Search GDR Data
Showing results 1 - 5 of 5.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Imperial Valley Dark Fiber Project Continuous DAS Data
The Imperial Valley Dark Fiber Project acquired Distributed Acoustic Sensing (DAS) seismic data on a ~28 km segment of dark fiber between the cities of Calipatria and Imperial in the Imperial Valley, Southern California. Dark fiber refers to unused optical fiber cables in telecomm...
Ajo-Franklin, J. et al Lawrence Berkeley National Laboratory
Nov 10, 2020
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
PoroTomo Natural Laboratory Horizontal and Vertical Distributed Acoustic Sensing Data
This dataset includes links to the PoroTomo DAS data in both SEG-Y and hdf5 (via h5py and HSDS with h5pyd) formats with tutorial notebooks for use. Data are hosted on Amazon Web Services (AWS) Simple Storage Service (S3) through the Open Energy Data Initiative (OEDI). Also include...
Feigl, K. et al University of Wisconsin
Mar 29, 2016
20 Resources
1 Stars
Curated
20 Resources
1 Stars
Curated
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible