Search GDR Data
Showing results 1 - 9 of 9.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Programs and Code for Geothermal Exploration Artificial Intelligence
The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
REopt Lite Geothermal Heat Pump Design Requirements
This document describes the design requirements for the geothermal heat pump (GHP) module being added to the existing REopt Lite web tool. This document describes the purpose, users, and functional requirements to which the modified web tool shall conform. This document will be re...
Olis, D. National Renewable Energy Laboratory
Mar 08, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Imperial Valley Dark Fiber Project Continuous DAS Data
The Imperial Valley Dark Fiber Project acquired Distributed Acoustic Sensing (DAS) seismic data on a ~28 km segment of dark fiber between the cities of Calipatria and Imperial in the Imperial Valley, Southern California. Dark fiber refers to unused optical fiber cables in telecomm...
Ajo-Franklin, J. et al Lawrence Berkeley National Laboratory
Nov 10, 2020
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Soda Lake Geothermal: Raw 3D and 3C Seismic-Reflection Data from 2010 Survey
This dataset contains seismic-reflection records created in 2010 around the Soda Lake geothermal field near Fallon, Nevada. The data was collected by the power plant operator at the time, Magma Energy (CYRQ Energy in 2024). This was a petroleum-industry-quality three-dimensional ...
N. Louie, J. et al University of Nevada Reno
Sep 01, 2010
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: Microseismic Monitoring
The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
46 Resources
0 Stars
Curated
46 Resources
0 Stars
Curated