Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assisted computational framework is presented to identify High-Temperature Reservoir Thermal Energy Storage (HT-RTES) site with optimal performance metrics by combining physics-based simulation with stochastic hydrogeologic formation and thermal energy storage operation parameters, artificial neural network regression of the simulation data, and genetic algorithm-enabled multi-objective optimization. A doublet well configuration with a layered (aquitard-aquifer-aquitard) generic reservoir is simulated for cases of continuous operation and seasonal-cycle operation scenarios. Neural network-based surrogate models are developed for the two scenarios and applied to generate the Pareto fronts of the HT-RTES performance for four potential HT-RTES sites. The developed Pareto optimal solutions indicate the performance of HT-RTES is operation-scenario (i.e., fluid cycle) and reservoir-site dependent, and the performance metrics have competing effects for a given site and a given fluid cycle. The developed neural network models can be applied to identify suitable sites for HT-RTES, and the proposed framework sheds light on the design of resilient HT-RTES systems.
All the simulations and the neural network model were done by Idaho National Laboratory. A detailed description of the work was reported in publication linked below.
Citation Formats
Idaho National Laboratory. (2022). Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files [data set]. Retrieved from https://dx.doi.org/10.15121/1891881.
Jin, Wencheng, Atkinson, Trevor A., Doughty, Christine, Neupane, Ghanashyam, Spycher, Nicolas, McLing, Travis L., Dobson, Patrick F., Smith, Robert, and Podgorney, Robert. Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files. United States: N.p., 15 Apr, 2022. Web. doi: 10.15121/1891881.
Jin, Wencheng, Atkinson, Trevor A., Doughty, Christine, Neupane, Ghanashyam, Spycher, Nicolas, McLing, Travis L., Dobson, Patrick F., Smith, Robert, & Podgorney, Robert. Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files. United States. https://dx.doi.org/10.15121/1891881
Jin, Wencheng, Atkinson, Trevor A., Doughty, Christine, Neupane, Ghanashyam, Spycher, Nicolas, McLing, Travis L., Dobson, Patrick F., Smith, Robert, and Podgorney, Robert. 2022. "Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files". United States. https://dx.doi.org/10.15121/1891881. https://gdr.openei.org/submissions/1412.
@div{oedi_1412, title = {Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files}, author = {Jin, Wencheng, Atkinson, Trevor A., Doughty, Christine, Neupane, Ghanashyam, Spycher, Nicolas, McLing, Travis L., Dobson, Patrick F., Smith, Robert, and Podgorney, Robert.}, abstractNote = {This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assisted computational framework is presented to identify High-Temperature Reservoir Thermal Energy Storage (HT-RTES) site with optimal performance metrics by combining physics-based simulation with stochastic hydrogeologic formation and thermal energy storage operation parameters, artificial neural network regression of the simulation data, and genetic algorithm-enabled multi-objective optimization. A doublet well configuration with a layered (aquitard-aquifer-aquitard) generic reservoir is simulated for cases of continuous operation and seasonal-cycle operation scenarios. Neural network-based surrogate models are developed for the two scenarios and applied to generate the Pareto fronts of the HT-RTES performance for four potential HT-RTES sites. The developed Pareto optimal solutions indicate the performance of HT-RTES is operation-scenario (i.e., fluid cycle) and reservoir-site dependent, and the performance metrics have competing effects for a given site and a given fluid cycle. The developed neural network models can be applied to identify suitable sites for HT-RTES, and the proposed framework sheds light on the design of resilient HT-RTES systems.
All the simulations and the neural network model were done by Idaho National Laboratory. A detailed description of the work was reported in publication linked below.}, doi = {10.15121/1891881}, url = {https://gdr.openei.org/submissions/1412}, journal = {}, number = , volume = , place = {United States}, year = {2022}, month = {04}}
https://dx.doi.org/10.15121/1891881
Details
Data from Apr 15, 2022
Last updated Oct 12, 2022
Submitted Sep 1, 2022
Organization
Idaho National Laboratory
Contact
Wencheng Jin
404.906.7832
Authors
Keywords
Reservoir Thermal Energy Storage, Stochastic Simulation, GeoTES, Machine Learning, Modeling, TES, HT-RTES, characterization, numerical model, stochastic, hydrogeologic formation, simulated data, simulation data, High-Temperature, Thermal Energy Storage, Optimization, artificial neural network regression, ANN, neural network, operation scenarios, seasonal-cycle, Pareto fronts, seasonal operation, continuous operation, Falcon, MOOSEDOE Project Details
Project Name Dynamic Earth Energy Storage: Terawatt-year, Grid-scale Energy Storage using Planet Earth as a Thermal Battery (GeoTES): Phase II
Project Lead Jeffrey Bowman
Project Number FY22 AOP 2.8.1.1