OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 26 - 50 of 295.
Show results per page.
Order by:
Available Now:
Filters
Technologies
Featured Projects
Topics
Data Type
"stress state"×

A Conceptual Geologic Model for the Newberry Volcano EGS Site in Central Oregon: Constraining Heat Capacity and Permeability through Interpretation of Multicomponent Geosystems Data

Newberry Volcano, a voluminous (500 km3) basaltic/andesitic/rhyolitic shield volcano located near the intersection of the Cascade volcanic arc, the Oregon High Lava Plains and Brothers Fault Zone, and the northern Basin and Range Province, has been the site of geothermal explorati...
Mark-Moser, M. et al National Energy Technology Laboratory
Feb 22, 2016
1 Resources
0 Stars
Publicly accessible

Utah FORGE: Slide-Hold-Slide Experiments on Gneiss at Increased Temperature

Included are data from triaxial, single-inclined-fracture friction experiments. The experiments were performed with slide-hold-slide protocol on Utah FORGE gneiss at increased temperature. With a ~10 MPa normal stress, temperatures vary between experiments from room temperature u...
Eijsink, A. and Elsworth, D. Pennsylvania State University
Jul 25, 2023
24 Resources
0 Stars
Publicly accessible

Utah FORGE: Stress Logging Data

This spreadsheet consist of data and graphs from deep well 58-32 stress testing from 6900 7500 ft depth. Measured stress data were used to correct logging predictions of in situ stress. Stress plots shows pore pressure (measured during the injection testing), the total vertical in...
McLennan, J. Energy and Geoscience Institute at the University of Utah
Mar 14, 2018
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Characterizing In-Situ Stress with Laboratory Modelling and Field Measurements 2024 Annual Workshop Presentation

This is a presentation on A Multi-Component Approach to Characterizing In-Situ Stress at the Utah FORGE Site: Laboratory Modelling and Field Measurements project by The University of Pittsburgh, presented by Andrew Bunger. The project characterizes the stress in the Utah FORGE EGS...
Bunger, A. Energy and Geoscience Institute at the University of Utah
Sep 04, 2024
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Patua Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically st...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Report on Minifrac Tests for Stress Characterization

This report describes minifrac tests conducted in the 16B(78)-32 well at the Utah FORGE site to characterize subsurface stresses, including the magnitude and orientation of the minimum and maximum horizontal stresses and the magnitude of the vertical stress. A minifrac test was co...
Kelley, M. et al Battelle Memorial Institute
Feb 22, 2024
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Reports on Stress Prediction and Modeling for Well 16B(78)-32 May 2025

These two reports from the University of Pittsburgh document related efforts under Utah FORGE Project 2-2439v2 to estimate in-situ stresses in well 16B(78)-32 using laboratory data, machine learning models, and physics-based simulations. One report focuses on developing and valida...
Lu, G. et al University of Pittsburgh
Jun 05, 2025
2 Resources
0 Stars
Curated

Utah FORGE 2439: A Multi-Component Approach to Characterizing In-Situ Stress

Core-based in-situ stress estimation, Triaxial Ultrasonic Velocity (labTUV) data, and Deformation Rate Analysis (DRA) data for Utah FORGE well 16A(78)-32 using triaxial ultrasonic velocity and deformation rate analysis. Report documenting a multi-component approach to characterizi...
Bunger, A. et al Battelle Memorial Institute
Dec 13, 2022
4 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of McGinness Hills Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal Area

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions

This report reviews the training of machine learning algorithms to laboratory triaxial ultrasonic velocity data for Utah FORGE Well 16A(78)-32. Three machine learning (ML) predictive models were developed for the prediction of vertical and two orthogonally oriented horizontal str...
Kelley, M. et al Battelle Memorial Institute
Jun 19, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Connecting In Situ Stress and Wellbore Deviation to Near-Well Fracture Complexity using Phase-Field Simulations

This report presents a series of numerical experiments investigating the relationships among near-well fracture complexity, in situ stress conditions, and wellbore deviation. Using a phase-field modeling approach, the study explores how factors such as stress regimes, wellbore ori...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
2 Resources
0 Stars
Publicly accessible

