OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 25 of 269.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"EGS fracture"×
Document×

Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations

This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key too...
Templeton, D. et al Lawrence Livermore National Laboratory
Apr 18, 2014
1 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: Common Discrete Fracture Network

This package includes data and models that support hydraulic fracture stimulation and fluid circulation experiments in the Sanford Underground Research Facility (SURF). A paper by Schwering et al. (2020) describes the deterministic basis for developing a "common" discrete fracture...
Schwering, P. et al Sandia National Laboratories
Sep 18, 2019
4 Resources
0 Stars
Publicly accessible

Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS

The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible

Development of a Neutron Diffraction Based Experimental Capability for Investigating Hydraulic Fractures for EGS-like Conditions

Understanding the relationship between stress state, strain state and fracture initiation and propagation is critical to the improvement of fracture simulation capability if it is to be used as a tool for guiding hydraulic fracturing operations. The development of fracture predict...
Polsky, Y. et al Oak Ridge National Laboratory
Feb 01, 2013
1 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 2: Co-Injection Sewer Camera Survey Videos

On April 21, 2022, sewer camera surveys were conducted in boreholes TN and TL as part of Experiment 2 of the EGS Collab project. These surveys were performed during fluid injection into three zones in borehole TC to identify the depths of active fracture intersections. The goal wa...
Hopp, C. et al Lawrence Berkeley National Laboratory
May 20, 2025
7 Resources
0 Stars
Curated

Applications of Fractured Continuum Model to Enhanced Geothermal System Heat Extraction Problems

This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environm...
Kalinina, E. et al Sandia National Laboratories
May 06, 2014
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Connecting In Situ Stress and Wellbore Deviation to Near-Well Fracture Complexity using Phase-Field Simulations

This report presents a series of numerical experiments investigating the relationships among near-well fracture complexity, in situ stress conditions, and wellbore deviation. Using a phase-field modeling approach, the study explores how factors such as stress regimes, wellbore ori...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
2 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Report on Phase Field Modelling of Near-Wellbore Hydraulic Fracture Nucleation and Propagation

This is a report that describes the modelling of fracture nucleation and propagation in the near-wellbore region to understand the relationship between in situ stress and fracture patterns. A novel phase field formulation is described here, which represents fractures as a diffuse ...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Dec 31, 2023
1 Resources
0 Stars
Publicly accessible

EGS Collab: Modeling and Simulation Working Group Teleconference Series (1-98)

This submission contains the presentation slides and recordings from the first 98 EGS Collab Modeling and Simulation Working Group teleconferences. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and resul...
White, M. et al Pacific Northwest National Laboratory
Feb 04, 2020
100 Resources
0 Stars
Publicly accessible

Newberry EGS Demonstration: Stimulating the Existing Fracture Network Report

The Newberry Volcano EGS Demonstration in central Oregon, a 3 year project started in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to ...
Cladouhos, T. et al AltaRock Energy Inc
Mar 10, 2014
1 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: SIMFIP Notch-164 GRL Paper

Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5...
Guglielmi, Y. Lawrence Berkeley National Laboratory
Sep 24, 2020
9 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: Second Set Tracer Test Results

The EGS Collab project is developing ~10-20 m-scale field sites where fracture stimulation and flow models can be validated against controlled, small-scale, in-situ experiments. The first multi-well experimental site was established at the 4850 level in the Homestake Mine in Lead,...
Neupane, G. et al Idaho National Laboratory
Dec 19, 2019
4 Resources
0 Stars
Publicly accessible

Hybrid machine learning model to predict 3D in-situ permeability evolution

Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible

Utah FORGE 5-2615: Shear Enhanced Permeability In a Granitoid Fracture Presentation Slides

Provided here is a set of presentation slides detailing stress-dependent permeability in FORGE granitoid fractures and how fracture slip affects permeability. It outlines empirical correlations between permeability, stress, and fracture aperture, emphasizing that mechanically clos...
Ghassemi, A. and Ye, Z. University of Oklahoma
Feb 28, 2024
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Report on Laboratory Block Experiments with Six Different Combinations of Stresses and Rock Fabrics

