Illite Dissolution Rates and Equation (100 to 280 deg C)
The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a "neutral" and a "basic" mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.
Citation Formats
Lawrence Livermore National Laboratory. (2014). Illite Dissolution Rates and Equation (100 to 280 deg C) [data set]. Retrieved from https://dx.doi.org/10.15121/1159941.
Carroll, Susan. Illite Dissolution Rates and Equation (100 to 280 deg C). United States: N.p., 17 Oct, 2014. Web. doi: 10.15121/1159941.
Carroll, Susan. Illite Dissolution Rates and Equation (100 to 280 deg C). United States. https://dx.doi.org/10.15121/1159941
Carroll, Susan. 2014. "Illite Dissolution Rates and Equation (100 to 280 deg C)". United States. https://dx.doi.org/10.15121/1159941. https://gdr.openei.org/submissions/454.
@div{oedi_454, title = {Illite Dissolution Rates and Equation (100 to 280 deg C)}, author = {Carroll, Susan.}, abstractNote = {The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a "neutral" and a "basic" mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.}, doi = {10.15121/1159941}, url = {https://gdr.openei.org/submissions/454}, journal = {}, number = , volume = , place = {United States}, year = {2014}, month = {10}}
https://dx.doi.org/10.15121/1159941
Details
Data from Oct 17, 2014
Last updated Jun 27, 2017
Submitted Oct 17, 2014
Organization
Lawrence Livermore National Laboratory
Contact
Susan Carroll
925.423.5694
Authors
Keywords
geothermal, illite, dissolution kinetics, illite dissolution, rate, equation, experimentDOE Project Details
Project Lead Lauren Boyd
Project Number FY14 AOP 1.4.2.2