OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 8 of 8.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"ML"×
Document×

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report

This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32

This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs

Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions

This report reviews the training of machine learning algorithms to laboratory triaxial ultrasonic velocity data for Utah FORGE Well 16A(78)-32. Three machine learning (ML) predictive models were developed for the prediction of vertical and two orthogonally oriented horizontal str...
Kelley, M. et al Battelle Memorial Institute
Jun 19, 2023
1 Resources
0 Stars
Publicly accessible

Hybrid machine learning model to predict 3D in-situ permeability evolution

Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible

Lost Circulation Materials in Geothermal Drilling: Single Fracture Clogging Experments

The submitted dataset was generated by a series of laboratory fracture clogging (permeability reduction) experiments using commercially available materials used for lost circulation management during geothermal well drilling. The experiments were conducted using a permeability plu...
Lawrence Berkeley National Laboratory
Jan 06, 2025
15 Resources
0 Stars
In progress

Utah FORGE 6-3712: Report on a Data Foundation for Real-Time Identification of Microseismic Events

This submission is a technical report for the Probabilistic Estimation of Seismic Response Using Physics Informed Recurrent Neural Networks project. The report describes the process of extracting events from the borehole seismic sensors. To be effective once deployed, the process ...
Williams, J. et al Global Technology Connection, Inc.
Jan 21, 2025
3 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: TOUGH2-CSM Simulation of Embedded Natural Fractures and Chemical Tracer Transport and Sorption

The EGS Collab SIGMA-V project is a multi-lab and university collaborative research project that is being undertaken at the Sanford Underground Research Facility (SURF) in South Dakota. The project consists of studying stimulation, fluid-flow, and heat transfer processes at a scal...
Johnston, B. et al National Renewable Energy Laboratory
Jun 07, 2019
4 Resources
0 Stars
Publicly accessible
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service