Search GDR Data
Showing results 26 - 44 of 44.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
GEOPHIRES Simulations for Deep Direct Use (DDU) Projects
This folder contains the GEOPHIRES codes and input files for running the base case scenarios for the six deep direct-use (DDU) projects. The six DDU projects took place during 2017-2020 and were funded by the U.S. Department of Energy Geothermal Technologies Office. They investiga...
Beckers, K. National Renewable Energy Laboratory
Jun 30, 2020
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geocellular Model of Mt. Simon Sandstone for University of Illinois at Urbana-Champaign DDU feasibility study
The geocellular model of the Mt. Simon Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 ...
Damico, J. University of Illinois
Dec 31, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Design of Injection Well #1 (CCS1)
Includes specification sheet, wellbore geometry, and drilling fluids at section target depth associated with the design of Injection Well #1 (CCS1) for the Illinois Basin Decatur Project (IBDP).
Greenberg, S. University of Illinois
Mar 30, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Revised Campus Master Plan Map
Revised master plan for the University of Illinois Urbana-Champaign campus. Note, the corridor where the UIUC Energy Farm is located will expand with the relocation of the Swine Research Farm and Feed Tech Center.
Lin, Y. University of Illinois
Apr 26, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Deep Direct-Use Feasibility Study Temperature-Depth Estimates for West Virginia University, Morgantown, WV
This dataset contains data spreadsheets and figures that summarize the results of a stochastic analysis of temperatures at depth below the West Virginia University campus in Morgantown, WV. These results are extracted from a study by Smith (2019), whose results are included in a G...
Smith, J. West Virginia University
Dec 19, 2019
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Bedrock Geology ArcGIS Layers
Bedrock Geology of Champaign County, Illinois, map layers (shapefiles).
Layers included:
1) Champaign County bedrock units.
2) Champaign County bedrock surface contours. Contour interval of 25 feet.
3) Colchester coal surface contours. Contour interval of 50 feet.
4) Kimmswick...
Nelson, W. University of Illinois
Mar 20, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Energy Farm Propane Use Logs
This submission includes an excel workbook containing propane energy logs for the UIUC Energy Farm from March 2013 to March 2016. It also includes heating degree day information for the region from the period October 1 to March 31, for the years 2008 to 2013.
The propane logs are...
Lin, Y. University of Illinois
Dec 18, 2017
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geocellular Modeling
This submission includes 3-D geocellular model files with formation top and formation thickness data for the St. Peter and Mt. Simon Sandstones in University of Illinois Deep Direct-Use project area. An input parameters file is also included for the St. Peter Sandstone.
Damico, J. University of Illinois
May 07, 2018
5 Resources
0 Stars
Publicly accessible
5 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Designs for Deep Injection and Monitoring Wells
The following information is provided about the design of deeps wells constructed in the Illinois Basin to store, sequester, or dispose of CO2, natural gas, and industrial wastes.
Lin, Y. et al University of Illinois
Mar 30, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Regional Geology
Links to papers and reports describing the structure and character of the Illinois Basin geology.
Included are descriptions of the two reservoirs that are being modeled for the DDU feasibility project at University of Illinois, the St. Peter and Mt. Simon Sandstones.
Lin, Y. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Porosity and Permeability of Rock Formations
Porosity and permeability data from published and unpublished sources for the St. Peter and Mt. Simon Sandstones in the Illinois Basin.
Damico, J. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Environmental Life Cycle Assessment Spreadsheet tool for Deep Direct-Use Geothermal at the University of Illinois at Urbana-Champaign Campus
A Life Cycle Assessment (LCA) spreadsheet tool was developed to analyze potential environmental benefits of a deep direct-use (DDU) geothermal energy system (GES) at the University of Illinois at Urbana-Champaign (U of IL) campus. The LCA spreadsheet tool is a unique contribution ...
Tinjum, J. et al University of Illinois
Jan 31, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geological Characterization of the St. Peter Sandstone
These studies undertook detailed analyses of the formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone in the Illinois Basin, including the St. Peter Sandstone, for geological storage and mineral potential.
Lin, Y. et al University of Illinois
Mar 30, 2018
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
University of Illinois Campus Deep Direct-Use Feasibility Study Preliminary Geothermal Reservoir Model
Preliminary geothermal reservoir simulations were performed using a homogeneous static model to evaluate and understand the effects of fluid and rock properties that could influence the delivery of thermal energy in a doublet system. A 5000 feet by 5100 feet by 500 feet homogeneou...
Okwen, R. University of Illinois
May 08, 2018
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
University of Illinois Campus Deep Direct-Use Feasibility Study Geological Characterization of the Mt. Simon Sandstone
These studies undertook detailed analyses of the Mt. Simon Sandstone in the Illinois Basin for geological storage and sequestration, and brine extraction.
Lin, Y. et al University of Illinois
Mar 30, 2018
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
University of Illinois Campus Deep Direct-Use Feasibility Study Chemistry of Formation Waters
Studies of chemical composition of natural brines from rock formations in the Illinois Basin as part of the University of Illinois deep direct-use feasibility study.
Lin, Y. et al University of Illinois
Apr 23, 2018
6 Resources
0 Stars
Curated
6 Resources
0 Stars
Curated
Appalachian Basin Play Fairway Analysis Thermal Risk Factor and Quality Analyses
*This submission revises the analysis and products for Thermal Quality Analysis for the northern half of the Appalachian Basin (https://gdr.openei.org/submissions/638)*
This submission is one of five major parts of a Low Temperature Geothermal Play Fairway Analysis. Phase 1 of the...
Jordan, T. Cornell University
Aug 02, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Appalachian Basin Play Fairway Analysis: Revised 2016 Combined Risk Factor Analysis
This submission contains information used to compute the combined risk factors for deep geothermal energy opportunities in the Appalachian Basin, in the context of a the Play Fairway Analysis project. The risk factors are sedimentary rock reservoir quality, thermal resource qualit...
E., T. Cornell University
Nov 15, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB)
This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylva...
E., T. Cornell University
Nov 15, 2015
50 Resources
0 Stars
Publicly accessible
50 Resources
0 Stars
Publicly accessible