OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 51 - 65 of 65.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"heat demand by county"×
Deep Direct Use×

University of Illinois Campus Deep Direct-Use Feasibility Study Design of Injection Well #1 (CCS1)

Includes specification sheet, wellbore geometry, and drilling fluids at section target depth associated with the design of Injection Well #1 (CCS1) for the Illinois Basin Decatur Project (IBDP).
Greenberg, S. University of Illinois
Mar 30, 2018
1 Resources
0 Stars
Publicly accessible

University of Illinois Campus Deep Direct-Use Feasibility Study Revised Campus Master Plan Map

Revised master plan for the University of Illinois Urbana-Champaign campus. Note, the corridor where the UIUC Energy Farm is located will expand with the relocation of the Swine Research Farm and Feed Tech Center.
Lin, Y. University of Illinois
Apr 26, 2018
1 Resources
0 Stars
Publicly accessible

University of Illinois Campus Deep Direct-Use Feasibility Study Geocellular Modeling

This submission includes 3-D geocellular model files with formation top and formation thickness data for the St. Peter and Mt. Simon Sandstones in University of Illinois Deep Direct-Use project area. An input parameters file is also included for the St. Peter Sandstone.
Damico, J. University of Illinois
May 07, 2018
5 Resources
0 Stars
Publicly accessible

Extraction/Injection Well Design for Deep Direct Use at University of Illinois at Urban-Champaign

The large scale Deep Direct Use (DDU) geothermal project in the low temperature environment of the Illinois Basin requires drilling and completing two wells. One well would be the extraction (producing) well and would be built to deliver a flow rate of approximately 6000 barrels ...
Kirksey, J. and Lu, Y. University of Illinois
Mar 31, 2019
1 Resources
0 Stars
Publicly accessible

University of Illinois Campus Deep Direct-Use Feasibility Study Designs for Deep Injection and Monitoring Wells

The following information is provided about the design of deeps wells constructed in the Illinois Basin to store, sequester, or dispose of CO2, natural gas, and industrial wastes.
Lin, Y. et al University of Illinois
Mar 30, 2018
3 Resources
0 Stars
Publicly accessible

University of Illinois Campus Deep Direct-Use Feasibility Study Porosity and Permeability of Rock Formations

Porosity and permeability data from published and unpublished sources for the St. Peter and Mt. Simon Sandstones in the Illinois Basin.
Damico, J. et al University of Illinois
Mar 30, 2018
3 Resources
0 Stars
Publicly accessible

Environmental Life Cycle Assessment Spreadsheet tool for Deep Direct-Use Geothermal at the University of Illinois at Urbana-Champaign Campus

A Life Cycle Assessment (LCA) spreadsheet tool was developed to analyze potential environmental benefits of a deep direct-use (DDU) geothermal energy system (GES) at the University of Illinois at Urbana-Champaign (U of IL) campus. The LCA spreadsheet tool is a unique contribution ...
Tinjum, J. et al University of Illinois
Jan 31, 2020
2 Resources
1 Stars
Publicly accessible

Appalachian Basin Play Fairway Analysis: Revised 2016 Combined Risk Factor Analysis

This submission contains information used to compute the combined risk factors for deep geothermal energy opportunities in the Appalachian Basin, in the context of a the Play Fairway Analysis project. The risk factors are sedimentary rock reservoir quality, thermal resource qualit...
E., T. Cornell University
Nov 15, 2016
2 Resources
0 Stars
Publicly accessible

Development of 3D Geological Model of Tuscarora Sandstone for Feasibility of Deep Direct-Use Geothermal at West Virginia University Main Campus

The subsurface uncertainty at West Virginia University Main Campus is dominated by the uncertainty in the projections of geofluid flowrate in the target formation, the Tuscarora Sandstone. In this paper, three cores from the heterogeneous reservoir, available through West Virginia...
Moore, J. et al West Virginia University
Oct 23, 2018
5 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Estimation of Reservoir Properties for the Tuscarora Sandstone

This dataset contains black-and-white photographic images of individual core segments from well Preston 119 and photomicrographs taken of petrographic thin sections from well Clay 513. Minipermeameter measurement results of 2,260 samples for fracture and matrix permeability on cor...
McDowell, R. West Virginia University
Dec 19, 2019
5 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Development of 3-D Structural Surface Model for the Tuscarora Sandstone, Morgantown, WV

This dataset contains grid files for subsurface maps created in GES interpretation software and exported as Zmap formated grid files. Depth values in SSTVD (subsea true vertical depth). The methods used for analysis and a detailed discussion of the results are presented in a paper...
McCleery, R. et al West Virginia University
Dec 19, 2019
3 Resources
0 Stars
Publicly accessible

Geologic Reservoir Content Model from Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin

This dataset contains the known hydrocarbon reservoirs within the study area of the Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB) as part of Phase 1, Natural Reservoirs Quality Analysis. The final values for Reservoir Productivity Index (RPI) and uncertainty...
E., T. Cornell University
Sep 30, 2015
2 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Tuscarora Sandstone Geophysical Log Digitization

This dataset contains well log files collected from wells penetrating the Tuscarora Sandstone, structural geologic map of West Virginia and salinity information based on brine geochemistry in West Virginia and Pennsylvania. A combination of proprietary and free software may be re...
Moore, J. West Virginia University
Dec 18, 2019
6 Resources
0 Stars
Publicly accessible

Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin

The files included in this submission contain all data pertinent to the methods and results of this task's output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified usi...
Jordan, T. and Camp, E. Cornell University
Oct 22, 2015
9 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Numerical Modeling and Uncertainty Analysis using iTOUGH2 for West Virginia University

To reduce the geothermal exploration risk, a feasibility study is performed for a deep direct-use system proposed at the West Virginia University (WVU) Morgantown campus. This study applies numerical simulations to investigate reservoir impedance and thermal production. Because of...
Garapati, N. et al West Virginia University
Dec 20, 2019
13 Resources
0 Stars
Publicly accessible
<< Previous123
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service