OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 10 of 10.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"predictions"×
Document×

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs

Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32

This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible

Community Geothermal: Final Thermal Conductivity Test Report and Data Logs Carbondale, CO

Provided here are a final thermal conductivity test report, a drilling log, and a heat rejection log from Carbondale, CO. Also attached is a report made before drilling, which contains predictions on the hydrogeologic conditions of the drill site. The forty-eight (48.9) hour in-si...
Ewbank, G. et al Clean Energy Economy for the Region (CLEER)
Oct 20, 2023
4 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Reports on Stress Prediction and Modeling for Well 16B(78)-32 May 2025

These two reports from the University of Pittsburgh document related efforts under Utah FORGE Project 2-2439v2 to estimate in-situ stresses in well 16B(78)-32 using laboratory data, machine learning models, and physics-based simulations. One report focuses on developing and valida...
Lu, G. et al University of Pittsburgh
Jun 05, 2025
2 Resources
0 Stars
Curated

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions

This report reviews the training of machine learning algorithms to laboratory triaxial ultrasonic velocity data for Utah FORGE Well 16A(78)-32. Three machine learning (ML) predictive models were developed for the prediction of vertical and two orthogonally oriented horizontal str...
Kelley, M. et al Battelle Memorial Institute
Jun 19, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report

This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: TOUGH2-CSM Simulation of Embedded Natural Fractures and Chemical Tracer Transport and Sorption

The EGS Collab SIGMA-V project is a multi-lab and university collaborative research project that is being undertaken at the Sanford Underground Research Facility (SURF) in South Dakota. The project consists of studying stimulation, fluid-flow, and heat transfer processes at a scal...
Johnston, B. et al National Renewable Energy Laboratory
Jun 07, 2019
4 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Numerical Modeling and Uncertainty Analysis using iTOUGH2 for West Virginia University

To reduce the geothermal exploration risk, a feasibility study is performed for a deep direct-use system proposed at the West Virginia University (WVU) Morgantown campus. This study applies numerical simulations to investigate reservoir impedance and thermal production. Because of...
Garapati, N. et al West Virginia University
Dec 20, 2019
13 Resources
0 Stars
Publicly accessible

Appalachian Basin Temperature-Depth Maps and Structured Data in support of Feasibility Study of Direct District Heating for the Cornell Campus Utilizing Deep Geothermal Energy

This dataset contains shapefiles and rasters that summarize the results of a stochastic analysis of temperatures at depth in the Appalachian Basin states of New York, Pennsylvania, and West Virginia. This analysis provides an update to the temperature-at-depth maps provided in the...
Smith, J. Cornell University
Oct 29, 2019
6 Resources
0 Stars
Publicly accessible

EGS Collab: Modeling and Simulation Working Group Teleconference Series (1-98)

This submission contains the presentation slides and recordings from the first 98 EGS Collab Modeling and Simulation Working Group teleconferences. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and resul...
White, M. et al Pacific Northwest National Laboratory
Feb 04, 2020
100 Resources
0 Stars
Publicly accessible
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service