Search GDR Data
Showing results 1 - 25 of 83.
Show
results per page.
Order by:
Available Now:
Technologies
Featured Projects
Topics
Data Type
EGS Collab Experiment 1: 3D Seismic Velocity Model and Updated Microseismic Catalog Using Transfer-Learning Aided Double-Difference Tomography
This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-w...
Chai, C. et al Oak Ridge National Laboratory
Apr 20, 2020
7 Resources
0 Stars
Curated
7 Resources
0 Stars
Curated
Potential structures Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This submission contains shapefiles, geotiffs, and symbology for the revised-from-Play-Fairway potential structures/structural settings used in the Nevada Geothermal Machine Learning project. Layers include potential structural setting ellipses, centroids, and distance-to-centroid...
Faulds, J. and Coolbaugh, M. Nevada Bureau of Mines and Geology
Feb 20, 2021
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Altona Field Lab Inverse Model WRR 2020
Includes data for measured inert tracer breakthrough curves first reported in Hawkins (2020) (Water Resources Research). In addition, this submission includes the production well temperature measurements first reported in Hawkins et al. (2017a) (Water Resources Research, volume 53...
Tester, J. Cornell University
Jan 01, 2015
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output Files
This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification.
In this study, a machine-learning-assiste...
Jin, W. et al Idaho National Laboratory
Apr 15, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Geothermal Drilling and Completions: Petroleum Practices Technology Transfer
NREL and the Colorado School of Mines (SURGE) conducted research in FY14 to identify petroleum drilling and completion practices (methods and technologies) that can be transferred to geothermal drilling and completion, to provide the geothermal industry with more effective, lower ...
Visser, C. et al National Renewable Energy Laboratory
Sep 30, 2014
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Magnetotelluric Data from Mountain Home, ID
This dataset includes magnetotelluric transfer functions in the form of EDI files for 16 stations collected by the USGS and 40 stations collected by Quantec Geoscience for Lawerence Berkeley National Lab around the Mountain Home area in Idaho. A 3D electrical resistivity model is ...
Peacock, J. and Gasperikova, E. United States Geological Survey
Sep 18, 2020
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
Utah FORGE: Optimization of a Plug-and-Perf Stimulation (Fervo Energy)
Information around the plug-and-perf treatment design at Utah FORGE by Fervo Energy.
Objective and Purpose:
Develop a multistage hydraulic stimulation approach designed specifically to target the top three factors that control the technical and commercial viability of an EGS sys...
Norbeck, J. et al Fervo Energy
Feb 08, 2023
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Machine Learning Model Geotiffs Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This submission contains geotiffs, supporting shapefiles and readmes for the inputs and output models of algorithms explored in the Nevada Geothermal Machine Learning project, meant to accompany the final report. Layers include: Artificial Neural Network (ANN), Extreme Learning Ma...
Faulds, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
GeoThermalCloud framework for fusion of big data and multi-physics models in Nevada and Southwest New Mexico
Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information...
Vesselinov, V. Los Alamos National Laboratory
Mar 29, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GIS Resource Compilation Map Package Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups incl...
Brown, S. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Geochemistry and paleo-geothermal features Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This submission contains the geochemistry dataset and paleo-geothermal features (sinter, travertine, tufa) (shapefiles and symbology) used in the Nevada Geothermal Machine Learning project.
A submission linking the full GitHub repository for our machine learning Jupyter Notebooks...
Faulds, J. and Ayling, B. Nevada Bureau of Mines and Geology
Nov 01, 2020
2 Resources
0 Stars
Publicly accessible
2 Resources
0 Stars
Publicly accessible
Data Arrays for Microearthquake (MEQ) Monitoring using Deep Learning for the Newberry EGS Sites
The 'Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties' project looks to apply machine learning (ML) methods to Microearthquake (MEQ) data for imaging geothermal reservoir properties and forecasting seismic events, in order to...
Zhu, T. Pennsylvania State University
May 05, 2021
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
GeoThermalCloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration and Development of Hidden Geothermal Resources
Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Di...
