OpenEI: Energy Information
  • Geothermal Data Repository
  • My User
    • Sign Up
    • Login
 
  • Data
    • View All Submissions
    • Data Lakes
    • Data Standards
    • Submit Data
  • Help
    • Frequently Asked Questions
    • Data Submission Best Practices
    • Data Submission Tutorial Videos
    • Instructions for Funds Recipients
    • Data Provision Guidelines
    • Contact GDR Help
  • About
  • Search

Search GDR Data

Showing results 1 - 25 of 476.
Show results per page.
Order by:
Available Now:
Filters Clear All Filters ×
Technologies
Featured Projects
Topics
Data Type
"in-situ stress estimation"×
Document×

Utah FORGE 2439: A Multi-Component Approach to Characterizing In-Situ Stress

Core-based in-situ stress estimation, Triaxial Ultrasonic Velocity (labTUV) data, and Deformation Rate Analysis (DRA) data for Utah FORGE well 16A(78)-32 using triaxial ultrasonic velocity and deformation rate analysis. Report documenting a multi-component approach to characterizi...
Bunger, A. et al Battelle Memorial Institute
Dec 13, 2022
4 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions September 2023 Report

This task completion report documents the development and implementation of machine learning (ML) models for the prediction of in-situ vertical (Sv), minimum horizontal (SHmin) and maximum horizontal (SHmax) stresses in well 16A(78)-32. The detailed description of the experimental...
Mustafa, A. et al Battelle Memorial Institute
Sep 28, 2023
3 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Report on Predicting Far-Field Stresses Using Finite Element Modeling and Near-Wellbore Machine Learning for Well 16A(78)-32

This report presents the far-field stress predictions at two locations along the vertical section of Utah FORGE Well 16A (78)-32 using a physics-based thermo-poro-mechanical model. Three principal stresses in far-field were obtained by solving an inverse problem based on the near-...
Lu, G. et al University of Pittsburgh
Aug 30, 2024
2 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Connecting In Situ Stress and Wellbore Deviation to Near-Well Fracture Complexity using Phase-Field Simulations

This report presents a series of numerical experiments investigating the relationships among near-well fracture complexity, in situ stress conditions, and wellbore deviation. Using a phase-field modeling approach, the study explores how factors such as stress regimes, wellbore ori...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
2 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Report on Laboratory Block Experiments with Six Different Combinations of Stresses and Rock Fabrics

This report documents a series of block-scale hydraulic fracturing experiments, simulating Utah FORGE conditions to investigate how different combinations of in situ stress regimes, well orientations, and thermal stress conditions influence fracture initiation and propagation. The...
Bunger, A. and Lu, Y. Lawrence Livermore National Laboratory
Jan 30, 2025
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2439v2: Reports on Stress Prediction and Modeling for Well 16B(78)-32 May 2025

These two reports from the University of Pittsburgh document related efforts under Utah FORGE Project 2-2439v2 to estimate in-situ stresses in well 16B(78)-32 using laboratory data, machine learning models, and physics-based simulations. One report focuses on developing and valida...
Lu, G. et al University of Pittsburgh
Jun 05, 2025
2 Resources
0 Stars
Curated

Utah FORGE 2-2446: Report on Phase Field Modelling of Near-Wellbore Hydraulic Fracture Nucleation and Propagation

This is a report that describes the modelling of fracture nucleation and propagation in the near-wellbore region to understand the relationship between in situ stress and fracture patterns. A novel phase field formulation is described here, which represents fractures as a diffuse ...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Dec 31, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Machine Learning for Well 16A(78)-32 Stress Predictions

This report reviews the training of machine learning algorithms to laboratory triaxial ultrasonic velocity data for Utah FORGE Well 16A(78)-32. Three machine learning (ML) predictive models were developed for the prediction of vertical and two orthogonally oriented horizontal str...
Kelley, M. et al Battelle Memorial Institute
Jun 19, 2023
1 Resources
0 Stars
Publicly accessible

Utah FORGE 3-2535: Compilation of Geodetic Data and Estimation of Associated Deformation