Utah FORGE: Stress Ratio Dependence of Ultrasonic Anisotropy in Well 16B(78)-32 Core

This dataset contains high-pressure ultrasonic measurements on a foliated granitoid core from Well 16B(78)-32 at the Utah FORGE site. Ultrasonic P-waves and two orthogonal S-waves were measured concurrently parallel and perpendicular to the rock fabric. All measurements were mad...
Lisabeth, H. and Savage, H. Lawrence Berkeley National Laboratory
Apr 07, 2025
2 Resources
0 Stars
Curated

Utah FORGE 2-2446: Closing the Loop Between In-Situ Stress Complexity and EGS Fracture Complexity 2024 Annual Workshop Presentation

This is a presentation on Closing the Loop Between In-Situ Stress Complexity and EGS Fracture Complexity by Lawrence Livermore National Laboratory, presented by Matteo Cusini. The video discusses the combination of high-fidelity simulations and true-triaxial block fracturing tests...
Cusini, M. et al Energy and Geoscience Institute at the University of Utah
Aug 26, 2024
1 Resources
0 Stars
Publicly accessible

Preliminary Analysis of Stress in the Newberry EGS Well NWG 55-29

As part of the planning for stimulation of the Newberry Volcano Enhanced Geothermal Systems (EGS) Demonstration project in Oregon, a high-resolution borehole televiewer (BHTV) log was acquired using the ALT ABI85 BHTV tool in the slightly deviated NWG 55-29 well. The image log rev...
Davatzes, N. and Hickman, S. National Energy Technology Laboratory
Jan 01, 2011
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439: A Multi-Component Approach to Characterizing In-Situ Stress: Laboratory, Modeling and Field Measurement Workshop Presentation

This is a presentation on A Multi-Component Approach to Characterizing In-Situ Stress at the U.S DOE FORGE EGS Site: Laboratory, Modeling and Field Measurement project by Battelle [Columbus, OH], presented by Mark Kelley. The project's objective was to characterize stress in the U...
Kelley, M. and Bunger, A. Battelle Memorial Institute
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Characterizing Stress Roughness Through Simulation of Hydraulic Fracture Growth

This dataset covers work that investigated the apparent toughness anisotropy at Utah FORGE by comparing microseismic data with stress profiles from field measurements. The study analyzes the hydraulic fracture growth of Stage 3 at Well 16A(78)-32 using MEQ data, calibrating a nume...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
3 Resources
0 Stars
Publicly accessible

Snake River Plain Play Fairway Analysis: Mountain Home Geothermal Area Natural State Model

The Mountain Home area is characterized by high heat flow and temperature gradient. Temperature data are available from 18 boreholes with depths equal to or greater than 200 m, 5 of which have depths ranging from ~1340 m to ~3390 m (MH-1, MH-2, Bostic1, Lawrence D No.1, and Anschu...
Garg, S. et al Utah State University
Jul 28, 2015
4 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32

This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible

Utah FORGE: Earth Model Native State Simulation Results

Utah FORGE phase 2C Native State Simulation zip contains the data used for the boundary conditions and subsequent native state simulation results obtained using the simulation code FALCON. Data are from the nodes of the simulation domain, with used a uniform 50m spacing over a 250...
Podgorney, R. Energy and Geoscience Institute at the University of Utah
Jul 16, 2019
2 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Closing the Loop Between In-situ Stress Complexity and EGS Fracture Complexity Workshop Presentation

This is a presentation on the Closing the Loop Between In-situ Stress Complexity and EGS Fracture Complexity project by Lawrence Livermore National Laboratory, presented by Dr. Matteo Cusini. The project's objective was to employ a combination of high-fidelity simulations and true...
Cusini, M. and Bunger, A. Lawrence Livermore National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE: Beaver Basin Wildcat Well Lu Lu State #1 Dip Meter and Neutron Density Logs

This dataset contains Schlumberger dip meter and neutron density logs for Lu Lu State #1 wild cat well which is located in the Beaver Basin, Beaver County, Utah. There is also a text file with well location coordinates.
Schlumberger, S. Energy and Geoscience Institute at the University of Utah
Oct 08, 2018
1 Resources
0 Stars
Publicly accessible
<< Previous123456Next >>
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service