This report documents a series of block-scale hydraulic fracturing experiments, simulating Utah FORGE conditions to investigate how different combinations of in situ stress regimes, well orientations, and thermal stress conditions influence fracture initiation and propagation. The...
Bunger, A. and Lu, Y. Lawrence Livermore National Laboratory
Jan 30, 2025
1 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 2: Earth Model Datasets

The EGS Collab Project performed a series of tests to increase the understanding the response of crystalline rock mass to stimulations and fluid circulation to efficiently implement enhanced geothermal systems (EGS) technologies. The EGS Collab team created two underground testbed...
Neupane, G. et al Idaho National Laboratory
May 29, 2022
6 Resources
0 Stars
Publicly accessible

Utah FORGE: Hydraulic Fracture Width Determination Using Stoneley Wave Pressure Testing and Electrical Borehole Scans

This report provides insights into Utah FORGE well 58-32's hydraulic fractures. It utilizes both electrical borehole scans from Schlumberger's Formation Micro-scanner Image tool (FMI) and Stoneley waves from a borehole sonic tool. These methods are combined in a comprehensive work...
Hornby, B. Hornby Geophysical Services, LLC
Oct 06, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE: Well 58-32 (MU-ESW1) FMI Log Fracture Results

A Schlumberger Fullbore Formation Micro-Imager (FMI) log was run from 7390 feet to 7527 feet depth in well 58-32, originally known as well MU-ESW1. Well 58-32 was completed in 2017 as part of Utah FORGE Phase 2. It reached a depth of 7536 feet and recorded a bottom hole temperatur...
BLOCHOWICZ, A. Energy and Geoscience Institute at the University of Utah
Mar 06, 2021
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Characterizing Stress Roughness Through Simulation of Hydraulic Fracture Growth

This dataset covers work that investigated the apparent toughness anisotropy at Utah FORGE by comparing microseismic data with stress profiles from field measurements. The study analyzes the hydraulic fracture growth of Stage 3 at Well 16A(78)-32 using MEQ data, calibrating a nume...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
3 Resources
0 Stars
Publicly accessible

Utah FORGE 3-2535: Report on Geodetic Observations of Fracture Development During April 2024 Stimulations

This report presents geodetic observations from the April 2024 stimulations at the Utah FORGE site, as part of LBNL FORGE Project 3-2535. It focuses on Distributed Strain Sensing (DSS) data from an optical fiber in well 16B, capturing localized strain linked to fracture propagatio...
Vasco, D. et al Lawrence Berkeley National Laboratory
Apr 28, 2025
1 Resources
0 Stars
Curated

Thermal Drawdown Induced Flow Channeling in Fractured Geothermal Reservoirs: Rock Mechanics and Rock Engineering

We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and t...
Fu, P. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: Core Logs

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF fil...
Dobson, P. et al Lawrence Berkeley National Laboratory
Apr 02, 2019
17 Resources
0 Stars
Publicly accessible

Utah FORGE: Well 16A(78)-32 Simplified Discrete Fracture Network Data

The FORGE team is making these fracture models available to researchers wanting a set of natural fractures in the FORGE reservoir for use in their own modeling work. They have been used to predict stimulation distances during hydraulic stimulation at the open toe section of well 1...
Finnila, A. Golder Associates Inc.
Jun 01, 2021
3 Resources
0 Stars
Publicly accessible

Application of Neutron Imaging to Investigate Flow through Fractures for EGS

There is an ongoing effort at Oak Ridge National Laboratory to develop a unique experimental capability for investigating flow through porous and fractured media using neutron imaging techniques. This capability is expected to support numerous areas of investigation associated wit...
Polsky, Y. et al Oak Ridge National Laboratory
Feb 01, 2013
1 Resources
0 Stars
Publicly accessible

Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model

Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service