Report on possible geodetic signature of the 3 stimulations in April 2022 as well as a comparison with existing InSAR data gathered over the site before, during, and after the stimulation. In geothermal production it is important to understand the existing stress field and the cha...
Vasco, D. et al Lawrence Berkeley National Laboratory
Apr 29, 2022
4 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Report on Minifrac Tests for Stress Characterization

This report describes minifrac tests conducted in the 16B(78)-32 well at the Utah FORGE site to characterize subsurface stresses, including the magnitude and orientation of the minimum and maximum horizontal stresses and the magnitude of the vertical stress. A minifrac test was co...
Kelley, M. et al Battelle Memorial Institute
Feb 22, 2024
1 Resources
0 Stars
Publicly accessible

Newberry EGS Demonstration: Initial Project Report and Induced Seismicity Mitigation Plan, 2011

This is the first project report and induced seismicity mitigation plan for the Newberry Enhanced Geothermal Systems (EGS) Demonstration project. The primary objectives of this first phase were to obtain necessary permits and comply with all regulations, including NEPA, communica...
Cladouhos, T. et al AltaRock Energy Inc
May 05, 2024
4 Resources
0 Stars
Publicly accessible

Utah FORGE 5-2615: Laboratory Data for Insights on Hydraulic Fracture Closure and Stress Measurement

This dataset includes data from injection/fall-off experiments conducted in controlled laboratory settings. The aim is to investigate the physics governing fracture closure and the associated stress measurements during hydraulic fracturing. These time series data include flow rat...
Ye, Z. and Ghassemi, A. University of Oklahoma
Jun 12, 2024
6 Resources
0 Stars
Publicly accessible

Utah FORGE 2-2446: Characterizing Stress Roughness Through Simulation of Hydraulic Fracture Growth

This dataset covers work that investigated the apparent toughness anisotropy at Utah FORGE by comparing microseismic data with stress profiles from field measurements. The study analyzes the hydraulic fracture growth of Stage 3 at Well 16A(78)-32 using MEQ data, calibrating a nume...
Cusini, M. and Fei, F. Lawrence Livermore National Laboratory
Jan 30, 2025
3 Resources
0 Stars
Publicly accessible

Directional Cooling-Induced Fracturing Westerly Granite Test Results

Directional Cooling-Induced Fracturing (DCIF) experiments were conducted on a short, cylindrical sample of Westerly granite (diameter = 4 inches, height ~ 2 inches). Liquid nitrogen was poured in a copper cup attached to the top of the sample, and the resulting acoustic emissions ...
Nakagawa, S. Lawrence Berkeley National Laboratory
Dec 18, 2020
5 Resources
0 Stars
Publicly accessible

DCIF Westerly Granite AE Stress Effect Test (Task 3-1)

Directional Cooling-Induced Fracturing (DCIF) experiments were conducted on rectangular Westerly granite blocks (width=depth=4.0", height=2.0"). Liquid nitrogen was poured in a small, 1"-diameter copper cup attached to the top of the sample, and the resulting acoustic emissions (A...
Nakagawa, S. and Trzeciak, M. Lawrence Berkeley National Laboratory
Jul 08, 2021
15 Resources
0 Stars
Publicly accessible

DCIF (Directional Cooling-Induced Fracturing) Westerly Granite AE Borehole Damage Effect Test (Task 3-0)

Directional Cooling-Induced Fracturing (DCIF) experiments were conducted on three rectangular Westerly granite blocks (width=depth=4.0", height=2.0") which were preheated to 200, 400, and 600 degree C to induce damage (microcracks) with varying degrees. Liquid nitrogen was poured...
Nakagawa, S. Lawrence Berkeley National Laboratory
Jan 27, 2022
13 Resources
0 Stars
Publicly accessible

Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model

Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerica...
Carrigan, C. et al Lawrence Livermore National Laboratory
Jan 01, 2011
2 Resources
0 Stars
Publicly accessible

Utah FORGE 2439: Well 16B(78)-32 Field-Test Data from Mini-Frac Tests

This submittal includes the field-test data collected during stress tests conducted in the Utah FORGE 16B(78)-32 wellbore to measure/characterize the stresses in the geothermal reservoir. The type of stress test performed is referred to as a mini-frac test or a micro-frac test. Th...
Kelley, M. et al Battelle Memorial Institute
Jul 02, 2023
4 Resources
0 Stars
Publicly accessible

Simulations of Brady's-Type Fault Undergoing CO2 Push-Pull: Pressure-Transient and Sensitivity Analysis

Input and output files used for fault characterization through numerical simulation using iTOUGH2. The synthetic data for the push period are generated by running a forward simulation (input parameters are provided in iTOUGH2 Brady GF6 Input Parameters.txt [InvExt6i.txt]). In gene...
Jung, Y. and Doughty, C. Lawrence Berkeley National Laboratory
Mar 09, 2018
11 Resources
0 Stars
Publicly accessible

EGS Collab Experiment 1: SIMFIP Notch-164 GRL Paper

Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5...
Guglielmi, Y. Lawrence Berkeley National Laboratory
Sep 24, 2020
9 Resources
0 Stars
Publicly accessible

Method to Recover Media Ligand Losses During Sorption of Rare Earth Elements from Simulated Geothermal Brines

This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine dop...
Stull, D. Tusaar Corp.
May 24, 2016
2 Resources
0 Stars
Publicly accessible

Deep Direct-Use Feasibility Study Estimation of Reservoir Properties for the Tuscarora Sandstone

This dataset contains black-and-white photographic images of individual core segments from well Preston 119 and photomicrographs taken of petrographic thin sections from well Clay 513. Minipermeameter measurement results of 2,260 samples for fracture and matrix permeability on cor...
McDowell, R. West Virginia University
Dec 19, 2019
5 Resources
0 Stars
Publicly accessible

Hybrid machine learning model to predict 3D in-situ permeability evolution

Enhanced geothermal systems (EGS) can provide a sustainable and renewable solution to the new energy transition. Its potential relies on the ability to create a reservoir and to accurately evaluate its evolving hydraulic properties to predict fluid flow and estimate ultimate therm...
Elsworth, D. and Marone, C. Pennsylvania State University
Nov 22, 2022
4 Resources
0 Stars
Publicly accessible

Community Geothermal: Final Thermal Conductivity Test Report and Data Logs Carbondale, CO

Provided here are a final thermal conductivity test report, a drilling log, and a heat rejection log from Carbondale, CO. Also attached is a report made before drilling, which contains predictions on the hydrogeologic conditions of the drill site. The forty-eight (48.9) hour in-si...
Ewbank, G. et al Clean Energy Economy for the Region (CLEER)
Oct 20, 2023
4 Resources
0 Stars
Publicly accessible

In-Situ Process for Sorption and Stripping of Rare Earth Elements from Simulated Geothermal Brine

Description of a conceptual commercial process to remove rare earth elements (REEs) from geothermal brine, based on a small-scale laboratory experiment to load, strip, and regenerate a ligand-based media used to adsorb REEs from a simulated brine doped with known mineral concentra...
Stull, D. Tusaar Corp.
May 24, 2016
1 Resources
0 Stars
Publicly accessible
12345Next >>
  • About the GDR
  • Partners & Sponsors
  • Disclaimers
  • Developer Services
  • The GDR is the submission point for all data collected from research funded by the U.S. Department of Energy's Geothermal Technologies Office.
  • Content is available under Creative Commons Attribution 4.0 unless otherwise noted.

Privacy Policy Notification

This site uses cookies to store and share user preferences with other OpenEI sites, and uses Google Analytics to collect anonymous user information such as which pages are visited, for how often, and what searches or other webpages may have led users here. You can prevent Google Analytics from recognizing you on return visits to this site by disabling cookies on your browser or by installing a Google Analytics Opt-out Browser Add-on. By clicking "Accept" you agree this site can store cookies on your device and disclose information to OpenEI and Google Analytics in accordance with our privacy policy.

OpenEI Privacy Policy Google Analytics Terms of Service