Search GDR Data
Showing results 26 - 50 of 347.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
Utah FORGE 5-2428: Fracture Permeability Impact on Reservoir Stress and Seismic Slip Behavior Workshop Presentation
This is a presentation on the Fracture Permeability Impact on Seismic Slip Behavior project by Lawrence Livermore National Laboratory, presented by Dr. Kayla A. Kroll. The project's objective is to develop, apply and validate a holistic thermal, hydrologic, mechanical, and chemic...
Kroll, K. et al Lawrence Livermore National Laboratory
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Seismic Analysis of Spatio-Temporal Fracture Generation During EGS Resource Development Deviatoric MT, Fracture Network, and Final Report
This submission contains 167 deviatoric moment tensor (MT) solutions for the seismicity observed two years prior and three years post start of injection activities at The Geysers Prati 32 EGS Demonstration. Also included is a statistical representation of the properties of 751 fra...
Gritto, R. et al Array Information Technology
Sep 01, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE 5-2615: Thermo-poromechanical Response of Fractured Rock Workshop Presentation
This is a presentation on the Experimental Determination and Modeling-Informed Analysis of Thermo-poromechanical Response of Fractured Rock for Application to Utah FORGE project by the University of Oklahoma, presented by Dr. Ahmad Ghassemi, McCasland Chair Prof. The project objec...
Ghassem, A. University of Oklahoma
Sep 08, 2023
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: Final Topical Report 2018
This is the final topical report for the Phase 2B Utah FORGE project, which is located near Roosevelt Hot Springs, Utah. This PDF format report details results associated with the conceptual geologic model, deep well 58-32, rock geomechanics, reservoir temperatures, seismic survey...
Moore, J. et al Energy and Geoscience Institute at the University of Utah
Apr 07, 2018
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Processed Lab Data for Neural Network-Based Shear Stress Level Prediction
Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a n...
Marone, C. et al Pennsylvania State University
May 14, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Thermal-Hydrological-Mechanical Modelling of Stockton University Reservoir Cooling System, Large Scale Grid
Mesh, properties, initial conditions, injection/withdrawal rates for modeling thermal, hydrological, and mechanical effects of fluid injection to and withdrawal from ground for Stockton University reservoir cooling system (aquifer storage cooling system), Galloway, New Jersey, on ...
Smith, J. et al Lawrence Berkeley National Laboratory
Feb 26, 2021
15 Resources
0 Stars
Publicly accessible
15 Resources
0 Stars
Publicly accessible
Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in ...
Fu, P. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Thermal Drawdown-Induced Flow Channeling in a Single Fracture in EGS
The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution caus...
Guo, B. et al Lawrence Livermore National Laboratory
Nov 15, 2015
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: 2024 Discrete Fracture Network Model Data
The Utah FORGE 2024 Discrete Fracture Network (DFN) Model dataset provides a set of files representing discrete fracture network modeling for the FORGE site near Milford, Utah. The dataset includes four distinct DFN model file sets, each corresponding to different time frames and ...
Finnila, A. and Jones, C. Energy and Geoscience Institute at the University of Utah
Sep 08, 2024
5 Resources
0 Stars
Curated
5 Resources
0 Stars
Curated
Utah FORGE: Microseismic Events
This archive contains Excel spreadsheets containing microseismic events detected in the study area during Utah FORGE Phase 2C. The Readme file included that describes the meaning of the abbreviations used as field headers in the spreadsheets. Additionally, there is a .dat (text) f...
Rutledge, J. Energy and Geoscience Institute at the University of Utah
Jul 08, 2019
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Appalachian Basin Play Fairway Analysis: Revised 2016 Combined Risk Factor Analysis
This submission contains information used to compute the combined risk factors for deep geothermal energy opportunities in the Appalachian Basin, in the context of a the Play Fairway Analysis project. The risk factors are sedimentary rock reservoir quality, thermal resource qualit...
E., T. Cornell University
Nov 15, 2016
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Dynamic Earth Energy Storage: Terawatt-Year, Grid-Scale Energy Storage using Planet Earth as a Thermal Battery (GeoTES): Seedling Project Final Report
Grid-scale energy storage has been identified as a needed technology to support the continued build-out of intermittent renewable energy resources. As of April 2017, the U.S. had approximately 24.2 GW of energy storage on line, compared to 1,081 GW of installed generation capacity...
McLing, T. et al Idaho National Laboratory
May 31, 2019
11 Resources
0 Stars
Publicly accessible
11 Resources
0 Stars
Publicly accessible
Hawthorne Nevada Deep Direct-Use Feasibility Study 3D Geologic Model
The objective of this project is to use a multi-disciplinary, three-tiered approach to assess the geothermal resource and determine the feasibility of implementing a large-scale, direct-use facility for the Hawthorne Army Depot (HAD) and the various town and county facilities in H...
Lowry, T. Nevada Bureau of Mines and Geology
Mar 29, 2018
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE: Phase 3 Native State Model 2022 Update
This is the Phase 3 native state model update. The Phase 3 numerical model represents a significant subsurface volume below the FORGE site footprint. The model domain of 4.0 km x 4.0 km x 4.2 km is located approximately between depths of 4000 to 4200 meters below land surface. Thi...
Podgorney, R. and Liu, R. Idaho National Laboratory
Jul 29, 2022
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Utah FORGE: Stress Logging Data
This spreadsheet consist of data and graphs from deep well 58-32 stress testing from 6900 7500 ft depth. Measured stress data were used to correct logging predictions of in situ stress. Stress plots shows pore pressure (measured during the injection testing), the total vertical in...
McLennan, J. Energy and Geoscience Institute at the University of Utah
Mar 14, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model
Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Utah FORGE: Well 58-32 Stimulation Conference Paper and Data
The U.S. Department of Energy's (U.S. DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is a field laboratory that provides a unique opportunity to develop and test new technologies for characterizing, creating and sustaining Enhanced Geothermal Systems (EGS) in ...
Best, S. Energy and Geoscience Institute at the University of Utah
Apr 24, 2019
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of the Patua Geothermal Area
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically st...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an in...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE: Fault Reactivation Through Fluid Injection Induced Seismicity Laboratory Experiments
Included are results from shear reactivation experiments on laboratory faults pre-loaded close to failure and reactivated by the injection of fluid into the fault. The sample comprises a single-inclined-fracture (SIF) transecting a cylindrical sample of Westerly granite.
All expe...
Yu, J. et al Pennsylvania State University
Jul 01, 2023
27 Resources
0 Stars
Curated
27 Resources
0 Stars
Curated
STRESSINVERSE Software for Stress Inversion
The STRESSINVERSE code uses an iterative method to find the nodal planes most consistent with the stress field given fault frictional properties. STRESINVERSE inverts the strike, rake and dip from moment tensor solutions for the in-situ state of stress. The code iteratively solves...
Gritto, R. Array Information Technology
Oct 31, 2018
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 2439: A Multi-Component Approach to Characterizing In-Situ Stress
Core-based in-situ stress estimation, Triaxial Ultrasonic Velocity (labTUV) data, and Deformation Rate Analysis (DRA) data for Utah FORGE well 16A(78)-32 using triaxial ultrasonic velocity and deformation rate analysis. Report documenting a multi-component approach to characterizi...
Bunger, A. et al Battelle Memorial Institute
Dec 13, 2022
4 Resources
0 Stars
Curated
4 Resources
0 Stars
Curated
Slip and Dilation Tendency Analysis of McGinness Hills Geothermal Area
Slip and Dilation Tendency in focus areas
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal Area
Slip and Dilation Tendency in focus areas
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency...
E., J. University of Nevada
Dec 31, 2013
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible