Search GDR Data
Showing results 1 - 8 of 8.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
EGS Collab Experiment 1: Circulation Testing
These data and test descriptions comprise a chilled circulation test conducted at the 164' fracture in the EGS Collab Experiment 1 testbed on the 4850 ft level of the Sanford Underground Research Facility. Descriptions of the meta data, design drawings for the flow testing system,...
Knox, H. et al Lawrence Berkeley National Laboratory
Apr 01, 2019
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Well Locations and Orientations.
The EGS Collab is conducting experiments in hydraulic fracturing at a depth of 1.5 km in the Sanford Underground Research Facility (SURF) on the 4850 Level. A total of eight ~60m-long subhorizontal boreholes were drilled at that depth on the western rib of the West Access Drift. S...
Neupane, G. et al Idaho National Laboratory
Sep 05, 2018
12 Resources
0 Stars
Publicly accessible
12 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Earth Model Input Files
The EGS Collab is conducting experiments in hydraulic fracturing at a depth of 1.5 km in the Sanford Underground Research Facility (SURF) on the 4850 Level. A total of eight ~60m-long subhorizontal boreholes were drilled at that depth on the western rib of the West Access Drift. S...
Neupane, G. and Sigma-V, T. Idaho National Laboratory
Dec 19, 2019
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: In-situ observation of pre-, co and post-seismic shear slip preceding hydraulic fracturing
Understanding the initiation and arrest of earthquakes is one of the long-standing challenges of seismology. Here we report on direct observations of borehole displacement by a meter-sized shear rupture induced by pressurization of metamorphic rock at 1.5 km depth. We observed the...
Guglielmi, Y. et al Lawrence Berkeley National Laboratory
May 22, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Circulation Testing Processed data
This submission includes processed and reduced data for circulation testing that was conducted at the 164' fracture on the 4850 ft level of the Sanford Underground Research Facility. The circulation tests were done to test the flow through the 164' fracture in the EGS Collab Exper...
Fu, P. et al Lawrence Livermore National Laboratory
Apr 01, 2021
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 2: Continuous Broadband Seismic Waveform Data
Two broadband seismometers were installed on the 4100 level and recorded for the duration of EGS Collab Experiment #2. Inspired by published data from similar instruments installed in the Aspo Hard Rock Lab, these long-period instruments aimed to measure the tilting of the drift i...
Rodriguez Tribaldos, V. Lawrence Berkeley National Laboratory
Sep 12, 2022
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Microseismic Monitoring
The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
46 Resources
0 Stars
Curated
46 Resources
0 Stars
Curated
EGS Collab: Modeling and Simulation Working Group Teleconference Series (1-98)
This submission contains the presentation slides and recordings from the first 98 EGS Collab Modeling and Simulation Working Group teleconferences. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and resul...
White, M. et al Pacific Northwest National Laboratory
Feb 04, 2020
100 Resources
0 Stars
Publicly accessible
100 Resources
0 Stars
Publicly accessible