OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 25 of 57.
Show results per page.
Order by:
Relevance Most Recent
Availability:
All Results Available Now
Filters
Technologies
Featured Projects
Topics
Data Type
"machine learning"×

Machine Learning Model Geotiffs Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains geotiffs, supporting shapefiles and readmes for the inputs and output models of algorithms explored in the Nevada Geothermal Machine Learning project, meant to accompany the final report. Layers include: Artificial Neural Network (ANN), Extreme Learning Ma...
Faulds, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
Curated

GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico

Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
Curated

GIS Resource Compilation Map Package Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups incl...
Brown, S. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
Curated

Geochemistry and paleo-geothermal features Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains the geochemistry dataset and paleo-geothermal features (sinter, travertine, tufa) (shapefiles and symbology) used in the Nevada Geothermal Machine Learning project. A submission linking the full GitHub repository for our machine learning Jupyter Notebooks...
Faulds, J. and Ayling, B. Nevada Bureau of Mines and Geology
Nov 01, 2020
2 Resources
Curated

Potential structures Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This submission contains shapefiles, geotiffs, and symbology for the revised-from-Play-Fairway potential structures/structural settings used in the Nevada Geothermal Machine Learning project. Layers include potential structural setting ellipses, centroids, and distance-to-centroid...
Faulds, J. and Coolbaugh, M. Nevada Bureau of Mines and Geology
Feb 20, 2021
3 Resources
Curated

GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources

Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
Curated

USGS Geophysics, Heat Flow, and Slip and Dilation Tendency Data used in Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

This package contains USGS data contributions to the DOE-funded Nevada Geothermal Machine Learning Project, with the objective of developing a machine learning approach to identifying new geothermal systems in the Great Basin. This package contains three major data products (geoph...
DeAngelo, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
Curated

Python Codebase and Jupyter Notebooks Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada

Git archive containing Python modules and resources used to generate machine-learning models used in the "Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada" project. This software is licensed as free to use, modify, a...
Brown, S. and Smith, C. Nevada Bureau of Mines and Geology
Jun 30, 2022
4 Resources
Curated

Training dataset and results for geothermal exploration artificial intelligence, applied to Brady Hot Springs and Desert Peak

The submission includes the labeled datasets, as ESRI Grid files (.gri, .grd) used for training and classification results for our machine leaning model: brady_som_output.gri, brady_som_output.grd, brady_som_output.* desert_som_output.gri, desert_som_output.grd, desert_som_outpu...
Moraga, J. et al Colorado School of Mines
Sep 01, 2020
16 Resources
Curated

Data Arrays for Microearthquake (MEQ) Monitoring using Deep Learning for the Newberry EGS Sites

The 'Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties' project looks to apply machine learning (ML) methods to Microearthquake (MEQ) data for imaging geothermal reservoir properties and forecasting seismic events, in order to...
Zhu, T. Pennsylvania State University
May 05, 2021
4 Resources
Curated

GOOML Big Kahuna Forecast Modeling and Genetic Optimization Files

This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework ...
Buster, G. et al Upflow
Jun 30, 2021
11 Resources
Curated

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs

Subsurface data analysis, reservoir modeling, and machine learning (ML) techniques have been applied to the Brady Hot Springs (BHS) geothermal field in Nevada, USA to further characterize the subsurface and assist with optimizing reservoir management. Hundreds of reservoir simulat...
Beckers, K. et al National Renewable Energy Laboratory
Feb 18, 2021
1 Resources
Curated

Active Source Seismic (Ultrasonic) Data from Double-Direct Shear Lab Experiments

Active source ultrasonic data from lab experiments p5270 and p5271 including raw waveforms (WF) and mechanical data (mat). From the PSU team working on the "Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties" project. The fric...
Marone, C. Pennsylvania State University
May 05, 2021
1 Resources
Curated

Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files

This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification. In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
Curated

Machine Learning to Identify Geologic Factors Associated with Production in Geothermal Fields: A Case-Study Using 3D Geologic Data from Brady Geothermal Field and NMFk

In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity producti...
Siler, D. et al United States Geological Survey
Oct 01, 2021
6 Resources
Curated

Hybrid machine learning model to predict 3D in-situ permeability evolution

Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
May 08, 2021
3 Resources
In progress

Subsurface Characterization and Machine Learning Predictions at Brady Hot Springs Results

Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells increasing or decreasing the fluid flow rates across the wells and drilling new wells at appropriate locations. Th...
Beckers, K. et al National Renewable Energy Laboratory
Oct 20, 2021
6 Resources
Curated

Processed Lab Data for Neural Network-Based Shear Stress Level Prediction

Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a n...
Marone, C. et al Pennsylvania State University
May 14, 2021
3 Resources
Curated

GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources

This is a part of work funded by Geothermal Technologies Office of the Department of Energy under the contract: DE
Dec 31, 1969
0 Resources
In progress

Altona Field Lab Inverse Model WRR 2020

Includes data for measured inert tracer breakthrough curves first reported in Hawkins (2020) (Water Resources Research). In addition, this submission includes the production well temperature measurements first reported in Hawkins et al. (2017a) (Water Resources Research, volume 53...
Tester, J. Cornell University
Jan 01, 2015
3 Resources
Curated

Desert Peak Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to the Desert Peak Geothermal Field. It includes all input and output files used in the project. The files include data categories of raw data, pre-processed data, and analysis (post-processed data). In each of these categories there ar...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
Curated

Brady Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-proces...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
Curated

Salton Sea Geodatabase for Geothermal Exploration Artificial Intelligence

These files contain the geodatabases related to Salton Sea Geothermal Field. It includes all input and output files used with the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (po...
Moraga, J. et al Colorado School of Mines
Apr 27, 2021
3 Resources
Curated

Appendices for Geothermal Exploration Artificial Intelligence Report

The Geothermal Exploration Artificial Intelligence looks to use machine learning to spot geothermal identifiers from land maps. This is done to remotely detect geothermal sites for the purpose of energy uses. Such uses include enhanced geothermal system (EGS) applications, especia...
Duzgun, H. et al Colorado School of Mines
Jan 08, 2021
12 Resources
Curated

GOOML Kahunanui Data Curation, Historical Modeling, Forecast Modeling, and Genetic Optimization Examples

This submission includes example files and Jupyter Notebooks associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Kahunanui (KHN) fictional geothermal power plant, which uses synthetic data to model a fictional plant. Includes data curation, histo...
Taverna, N. et al Upflow
Jan 30, 2023
10 Resources
In progress
123Next >>
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.