Search GDR Data
Showing results 1 - 21 of 21.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Deep Direct-Use Feasibility Study Development of 3-D Structural Surface Model for the Tuscarora Sandstone, Morgantown, WV
This dataset contains grid files for subsurface maps created in GES interpretation software and exported as Zmap formated grid files. Depth values in SSTVD (subsea true vertical depth).
The methods used for analysis and a detailed discussion of the results are presented in a paper...
McCleery, R. et al West Virginia University
Dec 19, 2019
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Reservoir Productivity Uncertainty Analysis for the Tuscarora Sandstone, Morgantown, WV
This dataset contains figures that summarize the Tuscarora Sandstone core permeability data collected from the Preston 119 well in Preston County, WV, and summary results of a stochastic analysis that was used to estimate reservoir productivity for the currently unexplored Tuscaro...
Smith, J. West Virginia University
Dec 19, 2019
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Tuscarora Sandstone Geophysical Log Digitization
This dataset contains well log files collected from wells penetrating the Tuscarora Sandstone, structural geologic map of West Virginia and salinity information based on brine geochemistry in West Virginia and Pennsylvania.
A combination of proprietary and free software may be re...
Moore, J. West Virginia University
Dec 18, 2019
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Development of 3D Geological Model of Tuscarora Sandstone for Feasibility of Deep Direct-Use Geothermal at West Virginia University Main Campus
The subsurface uncertainty at West Virginia University Main Campus is dominated by the uncertainty in the projections of geofluid flowrate in the target formation, the Tuscarora Sandstone. In this paper, three cores from the heterogeneous reservoir, available through West Virginia...
Moore, J. et al West Virginia University
Oct 23, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Estimation of Reservoir Properties for the Tuscarora Sandstone
This dataset contains black-and-white photographic images of individual core segments from well Preston 119 and photomicrographs taken of petrographic thin sections from well Clay 513. Minipermeameter measurement results of 2,260 samples for fracture and matrix permeability on cor...
McDowell, R. West Virginia University
Dec 19, 2019
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Computed Tomography (CT)-scanned data Analysis for the Tuscarora Sandstone at the National Energy Technology Laboratory
The computed tomography (CT) facilities at the National Energy Technology Laboratory (NETL) Morgantown, West Virginia site were used to characterize core of the Tuscarora Sandstone from a vertical well in Preston County WV, the Preston-119 from a depth of 7,165 to 7,438 ft. The pr...
Brown, S. et al West Virginia University
Jan 10, 2020
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geocellular Modeling
This submission includes 3-D geocellular model files with formation top and formation thickness data for the St. Peter and Mt. Simon Sandstones in University of Illinois Deep Direct-Use project area. An input parameters file is also included for the St. Peter Sandstone.
Damico, J. University of Illinois
May 07, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geological Characterization of the St. Peter Sandstone
These studies undertook detailed analyses of the formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone in the Illinois Basin, including the St. Peter Sandstone, for geological storage and mineral potential.
Lin, Y. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
University of Illinois Campus Deep Direct-Use Feasibility Study Geological Characterization of the Mt. Simon Sandstone
These studies undertook detailed analyses of the Mt. Simon Sandstone in the Illinois Basin for geological storage and sequestration, and brine extraction.
Lin, Y. et al University of Illinois
Mar 30, 2018
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Feasibility of a Deep Direct-Use Geothermal System at the University of Illinois Urbana-Champaign
Paper authored by Stumpf et al. for the 2018 Geothermal Resources Council Annual Meeting held in Reno, NV USA. Included with the paper is the Microsoft PowerPoint presentation made at the GRC meeting and data tables associated with some of the figures.
Stumpf, A. et al University of Illinois
Dec 31, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Geocellular model of St. Peter Sandstone for University of Illinois at Urbana-Champaign DDU Feasibility Study
The geocellular model of the St. Peter Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
Geocellular Model of Mt. Simon Sandstone for University of Illinois at Urbana-Champaign DDU feasibility study
The geocellular model of the Mt. Simon Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Extraction/Injection Well Design for Deep Direct Use at University of Illinois at Urban-Champaign
The large scale Deep Direct Use (DDU) geothermal project in the low temperature environment of the Illinois Basin requires drilling and completing two wells. One well would be the extraction (producing) well and would be built to deliver a flow rate of approximately 6000 barrels ...
Kirksey, J. and Lu, Y. University of Illinois
Mar 31, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Mt. Simon Sandstone Brine Chemistry for DDU Technology at the U of IL Campus
A review of brine chemistry data for the Mt. Simon Sandstone in the Illinois Basin is provided for calculations to predict the potential for mineral scaling and precipitation. The assessment includes expected changes in temperature, pressure, and/or exposure to air or other materi...
Lu, Y. and McKaskle, R. University of Illinois
Mar 31, 2019
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geology Log and Drilling Prospectus
Geology log and drilling prospectus for University of Illinois at Urbana-Champaign (UIUC) Energy Farm.
Nelson, W. University of Illinois
Apr 16, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Porosity and Permeability of Rock Formations
Porosity and permeability data from published and unpublished sources for the St. Peter and Mt. Simon Sandstones in the Illinois Basin.
Damico, J. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Chemistry of Formation Waters
Studies of chemical composition of natural brines from rock formations in the Illinois Basin as part of the University of Illinois deep direct-use feasibility study.
Lin, Y. et al University of Illinois
Apr 23, 2018
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
Deep Direct-Use Feasibility Study Numerical Modeling and Uncertainty Analysis using iTOUGH2 for West Virginia University
To reduce the geothermal exploration risk, a feasibility study is performed for a deep direct-use system proposed at the West Virginia University (WVU) Morgantown campus. This study applies numerical simulations to investigate reservoir impedance and thermal production. Because of...
Garapati, N. et al West Virginia University
Dec 20, 2019
13 Resources
0 Stars
Publicly accessible
13 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Regional Geology
Links to papers and reports describing the structure and character of the Illinois Basin geology.
Included are descriptions of the two reservoirs that are being modeled for the DDU feasibility project at University of Illinois, the St. Peter and Mt. Simon Sandstones.
Lin, Y. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Thermal Properties of Geologic Formations in Illinois Basin
Thermal property data for rocks and and minerals and unconsolidated (glacial) sediments units from within and outside the Illinois Basin were compiled for modeling heat transport in the subsurface.
Lin, Y. et al University of Illinois
Mar 30, 2018
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Subsurface Temperature Profile
High resolution fiber-optic distributed temperature sensing logs from the Illinois Basin Decatur Project (IBDP) in Decatur, IL were used to model the thermal profile in the Illinois Basin.
Lin, Y. et al University of Illinois
Jun 13, 2018
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated