Advanced Sorbent Structure Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters and Its Associated Technoeconomics
The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials (silica and MOF) demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the silica and MOF sorbent uptake, percent removal, and distribution coefficient results for Nd, Eu, Dy, Y and Ce, as well as the characterization of these select sorbent materials.
The report also contains estimated costs from an in-depth technoeconomic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource.
Citation Formats
Pacific Northwest National Laboratory. (2016). Advanced Sorbent Structure Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters and Its Associated Technoeconomics [data set]. Retrieved from https://gdr.openei.org/submissions/850.
Addleman, R. Shane, Chouyyok, Wilaiwan, Palo, Daniel, Dunn, Brad M., Brann, Michelle, Billingsley, Gary, Johnson, Darren, and Nell, Kara M. Advanced Sorbent Structure Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters and Its Associated Technoeconomics. United States: N.p., 21 Sep, 2016. Web. https://gdr.openei.org/submissions/850.
Addleman, R. Shane, Chouyyok, Wilaiwan, Palo, Daniel, Dunn, Brad M., Brann, Michelle, Billingsley, Gary, Johnson, Darren, & Nell, Kara M. Advanced Sorbent Structure Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters and Its Associated Technoeconomics. United States. https://gdr.openei.org/submissions/850
Addleman, R. Shane, Chouyyok, Wilaiwan, Palo, Daniel, Dunn, Brad M., Brann, Michelle, Billingsley, Gary, Johnson, Darren, and Nell, Kara M. 2016. "Advanced Sorbent Structure Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters and Its Associated Technoeconomics". United States. https://gdr.openei.org/submissions/850.
@div{oedi_850, title = {Advanced Sorbent Structure Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters and Its Associated Technoeconomics}, author = {Addleman, R. Shane, Chouyyok, Wilaiwan, Palo, Daniel, Dunn, Brad M., Brann, Michelle, Billingsley, Gary, Johnson, Darren, and Nell, Kara M.}, abstractNote = {The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials (silica and MOF) demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the silica and MOF sorbent uptake, percent removal, and distribution coefficient results for Nd, Eu, Dy, Y and Ce, as well as the characterization of these select sorbent materials.
The report also contains estimated costs from an in-depth technoeconomic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource. }, doi = {}, url = {https://gdr.openei.org/submissions/850}, journal = {}, number = , volume = , place = {United States}, year = {2016}, month = {09}}
Details
Data from Sep 21, 2016
Last updated Feb 27, 2018
Submitted Sep 21, 2016
Organization
Pacific Northwest National Laboratory
Contact
Pamela Kinsey
509.375.6848
Authors
Keywords
geothermal, sorbents, nano, rare earth elements, REEs, precious metals, mineral recovery, green mining, Inorganic sorbent removal efficiency, Organic Sorbent removal efficiency, composite thin film, REEDOE Project Details
Project Name Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures
Project Lead Holly Thomas
Project Number FY15 AOP 2.5.1.6