Search GDR Data
Showing results 1 - 16 of 16.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Community Geothermal: Seward Alaska Heat Loop District Energy System Modelica Model
This dataset contains a Modelica-based dynamic thermal simulation model of the Seward Heat Loop project. The model contains building loads generated from DesignBuilder simulations of the four city-owned buildings that are connected to the system. These buildings are heated by a hy...
Mitchell, M. et al National Renewable Energy Laboratory
Sep 29, 2024
1 Resources
0 Stars
In progress
1 Resources
0 Stars
In progress
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Coupling Subsurface and Above-Surface Models for Optimizing the Design of Borefields and District Heating and Cooling Systems
Accurate dynamic energy simulation is important for the design and sizing of district heating and cooling systems with geothermal heat exchange for seasonal energy storage. Current modeling approaches in building and district energy simulation tools typically consider heat conduct...
Hu, J. et al Lawrence Berkeley National Laboratory
Jan 31, 2022
10 Resources
0 Stars
Publicly accessible
10 Resources
0 Stars
Publicly accessible
Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results
Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog from Double-Difference Seismic Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog obtained for a double-difference seismic tomography study.
The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-wave velocity (km/s), P-wave velocity quality indicator (1 for we...
Chai, C. et al Oak Ridge National Laboratory
Jun 01, 2020
8 Resources
0 Stars
Publicly accessible
8 Resources
0 Stars
Publicly accessible
EGS Collab: 3D Geophysical Model Around the Sanford Underground Research Facility
This package contains data associated with a proceedings paper (linked below) submitted to the 44th Workshop on Geothermal Reservoir Engineering. The Geophysical Model text file contains density, P and S-wave seismic speeds on a 3D grid. The file has six columns and provides latit...
Chai, C. et al Lawrence Berkeley National Laboratory
Feb 06, 2019
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE: Phase Native State FALCON Model Files
The submission includes FALCON input file and mesh for the an initial pressure-temperature simulation, and a second set for pressure-temperature-displacement simulation. All simulations are steady state. Data and input for the FORGE Phase 2 native state model were compiled from hi...
Podgorney, R. Idaho National Laboratory
Jun 06, 2019
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
REopt Lite Geothermal Heat Pump Design Requirements
This document describes the design requirements for the geothermal heat pump (GHP) module being added to the existing REopt Lite web tool. This document describes the purpose, users, and functional requirements to which the modified web tool shall conform. This document will be re...
Olis, D. National Renewable Energy Laboratory
Mar 08, 2021
6 Resources
0 Stars
Publicly accessible
6 Resources
0 Stars
Publicly accessible
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Curated
7 Resources
0 Stars
Curated
GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files
This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Programs and Code for Geothermal Exploration Artificial Intelligence
The scripts below are used to run the Geothermal Exploration Artificial Intelligence developed within the "Detection of Potential Geothermal Exploration Sites from Hyperspectral Images via Deep Learning" project. It includes all scripts for pre-processing and processing, including...
Moraga, J. Colorado School of Mines
Apr 27, 2021
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Pilgrim Hot Springs: GEOPHIRES Inputs and Outputs for Direct-Use Geothermal District Heating and Cooling
This dataset includes files for a techno-economic analysis conducted using the GEOPHIRES simulator to examine the feasibility of expanding a larger district heating site in a remote location: Pilgrim Hot Springs, Alaska. Files included here are GEOPHIRES inputs and outputs for fiv...
Pauling, H. et al National Renewable Energy Laboratory
Mar 21, 2024
21 Resources
0 Stars
Curated
21 Resources
0 Stars
Curated
EGS Collab Experiment 1: Microseismic Monitoring
The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first expe...
Schoenball, M. et al Lawrence Berkeley National Laboratory
Jul 29, 2019
46 Resources
0 Stars
Curated
46 Resources
0 Stars
Curated