Ahmmed, B. Stanford University
Apr 04, 2022
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
USGS Geophysics, Heat Flow, and Slip and Dilation Tendency Data used in Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
This package contains USGS data contributions to the DOE-funded Nevada Geothermal Machine Learning Project, with the objective of developing a machine learning approach to identifying new geothermal systems in the Great Basin. This package contains three major data products (geoph...
DeAngelo, J. et al Nevada Bureau of Mines and Geology
Jun 01, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Publications and Datasets from Play-Fairway Retrospective Analysis with Emphasis on Developing Improved Hydrothermal Energy Assessments
Previous moderate and high-temperature geothermal resource assessments of the western United States utilized data-driven methods and expert decisions to estimate resource favorability. Although expert decisions can add confidence to the modeling process by ensuring reasonable mode...
Mordensky, S. et al United States Geological Survey
Feb 07, 2023
7 Resources
0 Stars
Publicly accessible
7 Resources
0 Stars
Publicly accessible
Drilling Monitoring Program: Computer Program on Heat Transfer Temperature Distribution Hydraulic Calculations for Abrasive Jet Drilling
A program was created to evaluate the downhole conditions occurring in a FLASH ASJ drilling system. the program is meant to aid the operator of a coiled tubing rig in maintaining optimum drilling conditions.
Ozbayoglu, E. Impact Technologies LLC
Jan 01, 2011
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
GEO3D Three-Dimensional Computer Model of a Ground Source Heat Pump System
This file is the setup file for GEO3D, a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat tran...
Menart, J. Wright State University
Jun 07, 2013
3 Resources
0 Stars
Publicly accessible
3 Resources
0 Stars
Publicly accessible
Utah FORGE: Telluric Monitoring Experiment Transfer Functions
The Utah Frontier Observatory for Research in Geothermal Energy (FORGE) attempted a stimulation at well 16A(78)-32 during April and May 2022. We recorded telluric and magnetotelluric (MT) data before, during, and after the well stimulation experiment using the FORGE Telluric Monit...
Mendoza, K. and Wannamaker, P. Energy and Geoscience Institute at the University of Utah
May 27, 2022
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Python Codebase and Jupyter Notebooks Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada
Git archive containing Python modules and resources used to generate machine-learning models used in the "Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada" project. This software is licensed as free to use, modify, a...
Brown, S. and Smith, C. Nevada Bureau of Mines and Geology
Jun 30, 2022
4 Resources
0 Stars
Publicly accessible
4 Resources
0 Stars
Publicly accessible
Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32
This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Curated
2 Resources
0 Stars
Curated
Active Source Seismic (Ultrasonic) Data from Double-Direct Shear Lab Experiments
Active source ultrasonic data from lab experiments p5270 and p5271 including raw waveforms (WF) and mechanical data (mat). From the PSU team working on the "Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties" project. The fric...
Marone, C. Pennsylvania State University
May 05, 2021
1 Resources
0 Stars
Publicly accessible
1 Resources
0 Stars
Publicly accessible
Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions
This report reviews the training of machine learning algorithms to laboratory triaxial ultrasonic velocity data for Utah FORGE Well 16A(78)-32. Three machine learning (ML) predictive models were developed for the prediction of vertical and two orthogonally oriented horizontal str...
Kelley, M. et al Battelle Memorial Institute
Jun 19, 2023
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
Utah FORGE 6-3629: Application of Machine Learning, Geomechanics, and Seismology for Real-Time Decision Making Tools During Stimulation 2024 Annual Workshop Presentation
This is a presentation on the Cutting Edge Application of Machine Learning, Geomechanics, and Seismology for Real-Time Decision Making Tools During Stimulation by the University of Utah, presented by No'am Zach Dvory. This video slide presentation, by the University of Utah, disc...
Dvory, N. Energy and Geoscience Institute at the University of Utah
Sep 15, 2024
1 Resources
0 Stars
Curated
1 Resources
0 Stars
Curated
EGS Collab Experiment 1: SIMFIP Notch-164 GRL Paper
Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5...
Guglielmi, Y. Lawrence Berkeley National Laboratory
Sep 24, 2020
9 Resources
0 Stars
Publicly accessible
9 Resources
0 Stars
Publicly accessible
Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report
This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Curated
3 Resources
0 Stars
Curated