

Organization

University of Wisconsin

Contact

Jeremy Patterson

Authors

Jeremy R. Patterson

University of Wisconsin

DOE Project Details

Project Name PoroTomo Project

Project Lead Elisabet Metcalfe

Project Number EE0006760

Share

Submission Downloads